
S7 S7-1200 Programmable controller

Preface

Product overview

1

Installation

2

PLC concepts

3

Device configuration

4

Programming concepts

5

Programming instructions

6

PROFINET

7

Point-to-Point (PtP)
communications

8

Online and diagnostic tools

9

Technical specifications

A

Calculating a power budget

B

Order numbers

C

SIMATIC

S7
S7-1200 Programmable controller

System Manual

11/2009
A5E02486680-02

https://sites.google.com/site/chauchiduc

Legal information Legal information
Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

CAUTION
with a safety alert symbol, indicates that minor personal injury can result if proper precautions are not taken.

CAUTION
without a safety alert symbol, indicates that property damage can result if proper precautions are not taken.

NOTICE
indicates that an unintended result or situation can occur if the corresponding information is not taken into
account.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation for the specific task, in particular its warning notices and
safety instructions. Qualified personnel are those who, based on their training and experience, are capable of
identifying risks and avoiding potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended
or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be adhered to. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of the Siemens AG. The remaining trademarks in this
publication may be trademarks whose use by third parties for their own purposes could violate the rights of the
owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.

 Siemens AG
Industry Sector
Postfach 48 48
90026 NÜRNBERG
GERMANY

 Ordernumber: 6ES7298-8FA30-8BH0
Ⓟ 10/2009

Copyright © Siemens AG 2009.
Technical data subject to change

https://sites.google.com/site/chauchiduc

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 3

Preface

Purpose of the manual
The S7-1200 series is a line of programmable logic controllers (PLCs) that can control a
variety of automation applications. Compact design, low cost, and a powerful instruction set
make the S7-1200 a perfect solution for controlling a wide variety of applications. The S7-
1200 models and the Windows-based programming tool give you the flexibility you need to
solve your automation problems.
This manual provides information about installing and programming the S7-1200 PLCs and
is designed for engineers, programmers, installers, and electricians who have a general
knowledge of programmable logic controllers.

Required basic knowledge
To understand this manual, it is necessary to have a general knowledge of automation and
programmable logic controllers.

Scope of the manual
This manual is valid for STEP 7 Basic V10.5 and the S7-1200 product family. For a complete
list of the S7-1200 products described in this manual, refer to the technical specifications
(Page 279).

Certification, CE label, C-Tick, and other standards
Refer to the technical specifications (Page 279) for more information.

Service and support
In addition to our documentation, we offer our technical expertise on the Internet at:
http://www.siemens.com/automation/support-request
Contact your Siemens distributor or sales office for assistance in answering any technical
questions, for training, or for ordering S7 products. Because your sales representatives are
technically trained and have the most specific knowledge about your operations, process
and industry, as well as about the individual Siemens products that you are using, they can
provide the fastest and most efficient answers to any problems you might encounter.

https://sites.google.com/site/chauchiduc

Preface

 S7 S7-1200 Programmable controller
4 System Manual, 11/2009, A5E02486680-02

https://sites.google.com/site/chauchiduc

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 5

Table of contents

 Preface .. 3
1 Product overview ... 11

1.1 Introducing the S7-1200 PLC...11
1.2 Signal boards ...13
1.3 Signal modules ..13
1.4 Communication modules ...14
1.5 STEP 7 Basic ...14
1.5.1 Different views to make the work easier ..15
1.5.2 Help when you need it ...16
1.6 Display panels..19

2 Installation ... 21
2.1 Installation and removal procedures..24
2.1.1 Installing and removing the CPU ...26
2.1.2 Installing and removing a signal module..27
2.1.3 Installing and removing a communication module...29
2.1.4 Installing and removing a signal board ..30
2.1.5 Removing and reinstalling the S7-1200 terminal block connector...31
2.2 Wiring guidelines..32

3 PLC concepts .. 37
3.1 Execution of the user program...37
3.1.1 Operating modes of the CPU...39
3.1.2 Event execution priorities and queuing..43
3.1.3 CPU memory..48
3.1.4 Password protection for the S7-1200 CPU..52
3.1.5 Recovery from a lost password..53
3.2 Data storage, memory areas and addressing..53
3.3 Data types..57
3.4 Using a memory card...61
3.4.1 Inserting a memory card in the CPU..62
3.4.2 Configuring the startup parameter of the CPU before copying the project to the memory

card ..63
3.4.3 Transfer card..63
3.4.4 Program card ...65

https://sites.google.com/site/chauchiduc

Table of contents

 S7-1200 Programmable controller
6 System Manual, 11/2009, A5E02486680-02

4 Device configuration .. 69
4.1 Inserting a CPU... 70
4.2 Detecting the configuration for an unspecified CPU ... 71
4.3 Configuring the operation of the CPU... 72
4.4 Adding modules to the configuration... 73
4.5 Configuring the parameters of the modules.. 74
4.6 Creating a network connection ... 75
4.7 Configuring an IP address in your project... 76

5 Programming concepts.. 79
5.1 Guidelines for designing a PLC system.. 79
5.2 Structuring your user program .. 80
5.3 Using blocks to structure your program .. 81
5.3.1 Organization block (OB).. 82
5.3.2 Function (FC) .. 84
5.3.3 Function block (FB) ... 84
5.3.4 Data block (DB)... 86
5.4 Understanding data consistency... 86
5.5 Selecting the programming language ... 87
5.6 Copy protection ... 89
5.7 Downloading the elements of your program ... 89
5.8 Uploading the elements of your program.. 90
5.9 Debugging and testing the program.. 91

6 Programming instructions .. 93
6.1 Basic instructions .. 93
6.1.1 Bit logic.. 93
6.1.1.1 Set and reset instructions.. 95
6.1.1.2 Positive and negative edge instructions.. 97
6.1.2 Timers ... 99
6.1.3 Counters.. 102
6.1.3.1 Counters.. 102
6.1.3.2 CTRL_HSC instruction .. 105
6.1.3.3 Operation of the high-speed counter .. 107
6.1.3.4 Configuration of the HSC .. 110
6.1.4 Compare.. 111
6.1.5 Math .. 113
6.1.5.1 MOD instruction .. 114
6.1.6 Move.. 119
6.1.6.1 Swap instruction.. 122
6.1.7 Convert.. 123
6.1.7.1 Scale and normalize instructions .. 124
6.1.8 Program control... 126
6.1.9 Logical operations ... 127
6.1.10 Shift and Rotate .. 130

https://sites.google.com/site/chauchiduc

 Table of contents

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 7

6.2 Extended instructions...132
6.2.1 Common error parameters for extended instructions ..132
6.2.2 Clock and calendar instructions...132
6.2.3 String and character instructions ...136
6.2.3.1 String data overview ..136
6.2.3.2 String conversion instructions ..136
6.2.3.3 String operation instructions ..144
6.2.4 Program control instructions ..150
6.2.4.1 Reset scan cycle watchdog instruction..150
6.2.4.2 Stop scan cycle instruction ..151
6.2.4.3 Get Error instructions ...151
6.2.5 Communications instructions ...154
6.2.5.1 Open Ethernet Communication..154
6.2.5.2 Point-to-Point instructions ..167
6.2.6 Interrupt instructions ..167
6.2.6.1 Attach and detach instructions...167
6.2.6.2 Start and cancel time delay interrupt instructions ..170
6.2.6.3 Disable and Enable alarm interrupt instructions ..172
6.2.7 PID control ...172
6.2.8 Motion control instructions ...173
6.2.9 Pulse instruction...174
6.2.9.1 CTRL_PWM instruction..174
6.3 Global library instructions...177
6.3.1 USS..177
6.3.1.1 Requirements for using the USS protocol ...177
6.3.1.2 USS_DRV instruction...180
6.3.1.3 USS_PORT instruction ..182
6.3.1.4 USS_RPM instruction ..183
6.3.1.5 USS_WPM instruction..184
6.3.1.6 USS status codes ..186
6.3.2 MODBUS ...187
6.3.2.1 MB_COMM_LOAD...187
6.3.2.2 MB_MASTER...189
6.3.2.3 MB_SLAVE ..199

7 PROFINET .. 209
7.1 Communication with a programming device..210
7.1.1 Establishing the hardware communications connection..211
7.1.2 Configuring the devices ...211
7.1.3 Assigning Internet Protocol (IP) addresses ...212
7.1.3.1 Assigning IP addresses to programming and network devices ...212
7.1.3.2 Assigning an IP address online..214
7.1.3.3 Configuring an IP address in your project..217
7.1.4 Testing the PROFINET network ..219
7.2 HMI-to-PLC communication...221
7.2.1 Configuring the logical network connections between an HMI and a CPU222
7.3 PLC-to-PLC communication ..223
7.3.1 Configuring the logical network connections between two CPUs..224
7.3.2 Configuring transmit (send) and receive parameters...225
7.3.2.1 Configuring the TSEND_C instruction transmit (send) parameters ...225
7.3.2.2 Configuring the TRCV_C instruction receive parameters..229

https://sites.google.com/site/chauchiduc

Table of contents

 S7-1200 Programmable controller
8 System Manual, 11/2009, A5E02486680-02

7.4 Reference Information... 233
7.4.1 Locating the Ethernet (MAC) address on the CPU... 233
7.4.2 Configuring Network Time Protocol synchronization .. 234

8 Point-to-Point (PtP) communications ... 237
8.1 Using the RS232 and RS485 communication modules.. 237
8.2 Configuring the communication ports ... 238
8.3 Managing flow control ... 239
8.4 Configuring the transmit (send) and receive parameters.. 241
8.5 Programming the PtP communications... 246
8.5.1 Polling architecture.. 247
8.6 Point-to-Point instructions ... 248
8.6.1 Common parameters for Point-to-Point instructions... 248
8.6.2 PORT_CFG instruction ... 250
8.6.3 SEND_CFG instruction ... 251
8.6.4 RCV_CFG instruction.. 253
8.6.5 SEND_PTP instruction .. 259
8.6.6 RCV_PTP instruction .. 262
8.6.7 RCV_RST instruction .. 263
8.6.8 SGN_GET instruction.. 264
8.6.9 SGN_SET instruction .. 265
8.7 Errors... 266

9 Online and diagnostic tools.. 269
9.1 Status LEDs .. 269
9.2 Going online and connecting to a CPU... 270
9.3 Setting the IP address and time of day ... 271
9.4 CPU operator panel for the online CPU.. 272
9.5 Monitoring the cycle time and memory usage .. 272
9.6 Displaying diagnostic events in the CPU .. 272
9.7 Watch tables for monitoring the user program.. 273

A Technical specifications... 279
A.1 General Technical Specifications.. 279
A.2 CPUs... 284
A.2.1 CPU 1211C Specifications.. 284
A.2.2 CPU 1212C Specifications.. 289
A.2.3 CPU 1214C Specifications.. 294
A.3 Digital signal modules (SMs)... 299
A.3.1 SM 1221 Digital Input Specifications .. 299
A.3.2 SM 1222 Digital Output Specifications.. 301
A.3.3 SM 1223 Digital Input/Output Specifications... 303
A.4 Analog signal modules (SMs) ... 306
A.4.1 SM 1231, SM 1232, SM 1234 Analog Specifications ... 306
A.5 Signal boards (SBs) .. 313
A.5.1 SB 1223 2 X 24 VDC Input / 2 X 24 VDC Output Specifications.. 313
A.5.2 SB 1232 1 Analog Output Specifications .. 315

https://sites.google.com/site/chauchiduc

 Table of contents

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 9

A.6 Communication modules (CMs)...317
A.6.1 CM 1241 RS485 Specifications ...317
A.6.2 CM 1241 RS232 Specifications ...318
A.7 SIMATIC memory cards...318
A.8 Input simulators..319
A.9 I/O expansion cable ...320

B Calculating a power budget ... 321
B.1 Calculating a sample power requirement ..322
B.2 Calculating your power requirement ..323

C Order numbers .. 325
 Index.. 329

https://sites.google.com/site/chauchiduc

Table of contents

 S7-1200 Programmable controller
10 System Manual, 11/2009, A5E02486680-02

https://sites.google.com/site/chauchiduc

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 11

Product overview 1
1.1 Introducing the S7-1200 PLC

The S7-1200 programmable logic controller (PLC) provides the flexibility and power to
control a wide variety of devices in support of your automation needs. The compact design,
flexible configuration, and powerful instruction set combine to make the S7-1200 a perfect
solution for controlling a wide variety of applications.
The CPU combines a microprocessor, an integrated power supply, input circuits, and output
circuits in a compact housing to create a powerful PLC. After you download your program,
the CPU contains the logic required to monitor and control the devices in your application.
The CPU monitors the inputs and changes the outputs according to the logic of your user
program, which can include Boolean logic, counting, timing, complex math operations, and
communications with other intelligent devices.
Several security features help protect access to both the CPU and the control program:
● Every CPU provides password protection that allows you to configure access to the CPU

functions.
● You can use "know-how protection" to hide the code within a specific block. See the

"Programming concepts" (Page 89) chapter for details.
The CPU provides a PROFINET port for communication over a PROFINET network.
Communication modules are available for communicating over RS485 or RS232 networks.

① Power connector
② Removable user wiring connectors

(behind the doors)
② Memory card slot under top door
③ Status LEDs for the on-board I/O
④ PROFINET connector (on the bottom

of the CPU)
The different CPU models provide a
diversity of features and capabilities that
help you create effective solutions for your
varied applications. For detailed
information about a specific CPU, see the
technical specifications (Page 279).

https://sites.google.com/site/chauchiduc

Product overview
1.1 Introducing the S7-1200 PLC

 S7-1200 Programmable controller
12 System Manual, 11/2009, A5E02486680-02

Feature CPU 1211C CPU 1212C CPU 1214C
Physical size (mm) 90 x 100 x 75 110 x 100 x 75
User memory
 Work memory
 Load memory
 Retentive memory

 25 Kbytes
 1 Mbyte
 2 Kbytes

 50 Kbytes
 2 Mbytes
 2 Kbytes

Local on-board I/O
 Digital
 Analog

 6 inputs/4 outputs
 2 inputs

 8 inputs/6 outputs
 2 inputs

 14 inputs/10 outputs
 2 inputs

Process image size 1024 bytes inputs (I) and 1024 bytes outputs (Q)
Bit memory (M) 4096 bytes 8192 bytes
Signal modules expansion None 2 8
Signal board 1
Communication modules 3 (left-side expansion)
High-speed counters
 Single phase

 Quadrature phase

3
 3 at 100 kHz

 3 at 80 kHZ

4
 3 at 100 kHz

1 at 30 kHz
 3 at 80 kHz

1 at 20 kHz

6
 3 at 100 kHz

3 at 30 kHz
 3 at 80 kHz

3 at 20 kHz

Pulse outputs 2
Memory card SIMATIC Memory card (optional)
Real time clock retention time 10 days, typical / 6 day minimum at 40 degrees C.
PROFINET 1 Ethernet communications port
Real math execution speed 18 μs/instruction
Boolean execution speed 0.1 μs/instruction

The S7-1200 family provides a variety of signal modules and signal boards for expanding the
capabilities of the CPU. You can also install additional communication modules to support
other communication protocols. For detailed information about a specific module, see the
technical specifications (Page 279).

Module Input only Output only Combination in/out

8 x DC In 8 x DC Out
8 x Relay Out

8 x DC In/8 x DC Out
8 x DC In/8 x Relay Out

Digital

16 x DC In 16 x DC Out
16 x Relay Out

16 x DC In/16 x DC Out
16 x DC In/16 x Relay Out

Signal module
(SM)

Analog 4 x Analog In
8 x Analog In

2 x Analog Out
4 x Analog Out

4 x Analog In/2 x Analog Out

Digital - - 2 x DC In/2 x DC Out Signal board
(SB) Analog - 1 x Analog Out -
Communication module (CM)
 RS485
 RS232

https://sites.google.com/site/chauchiduc

 Product overview
 1.2 Signal boards

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 13

1.2 Signal boards
A signal board (SB) allows you to add I/O to your CPU. You can add one SB with either
digital or analog I/O. An SB connects on the front of the CPU.
● SB with 4 digital I/O (2 x DC inputs and 2 x DC outputs)
● SB with 1 analog output

① Status LEDs on the SB
② Removable user wiring connector

1.3 Signal modules
You can use signal modules to add additional functionality to the CPU. Signal modules
connect to the right side of the CPU.

① Status LEDs for the I/O of the signal module
② Bus connector
③ Removable user wiring connector

https://sites.google.com/site/chauchiduc

Product overview
1.4 Communication modules

 S7-1200 Programmable controller
14 System Manual, 11/2009, A5E02486680-02

1.4 Communication modules
The S7-1200 family provides communication modules (CMs) for additional functionality to
the system. There are two communication modules: RS232 and RS485.
● The CPU supports up to 3 communication modules
● Each CM connects to the left side of the CPU (or to the left side of another CM)

① Status LEDs for the communication module
② Communication connector

1.5 STEP 7 Basic
The STEP 7 Basic software provides a user-friendly environment to develop, edit, and
monitor the logic needed to control your application, including the tools for managing and
configuring all of the devices in your project, such as PLCs and HMI devices. STEP 7 Basic
provides two programming languages (LAD and FBD) for convenience and efficiency in
developing the control program for your application, and also provides the tools for creating
and configuring the HMI devices in your project.
To help you find the information you need, STEP 7 Basic provides an extensive online help
system.
To install STEP 7 Basic, insert the CD into the CD-ROM drive of your computer. The
installation wizard starts automatically and prompts you through the installation process.
Refer to the Readme file for more information.

 Note
To install the STEP 7 Basic software on a PC running Windows 2000, Windows XP, or
Windows Vista operating system, you must log in with Administrator privileges.

https://sites.google.com/site/chauchiduc

 Product overview
 1.5 STEP 7 Basic

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 15

1.5.1 Different views to make the work easier
To help increase your productivity, the Totally Integrated Automation Portal provides two
different views of the toolset: a task-oriented set of portals that are organized on the
functionality of the tools (Portal view), or a project-oriented view of the elements within the
project (Project view). Choose which view helps you work most efficiently. With a single click,
you can toggle between the Portal view and the Project view.

The Portal view provides a
functional view of the project
tasks and organizes the functions
of the tools according to the
tasks to be accomplished, such
as creating the configuration of
the hardware components and
networks.
You can easily determine how to
proceed and which task to
choose.

The Project view provides access
to all of the components within a
project. With all of these
components in one place, you
have easy access to every
aspect of your project. The
project contains all of the
elements that have been created
or completed.

https://sites.google.com/site/chauchiduc

Product overview
1.5 STEP 7 Basic

 S7-1200 Programmable controller
16 System Manual, 11/2009, A5E02486680-02

1.5.2 Help when you need it

Finding answers to your questions quickly
To help you resolve issues quickly and efficiently, STEP 7 Basic provides intelligent point-of-
need assistance:
● An entry field provides "rollout" help to assist you with entering the correct information

(valid ranges and type of data) for that field. For example, if you were to enter an invalid
value, a message text box would roll out to provide the range of valid values.

● Some of the tool tips in the interface (such as for the instructions) "cascade" to provide
additional information. Some of the cascading tool tips link to specific topics in the online
information system (online help).

In addition, STEP 7 Basic has a comprehensive information system that fully describes the
functionality of the SIMATIC tools.

Rollout help and cascading tool tips

Entry fields of various dialogs and task cards provide feedback
in the form of a message box that rolls out and informs you
about the range or types of data required.

The elements of the software interface provide tool tips to explain the functionality of the
element. Some of the elements, such as the "Open" or "Save" icons, require no additional
information. However, some of the elements provide a mechanism for displaying additional
description about the element. This additional information "cascades" in a box from the tool
tip. (A black triangle alongside the tool tip signifies that more information is available.)
Hovering over an element of the software
interface displays the tool tip. To display
additional information, simply hover your
cursor over the tool tip. Some of the
cascading tool tips also provide links to
related topics in the information system.
Clicking the link displays the specific topic.

Information system
STEP 7 Basic provides a comprehensive online information and help system that describes
all of the SIMATIC products that you have installed. The information system also includes
reference information and examples. To display the information system, choose from the
following access points:
● From the Portal view, select the Start portal and click the "Help" command.
● From the Project view, select the "Show help" command in the "Help" menu.
● From a cascading tool tip, click a link to display more information about that topic.
The information system opens in a window that does not obscure the work areas.

https://sites.google.com/site/chauchiduc

 Product overview
 1.5 STEP 7 Basic

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 17

Click the "Show/hide contents" button on the information system to display the contents and
undock the help window. You can then resize the help window. Use the "Contents" or
"Index" tabs to search through the information system by topic or by key word.

Help window (default) Help window with contents displayed

 Note
If STEP 7 Basic is maximized, clicking the "Show/hide contents" button does not undock the
help window. Click the "Restore down" button to undock the help window. You can then
move and resize the help window.

https://sites.google.com/site/chauchiduc

Product overview
1.5 STEP 7 Basic

 S7-1200 Programmable controller
18 System Manual, 11/2009, A5E02486680-02

Printing topics from the information system
To print from the information system, click the "Print" button on the help window.

To print from the information
system, click the "Print" button
on the help window.

The "Print" dialog allows you
to select the topics to print.
Make certain that the panel
displays a topic. You can then
select any other topic to print.
Click the "Print" button to send
the selected topics to your
printer.

https://sites.google.com/site/chauchiduc

 Product overview
 1.6 Display panels

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 19

1.6 Display panels
As visualization becomes a standard component for most machine designs, the SIMATIC
HMI Basic Panels provide touch-screen devices for basic operator control and monitoring
tasks. All panels are have a protection rating for IP65 and have CE, UL, cULus, and NEMA
4x certification.

KTP 400 Basic PN
 Mono (STN, gray scale)
 4" touch screen with 4 tactile keys
 Portrait or landscape
 Size: 3.8"
 Resolution: 320 x 240

 128 tags
 50 process screens
 200 alarms
 25 curves
 32 KB recipe memory
 5 recipes, 20 data

records, 20 entries

KTP 600 Basic PN
 Color (TFT, 256 colors) or

Mono (STN, gray scales)
 6" touch screen with 6 tactile

keys
 Portrait or landscape
 Size: 5.7"
 Resolution: 320 x 240

 128 tags
 50 process screens
 200 alarms
 25 curves
 32 KB recipe memory
 5 recipes, 20 data

records, 20 entries

KTP1000 Basic PN
 Color (TFT, 256 colors)
 10" touch screen

with 8 tactile keys
 Size: 10.4"
 Resolution: 640 x 480

 256 tags
 50 process screens
 200 alarms
 25 curves
 32 KB recipe memory
 5 recipes, 20 data

records, 20 entries

TP1500 Basic PN
 Color (TFT, 256 colors)
 15" touch screen
 Size: 15.1"
 Resolution: 1024 x 768

 256 tags
 50 process screens
 200 alarms
 25 curves
 32 KB recipe memory

(integrated flash)
 5 recipes, 20 data

records, 20 entries

https://sites.google.com/site/chauchiduc

Product overview
1.6 Display panels

 S7-1200 Programmable controller
20 System Manual, 11/2009, A5E02486680-02

https://sites.google.com/site/chauchiduc

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 21

Installation 2

The S7-1200 equipment is designed to be easy to install. You can install an S7-1200 either
on a panel or on a standard rail, and you can orient the S7-1200 either horizontally or
vertically. The small size of the S7-1200 allows you to make efficient use of space.

WARNING
The SIMATIC S7-1200 PLCs are Open Type Controllers. It is required that you install the
S7-1200 in a housing, cabinet, or electric control room. Entry to the housing, cabinet, or
electric control room should be limited to authorized personnel.
Failure to follow these installation requirements could result in death, severe personal injury
and/or property damage.
Always follow these requirements when installing S7-1200 PLCs.

Separate the S7-1200 devices from heat, high voltage, and electrical noise
As a general rule for laying out the devices of your system, always separate the devices that
generate high voltage and high electrical noise from the low-voltage, logic-type devices such
as the S7-1200.
When configuring the layout of the S7-1200 inside your panel, consider the heat-generating
devices and locate the electronic-type devices in the cooler areas of your cabinet. Reducing
the exposure to a high-temperature environment will extend the operating life of any
electronic device.
Consider also the routing of the wiring for the devices in the panel. Avoid placing low-voltage
signal wires and communications cables in the same tray with AC power wiring and high-
energy, rapidly-switched DC wiring.

Provide adequate clearance for cooling and wiring
S7-1200 devices are designed for natural convection cooling. For proper cooling, you must
provide a clearance of at least 25 mm above and below the devices. Also, allow at least 25
mm of depth between the front of the modules and the inside of the enclosure.

CAUTION
For vertical mounting, the maximum allowable ambient temperature is reduced by 10
degrees C. Orient a vertically mounted S7-1200 system so that the CPU is at the low end of
the assembly.

https://sites.google.com/site/chauchiduc

Installation

 S7-1200 Programmable controller
22 System Manual, 11/2009, A5E02486680-02

When planning your layout for the S7-1200 system, allow enough clearance for the wiring
and communications cable connections.

① Side view ③ Vertical installation
② Horizontal installation ④ Clearance area

Power budget
Your CPU has an internal power supply that provides power for the CPU, the signal
modules, signal board and communication modules and for other 24 VDC user power
requirements.
Refer to the technical specifications (Page 279) for information about the 5 VDC logic budget
supplied by your CPU and the 5 VDC power requirements of the signal modules, signal
board, and communication modules. Refer to the "Calculating a power budget" (Page 321) to
determine how much power (or current) the CPU can provide for your configuration.
The CPU provides a 24 VDC sensor supply that can supply 24 VDC for input points, for relay
coil power on the signal modules, or for other requirements. If your 24 VDC power
requirements exceed the budget of the sensor supply, then you must add an external 24
VDC power supply to your system. Refer to the technical specifications (Page 279) for the 24
VDC sensor supply power budget for your particular S7-1200 CPU.
If you require an external 24 VDC power supply, ensure that the power supply is not
connected in parallel with the sensor supply of the CPU. For improved electrical noise
protection, it is recommended that the commons (M) of the different power supplies be
connected.

https://sites.google.com/site/chauchiduc

 Installation

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 23

WARNING
Connecting an external 24 VDC power supply in parallel with the 24 VDC sensor supply
can result in a conflict between the two supplies as each seeks to establish its own
preferred output voltage level.
The result of this conflict can be shortened lifetime or immediate failure of one or both
power supplies, with consequent unpredictable operation of the PLC system. Unpredictable
operation could result in death, severe personal injury and/or property damage.
The DC sensor supply and any external power supply should provide power to different
points.

Some of the 24 VDC power input ports in the S7-1200 system are interconnected, with a
common logic circuit connecting multiple M terminals. For example, the following circuits are
interconnected when designated as "not isolated" in the data sheets: the 24 VDC power
supply of the CPU, the power input for the relay coil of an SM, or the power supply for a non-
isolated analog input. All non-isolated M terminals must connect to the same external
reference potential.

WARNING
Connecting non-isolated M terminals to different reference potentials will cause unintended
current flows that may cause damage or unpredictable operation in the PLC and any
connected equipment.
Failure to comply with these guidelines could cause damage or unpredictable operation
which could result in death or serve personal injury and/or property damage.
Always ensure that all non-isolated M terminals in an S7-1200 system are connected to the
same reference potential.

https://sites.google.com/site/chauchiduc

Installation
2.2 Installation and removal procedures

 S7-1200 Programmable controller
24 System Manual, 11/2009, A5E02486680-02

2.2 Installation and removal procedures

Mounting dimensions (mm)

S7-1200 Devices Width A Width B

CPU 1211C and CPU 1212C 90 mm 45 mm CPUs:
CPU 1214C 110 mm 55 mm
8 and 16 point DC and Relay (8I, 16I, 8Q, 16Q, 8I/8Q)
Analog (4AI, 8AI, 4AI/4AQ, 2AQ, 4AQ)

45 mm 22.5 mm Signal modules:

16I/16Q Relay (16I/16Q) 70 mm 35 mm
Communication modules: CM 1241 RS232 and CM 1241 RS485 30 mm 15 mm

The CPUs, SMs and CMs support DIN rail mounting and panel mounting. Use the DIN rail
clips on the module to secure the device on the rail. These clips also snap into an extended
position to provide screw mounting positions to mount the unit directly on a panel. The
interior dimension of the hole for the DIN clips on the device is 4.3 mm.
A 25 mm thermal zone must be provided above and below the unit for free air circulation.

https://sites.google.com/site/chauchiduc

 Installation
 2.2 Installation and removal procedures

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 25

Installing and removing the S7-1200 devices
The CPU can be easily installed on a standard DIN rail or on a panel. DIN rail clips are
provided to secure the device on the DIN rail. The clips also snap into an extended position
to provide a screw mounting position for panel-mounting the unit.

① DIN rail installation ③ Panel installation
② DIN rail clip in latched position ④ Clip in extended position for panel mounting

Before you install or remove any electrical device, ensure that the power to that equipment
has been turned off. Also, ensure that the power to any related equipment has been turned
off.

WARNING
Installation or removal of S7-1200 or related equipment with the power applied could cause
electric shock or unexpected operation of equipment.
Failure to disable all power to the S7-1200 and related equipment during installation or
removal procedures could result in death, severe personal injury and/or property damage
due to electric shock or unexpected equipment operation.
Always follow appropriate safety precautions and ensure that power to the S7-1200 is
disabled before attempting to install or remove S7-1200 CPUs or related equipment.

Always ensure that whenever you replace or install an S7-1200 device you use the correct
module or equivalent device.

WARNING
Incorrect installation of an S7-1200 module may cause the program in the S7-1200 to
function unpredictably.
Failure to replace an S7-1200 device with the same model, orientation, or order could result
in death, severe personal injury and/or property damage due to unexpected equipment
operation.
Replace an S7-1200 device with the same model, and be sure to orient and position it
correctly.

https://sites.google.com/site/chauchiduc

Installation
2.2 Installation and removal procedures

 S7-1200 Programmable controller
26 System Manual, 11/2009, A5E02486680-02

2.2.1 Installing and removing the CPU

Installation
You can install the CPU on a panel or on a DIN rail.

 Note
Attach any communication modules to the CPU and install the assembly as a unit. Install
signal modules separately after the CPU has been installed.

To mount the CPU on a panel, follow these steps:
1. Locate, drill, and tap the mounting holes (M4 or American Standard number 8), using the

dimensions shown in the mounting dimensions.
2. Extend the mounting clips from the module. Make sure the DIN rail clips on the top and

bottom of the CPU are in the extended position.
3. Secure the module to the panel, using screws placed into the clips.

 Note
If your system is subject to a high vibration environment, or is mounted vertically, panel
mounting the S7-1200 will provide a greater level of protection.

To install the CPU on a DIN rail, follow these steps:

1. Install the DIN rail. Secure the rail to the mounting panel every 75 mm.
2. Hook the CPU over the top of the DIN rail.
3. Pull out the DIN rail clip on the bottom of the CPU to allow the CPU to fit over the rail.
4. Rotate the CPU down into position on the rail.
5. Push in the clips to latch the CPU to the rail.

https://sites.google.com/site/chauchiduc

 Installation
 2.2 Installation and removal procedures

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 27

Removal
To prepare the CPU for removal, remove power from the CPU and disconnect the I/O
connectors, wiring, and cables from the CPU. Remove the CPU and any attached
communication modules as a unit. All signal modules should remain installed.

If a signal module is connected to the CPU, retract the bus connector:
1. Place a screwdriver beside the tab on the top of the signal module.
2. Press down to disengage the connector from the CPU.
3. Slide the tab fully to the right.
Remove the CPU:
1. Pull out the DIN rail clip to release the CPU from the rail.
2. Rotate the CPU up and off the rail, and remove the CPU from the system.

2.2.2 Installing and removing a signal module

Installation
Install your SM after installing the CPU.

Remove the cover for the connector from the right side of the CPU.
 Insert a screwdriver into the slot above the cover.
 Gently pry the cover out at its top and remove the cover. Retain the cover for reuse.

Position the SM beside the CPU.
1. Hook the SM over the top of the DIN rail.
2. Pull out the bottom DIN rail clip to allow the SM to fit

over the rail.
3. Rotate the SM down into position beside the CPU

and push the bottom clip in to latch the SM onto the
rail.

https://sites.google.com/site/chauchiduc

Installation
2.2 Installation and removal procedures

 S7-1200 Programmable controller
28 System Manual, 11/2009, A5E02486680-02

Extend the bus connector.
1. Place a screwdriver beside the tab on the top of the

SM.
2. Slide the tab fully to the left to extend the bus

connector into the CPU.

Extending the bus connector makes both mechanical
and electrical connections for the SM.

Follow the same procedure to install a signal module to a signal module.

Removal
You can remove any SM without removing the CPU or other SMs in place. To prepare for
removing the SM, remove power from the CPU and remove the I/O connectors and wiring
from the SM.

Retract the bus connector.
1. Place a screwdriver beside the tab

on the top of the SM.
2. Press down to disengage the

connector from the CPU.
3. Slide the tab fully to the right.

If there is another SM to the right, repeat this procedure for that SM.
Remove the SM:
1. Pull out the bottom DIN rail clip to release the SM

from the rail.
2. Rotate the SM up and off the rail. Remove the SM

from the system.
3. If required, cover the bus connector on the CPU to

avoid contamination.

Follow the same procedure to remove a signal module from a signal module.

https://sites.google.com/site/chauchiduc

 Installation
 2.2 Installation and removal procedures

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 29

2.2.3 Installing and removing a communication module

Installation
Attach the CM to the CPU before installing the assembly as a unit to the DIN rail or panel.

Remove the bus cover from the left side of the CPU:
1. Insert a screwdriver into

the slot above the bus
cover.

2. Gently pry out the cover
at its top.

Remove the bus cover. Retain the cover for reuse.
Connect the units:
1. Align the bus connector

and the posts of the CM
with the holes of the CPU

2. Firmly press the units
together until the posts
snap into place.

Installing the units on the DIN rail or on a panel.
1. For DIN rail mounting, make sure the upper DIN rail clip is in the latched (inner) position

and that the lower DIN rail clip is in the extended position for the CPU and attached
CMs.

2. Install the CPU and attached CMs as shown in Installing and removing the CPU
(Page 26).

3. After installing the devices on the DIN rail, move the lower DIN rail clips to the latched
position to lock the devices on the DIN rail.

For panel mounting, make sure the DIN rail clips are pushed to the extended position.

https://sites.google.com/site/chauchiduc

Installation
2.2 Installation and removal procedures

 S7-1200 Programmable controller
30 System Manual, 11/2009, A5E02486680-02

Removal
Remove the CPU and CM as a unit from the DIN rail or panel.

Prepare for CM removal.
1. Remove power from the CPU.
2. Remove the I/O connectors and all wiring and cables

from the CPU and CMs.
3. For DIN rail mounting, move the lower DIN rail clips

on the CPU and CMs to the extended position.
4. Remove the CPU and CMs from the DIN rail or

panel.

Remove the CM.
1. Grasp the CPU and CMs firmly.
2. Pull them apart.
Do not use a tool to separate the modules because this
will damage the units.

2.2.4 Installing and removing a signal board

Installation
Prepare the CPU for installation of the SB by removing the power from the CPU and
removing the top and bottom terminal block covers from the CPU.

To install the SB, follow these steps:
1. Place a screwdriver into the slot

on top of the CPU at the rear of
the cover.

2. Gently pry the cover up and
remove it from the CPU.

3. Place the SB straight down into its
mounting position in the top of the
CPU.

4. Firmly press the SB into position
until it snaps into place.

5. Replace the terminal block covers.

https://sites.google.com/site/chauchiduc

 Installation
 2.2 Installation and removal procedures

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 31

Removal
Prepare the CPU for removal of the SB by removing power from the CPU and removing the
top and bottom terminal block covers from the CPU.

To remove the SB, follow these
steps:
1. Place a screwdriver into the slot

on top of the SB.
2. Gently pry the SB up to disengage

it from the CPU.
3. Remove the SB straight up from

its mounting position in the top of
the CPU.

4. Replace the SB cover.
5. Replace the terminal block covers.

2.2.5 Removing and reinstalling the S7-1200 terminal block connector
The CPU, SB and SM modules provide removable connectors to make connecting the wiring
easy. To prepare the system for terminal block connector removal:
● Remove power from the CPU.
● Open the cover above the connector.

To remove the connector, follow these steps:
1. Inspect the top of the connector and

locate the slot for the tip of the
screwdriver.

2. Insert a screwdriver into the slot.
3. Gently pry the top of the connector

away from the CPU. The connector
will release with a snap.

4. Grasp the connector and remove it
from the CPU.

https://sites.google.com/site/chauchiduc

Installation
2.3 Wiring guidelines

 S7-1200 Programmable controller
32 System Manual, 11/2009, A5E02486680-02

To install the connector, follow these steps:
1. Prepare the components for terminal block installation by

removing power from the CPU and opening the cover for the
terminal block.

2. Align the connector with the pins on the unit.
3. Align the wiring edge of the connector inside the rim of the

connector base.
4. Press firmly down and rotate the connector until it snaps into

place.
Check carefully to ensure that the connector is properly aligned
and fully engaged.

2.3 Wiring guidelines
Proper grounding and wiring of all electrical equipment is important to help ensure the
optimum operation of your system and to provide additional electrical noise protection for
your application and the S7-1200. Refer to the technical specifications (Page 279) for the
S7-1200 wiring diagrams.

Prerequisites
Before you ground or install wiring to any electrical device, ensure that the power to that
equipment has been turned off. Also, ensure that the power to any related equipment has
been turned off.
Ensure that you follow all applicable electrical codes when wiring the S7-1200 and related
equipment. Install and operate all equipment according to all applicable national and local
standards. Contact your local authorities to determine which codes and standards apply to
your specific case.

WARNING
Installation or wiring the S7-1200 or related equipment with power applied could cause
electric shock or unexpected operation of equipment. Failure to disable all power to the S7-
1200 and related equipment during installation or removal procedures could result in death,
severe personal injury, and/or damage due to electric shock or unexpected equipment
operation.
Always follow appropriate safety precautions and ensure that power to the S7-1200 is
disabled before attempting to install or remove the S7-1200 or related equipment.

Always take safety into consideration as you design the grounding and wiring of your S7-
1200 system. Electronic control devices, such as the S7-1200, can fail and can cause
unexpected operation of the equipment that is being controlled or monitored. For this reason,
you should implement safeguards that are independent of the S7-1200 to protect against
possible personal injury or equipment damage.

https://sites.google.com/site/chauchiduc

 Installation
 2.3 Wiring guidelines

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 33

WARNING
Control devices can fail in an unsafe condition, resulting in unexpected operation of
controlled equipment. Such unexpected operations could result in death, severe personal
injury and/or property damage.
Use an emergency stop function, electromechanical overrides, or other redundant
safeguards that are independent of the S7-1200.

Guidelines for isolation
S7-1200 AC power supply boundaries and I/O boundaries to AC circuits have been designed
and approved to provide safe separation between AC line voltages and low voltage circuits.
These boundaries include double or reinforced insulation, or basic plus supplementary
insulation, according to various standards. Components which cross these boundaries such
as optical couplers, capacitors, transformers, and relays have been approved as providing
safe separation. Isolation boundaries which meet these requirements have been identified in
S7-1200 product data sheets as having 1500 VAC or greater isolation. This designation is
based on a routine factory test of (2Ue + 1000 VAC) or equivalent according to approved
methods. S7-1200 safe separation boundaries have been type tested to 4242 VDC.
The sensor supply output, communications circuits, and internal logic circuits of an S7-1200
with included AC power supply are sourced as SELV (safety extra-low voltage) according to
EN 61131-2.
To maintain the safe character of the S7-1200 low voltage circuits, external connections to
communications ports, analog circuits, and all 24 V nominal power supply and I/O circuits
must be powered from approved sources that meet the requirements of SELV, PELV, Class
2, Limited Voltage, or Limited Power according to various standards.

WARNING
Use of non-isolated or single insulation supplies to supply low voltage circuits from an AC
line can result in hazardous voltages appearing on circuits that are expected to be touch
safe, such as communications circuits and low voltage sensor wiring.
Such unexpected high voltages could cause electric shock resulting in death, severe
personal injury and/or property damage.
Only use high voltage to low voltage power converters that are approved as sources of
touch safe, limited voltage circuits.

Guidelines for grounding the S7-1200
The best way to ground your application is to ensure that all the common and ground
connections of your S7-1200 and related equipment are grounded to a single point. This
single point should be connected directly to the earth ground for your system.
All ground wires should be as short as possible and should use a large wire size, such as 2
mm2 (14 AWG).
When locating grounds, consider safety-grounding requirements and the proper operation of
protective interrupting devices.

https://sites.google.com/site/chauchiduc

Installation
2.3 Wiring guidelines

 S7-1200 Programmable controller
34 System Manual, 11/2009, A5E02486680-02

Guidelines for wiring the S7-1200
When designing the wiring for your S7-1200, provide a single disconnect switch that
simultaneously removes power from the S7-1200 CPU power supply, from all input circuits,
and from all output circuits. Provide over-current protection, such as a fuse or circuit breaker,
to limit fault currents on supply wiring. Consider providing additional protection by placing a
fuse or other current limit in each output circuit.
Install appropriate surge suppression devices for any wiring that could be subject to lightning
surges.
Avoid placing low-voltage signal wires and communications cables in the same wire tray with
AC wires and high-energy, rapidly switched DC wires. Always route wires in pairs, with the
neutral or common wire paired with the hot or signal-carrying wire.
Use the shortest wire possible and ensure that the wire is sized properly to carry the required
current. The connector accepts wire sizes from 2 mm2 to 0.3 mm2 (14 AWG to 22 AWG).
Use shielded wires for optimum protection against electrical noise. Typically, grounding the
shield at the S7-1200 gives the best results.
When wiring input circuits that are powered by an external power supply, include an
overcurrent protection device in that circuit. External protection is not necessary for circuits
that are powered by the 24 VDC sensor supply from the S7-1200 because the sensor supply
is already current-limited.
All S7-1200 modules have removable connectors for user wiring. To prevent loose
connections, ensure that the connector is seated securely and that the wire is installed
securely into the connector. To avoid damaging the connector, be careful that you do not
over-tighten the screws. The maximum torque for the connector screw is 0.56 N-m (5 inch-
pounds).
To help prevent unwanted current flows in your installation, the S7-1200 provides isolation
boundaries at certain points. When you plan the wiring for your system, you should consider
these isolation boundaries. Refer to the technical specifications for the amount of isolation
provided and the location of the isolation boundaries. Do not depend on isolation boundaries
rated less than 1500 VAC as safety boundaries.

Guidelines for inductive loads
You should equip inductive loads with suppression circuits to limit voltage rise when the
control output turns off. Suppression circuits protect your outputs from premature failure due
to the high voltages associated with turning off inductive loads. In addition, suppression
circuits limit the electrical noise generated when switching inductive loads. Placing an
external suppression circuit so that it is electrically across the load, and physically located
near the load is most effective in reducing electrical noise.

 Note
The effectiveness of a given suppression circuit depends on the application, and you must
verify it for your particular use. Always ensure that all components used in your suppression
circuit are rated for use in the application.

https://sites.google.com/site/chauchiduc

 Installation
 2.3 Wiring guidelines

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 35

Control DC inductive loads

A B

① l1N4001 diode or equivalent
② 8.2 V Zener (DC outputs),

36 V Zener (Relay outputs)

S7-1200 DC outputs include suppression circuits
that are adequate for the inductive loads in most
applications. Since the relays can be used for
either a DC or an AC load, internal protection is
not provided. The following figure shows a sample
suppression circuit for a DC load.
In most applications, the addition of a diode (A)
across the inductive load is suitable, but if your
application requires faster turn-off times, then the
addition of a Zener diode (B) is recommended.

③ Output point
Be sure to size your Zener diode properly for the amount of current in your output circuit.

MOV

① 0.1 μ F
② 100 to 120 Ω

Relay outputs that control AC loads
When you use a relay output to switch 115 V/230
VAC loads, place resistor/capacitor networks
across the AC load as shown in this figure. You
can also use a metal oxide varistor (MOV) to limit
peak voltage. Ensure that the working voltage of
the MOV is at least 20% greater than the nominal
line voltage.

③ Output point

Guidelines for lamp loads
Lamp loads are damaging to relay contacts because of the high turn-on surge current. This
surge current will nominally be 10 to 15 times the steady state current for a Tungsten lamp.
A replaceable interposing relay or surge limiter is recommended for lamp loads that will be
switched a large number of times during the lifetime of the application.

https://sites.google.com/site/chauchiduc

Installation
2.3 Wiring guidelines

 S7-1200 Programmable controller
36 System Manual, 11/2009, A5E02486680-02

https://sites.google.com/site/chauchiduc

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 37

PLC concepts 3
3.1 Execution of the user program

The CPU supports the following types of code blocks that allow you to create an efficient
structure for your user program:
● Organization blocks (OBs) define the structure of the program. Some OBs have

predefined behavior and start events, but you can also create OBs with custom start
events.

● Functions (FCs) and function blocks (FBs) contain the program code that corresponds to
specific tasks or combinations of parameters. Each FC or FB provides a set of input and
output parameters for sharing data with the calling block. An FB also uses an associated
data block (called an instance DB) to maintain state of values between execution that can
be used by other blocks in the program.

● Data blocks (DBs) store data that can be used by the program blocks.
Execution of the user program begins with one or more optional start-up organization blocks
(OBs) which are executed once upon entering RUN mode, followed by one or more program
cycle OBs which are executed cyclically. An OB can also be associated with an interrupt
event, which can be either a standard event or an error event, and executes whenever the
corresponding standard or error event occurs.
A function (FC) or a function block (FB) is a block of program code that can be called from
an OB or from another FC or FB, down to the following levels:
● 16 from the program cycle or startup OB
● 4 from time delay interrupt, cyclic interrupt, hardware interrupt, time error interrupt, or

diagnostic error interrupt OB
FCs are not associated with any particular data block (DB), while FBs are tied directly to a
DB and use the DB for passing parameters and storing interim values and results.
The size of the user program, data, and configuration is limited by the available load memory
and work memory in the CPU. There is no limit to the number of blocks supported within the
available amount of work memory.
Each cycle includes writing the outputs, reading the inputs, executing the user program
instructions, and performing system maintenance or background processing. The cycle is
referred to as a scan cycle or scan.
The signal board, signal modules and communication modules are detected and logged in
only upon power up.

 Note
Insertion and extraction of a signal board, signal modules, and communications module
under power (hot) is not supported. The only exception is the SIMATIC memory card, which
can be inserted or removed while the CPU is under power.

https://sites.google.com/site/chauchiduc

PLC concepts
3.1 Execution of the user program

 S7-1200 Programmable controller
38 System Manual, 11/2009, A5E02486680-02

Under the default configuration, all digital and analog I/O points are updated synchronously
with the scan cycle using an internal memory area called the process image. The process
image contains a snapshot of the physical inputs and outputs (the physical I/O points on the
CPU, signal board, and signal modules).
The CPU performs the following tasks:
● The CPU writes the outputs from the process image output area to the physical outputs.
● The CPU reads the physical inputs just prior to the execution of the user program and

stores the input values in the process image input area. This ensures that these values
remain consistent throughout the execution of the user instructions.

● The CPU executes the logic of the user instructions and updates the output values in the
process image output area instead of writing to the actual physical outputs.

This process provides consistent logic through the execution of the user instructions for a
given cycle and prevents the flickering of physical output points that might change state
multiple times in the process image output area.
You can specify whether digital and analog I/O points are to be stored in the process image.
If you insert a module in the device view, its data is located in the process image of the S7-
1200-CPU (default). The CPU handles the data exchange between the module and the
process image area automatically during the update of the process image. To remove digital
or analog points from the process-image automatic update, select the appropriate device in
Device configuration, view the Properties tab, expand if necessary to locate the desired I/O
points, and then select "IO addresses/HW identifier". Then change the entry for "Process
image:" from "Cyclic PI" to "---". To add the points back to the process-image automatic
update, change this selection back to "Cyclic PI".
You can immediately read physical input values and immediately write physical output
values when an instruction executes. An immediate read accesses the current state of the
physical input and does not update the process image input area, regardless of whether the
point is configured to be stored in the process image. An immediate write to the physical
output updates both the process image output area (if the point is configured to be stored in
the process image) and the physical output point. Append the suffix ":P" to the I/O address if
you want the program to immediately access I/O data directly from the physical point instead
of using the process image.

Configuring the startup parameters
You use the CPU properties to configure how the CPU starts up after a power cycle.

Select whether the CPU
starts in STOP mode,
RUN mode, or in the
previous mode (prior to
the power cycle).

The CPU performs a warm restart before going to RUN mode. Warm restart resets all non-
retentive memory to the default start values, but retains the current values stored in the
retentive memory.

https://sites.google.com/site/chauchiduc

 PLC concepts
 3.1 Execution of the user program

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 39

 Note
The CPU always performs a restart after a download
Whenever you download an element of your project (such as a program block, data block, or
hardware configuration), the CPU performs a restart on the next transition to RUN mode. In
addition to clearing the inputs, initializing the outputs and initializing the non-retentive
memory, the restart also initializes the retentive memory areas.
After the restart that follows a download, all subsequent STOP-to-RUN transitions perform a
warm restart (that does not initialize the retentive memory).

3.1.1 Operating modes of the CPU
The CPU has three modes of operation: STOP mode, STARTUP mode, and RUN mode.
Status LEDs on the front of the CPU indicate the current mode of operation.
● In STOP mode, the CPU is not executing the program, and you can download a project.
● In STARTUP mode, the startup OBs (if present) are executed once. Interrupt events are

not processed during the startup phase of RUN mode.
● In RUN mode, the scan cycle is executed repeatedly. Interrupt events can occur and be

processed at any point within the program cycle phase.
You cannot download a project while in RUN mode.

The CPU supports a warm restart for entering the RUN mode. Warm restart does not include
a memory reset. All non-retentive system and user data are initialized at warm restart.
Retentive user data is retained.
A memory reset clears all work memory, clears retentive and non-retentive memory areas,
and copies load memory to work memory. A memory reset does not clear the diagnostics
buffer or the permanently saved values of the IP address.
You can specify the power-up mode of the CPU complete with restart method using the
programming software. This configuration item appears under the Device Configuration for
the CPU under Startup. When power is applied, the CPU performs a sequence of power-up
diagnostic checks and system initialization. The CPU then enters the appropriate power-up
mode. Certain detected errors will prevent the CPU from entering the RUN mode. The CPU
supports the following power-up modes:
● STOP mode
● Go to RUN mode after warm restart
● Go to previous mode after warm restart

https://sites.google.com/site/chauchiduc

PLC concepts
3.1 Execution of the user program

 S7-1200 Programmable controller
40 System Manual, 11/2009, A5E02486680-02

You can change the current operating mode using the "STOP" or "RUN" commands from the
online tools of the programming software. You can also include a STP instruction in your
program to change the CPU to STOP mode. This allows you to stop the execution of your
program based on the program logic.

In STOP mode, the CPU ① handles any communication requests (as
appropriate) and ② performs self-diagnostics.
In STOP mode, the CPU does not execute the user program, and the
automatic updates of the process image do not occur.

You can download your project only when the CPU is in STOP mode.
In RUN mode, the CPU performs the tasks shown in the following figure.

STARTUP RUN

A Clears the I memory area ① Writes Q memory to the physical outputs
B Initializes the outputs with either the last

value or the substitute value
② Copies the state of the physical inputs to I

memory
C Executes the startup OBs ③ Executes the program cycle OBs
D Copies the state of the physical inputs to

I memory
④ Performs self-test diagnostics

E Stores any interrupt events into the
queue to be processed in RUN mode

⑤ Processes interrupts and communications
during any part of the scan cycle

F Enables the writing of Q memory to the
physical outputs

STARTUP processing
Whenever the operating state changes from STOP to RUN, the CPU clears the process
image inputs, initializes the process image outputs and processes the startup OBs. Any read
accesses to the process-image inputs by instructions in the startup OBs will read zero rather
than the current physical input value. Therefore, to read the current state of a physical input
during the startup mode, you must perform an immediate read. The startup OBs and any
associated FCs and FBs are executed next. If more than one startup OB exists, each is
executed in order according to the OB number, with the lowest OB number executing first.
Each startup OB includes startup information that helps you determine the validity of
retentive data and the time-of-day clock. You can program instructions inside the startup
OBs to examine these startup values and to take appropriate action. The following startup
locations are supported by the Startup OBs:

Input Data Type Description
LostRetentive BOOL This bit is true if the retentive data storage areas have been lost
LostRTC BOOL This bit is true if the time-of-day clock (Real time Clock) has been lost

https://sites.google.com/site/chauchiduc

 PLC concepts
 3.1 Execution of the user program

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 41

The CPU also performs the following tasks during the startup processing.
● Interrupts are queued but not processed during the startup phase
● No cycle time monitoring is performed during the startup phase
● Configuration changes to HSC (high-speed counter), PWM (pulse-width modulation), and

PtP (point-to-point communication) modules can be made in startup
● Actual operation of HSC, PWM and point-to-point communication modules only occurs in

RUN
After the execution of the startup OBs finishes, the CPU goes to RUN mode and processes
the control tasks in a continuous scan cycle.

Processing the scan cycle during RUN mode
For each scan cycle, the CPU writes the outputs, reads the inputs, executes the user
program, updates communication modules, performs internal housekeeping chores, and
responds to user interrupt events and communication requests. Communication requests are
handled periodically throughout the scan.
These actions (except for user interrupt events) are serviced regularly and in sequential
order. User interrupt events which are enabled, are serviced according to priority in the order
in which they occur.
The system guarantees that the scan cycle will be completed in a time period called the
maximum cycle time; otherwise a time error event is generated.
● Each scan cycle begins by retrieving the current values of the digital and analog outputs

from the process image and then writing them to the physical outputs of the CPU, SB,
and SM modules configured for automatic I/O update (default configuration). When a
physical output is accessed by an instruction, both the output process image and the
physical output itself are updated.

● The scan cycle continues by reading the current values of the digital and analog inputs
from the CPU, SB, and SMs configured for automatic I/O update (default configuration),
and then writing these values to the process image. When a physical input is accessed
by an instruction, the value of the physical input is accessed by the instruction, but the
input process image is not updated.

● After reading the inputs, the user program is executed from the first instruction through
the end instruction. This includes all the program cycle OBs plus all their associated FCs
and FBs. The program cycle OBs are executed in order according to the OB number with
the lowest OB number executing first.

Communications processing occurs periodically throughout the scan, possibly interrupting
user program execution.
Self-diagnostic checks include periodic checks of the system and the I/O module status
checks.
Interrupts can occur during any part of the scan cycle, and are event-driven. When an event
occurs, the CPU interrupts the scan cycle and calls the OB that was configured to process
that event. After the OB finishes processing the event, the CPU resumes execution of the
user program at the point of interruption.

https://sites.google.com/site/chauchiduc

PLC concepts
3.1 Execution of the user program

 S7-1200 Programmable controller
42 System Manual, 11/2009, A5E02486680-02

Organization blocks (OBs)
OBs control the execution of the user program. Each OB must have a unique OB number.
Some default OB numbers are reserved below 200. Other OBs must be numbered 200 or
greater.
Specific events in the CPU trigger the execution of an organization block. OBs cannot call
each other or be called from an FC or FB. Only a start event, such as a diagnostic interrupt
or a time interval, can start the execution of an OB. The CPU handles OBs according to their
respective priority classes, with higher priority OBs executed before lower priority OBs. The
lowest priority class is 1 (for the main program cycle), and the highest priority class is 27 (for
the time-error interrupts).
OBs control the following operations:
● Program cycle OBs execute cyclically while the CPU is in RUN mode. The main block of

the program is a program cycle OB. This is where you place the instructions that control
your program and where you call additional user blocks. Multiple program cycle OBs are
allowed and are executed in numerical order. OB 1 is the default. Other program cycle
OBs must be identified as OB 200 or greater.

● Startup OBs execute one time when the operating mode of the CPU changes from STOP
to RUN, including powering up in the RUN mode and in commanded STOP-to-RUN
transitions. After completion, the main "Program cycle" OB will begin executing. Multiple
startup OBs are allowed. OB 100 is the default. Others must be OB 200 or greater.

● Time-delay OBs execute at a specified interval after an event is configured by the Start
interrupt (SRT_DINT) instruction. The delay time is specified in the input parameter of the
extended instruction SRT_DINT. A time-delay OB interrupts normal cyclic program
execution when a specified delay time has expired. You can configure up to 4 time-delay
events at any given time, with one OB allowed for each configured time-delay event. The
time-delay OB must be OB 200 or greater.

● Cyclic interrupt OBs execute at a specified interval. A cyclic interrupt OB will interrupt
cyclic program execution at user defined intervals, such as every 2 seconds. You can
configure up to 4 cyclic interrupt events, with one OB allowed for each configured cyclic
interrupt event. The OB must be OB 200 or greater.

● Hardware interrupt OBs execute when the relevant hardware event occurs, including
rising and falling edges on built-in digital inputs and HSC events. A hardware interrupt OB
will interrupt normal cyclic program execution in reaction to a signal from a hardware
event. You define the events in the properties of the hardware configuration. One OB is
allowed for each configured hardware event. The OB must be OB 200 or greater.

● Time-error interrupt OBs execute when a time error is detected. A time error interrupt OB
will interrupt normal cyclic program execution if the maximum cycle time has been
exceeded. The maximum cycle time is defined in the properties of the PLC. OB 80 is the
only OB number supported for the time error event. You can configure the action to take
when no OB 80 is present: either ignore the error or change to STOP.

● Diagnostic error interrupt OBs execute when a diagnostic error is detected and reported.
A diagnostic OB interrupts the normal cyclic program execution if a diagnostics-capable
module recognizes an error (if the diagnostic error interrupt has been enabled for the
module). OB 82 is the only OB number supported for the diagnostic error event. If there is
no diagnostic OB in the program, you can configure the CPU to either ignore the error or
to change to STOP.

https://sites.google.com/site/chauchiduc

 PLC concepts
 3.1 Execution of the user program

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 43

3.1.2 Event execution priorities and queuing
The CPU processing is controlled by events. The events trigger interrupt OBs to be
executed. The interrupt OB for an event is specified during the creation of the block, during
Device configuration or with an ATTACH or DETACH instruction. Some events happen on a
regular basis like the program cycle or cyclic events. Other events happen only a single time,
like the startup event and time delay events. Some events happen when there is a change
triggered by the hardware, such as an edge event on an input point or a high speed counter
event. There are also events like the diagnostic error and time error event which only happen
when there is an error. The event priorities, priority groups and queues are used to
determine the processing order for the event interrupt OBs.
The program cycle event happens once during each program cycle (or scan). During the
program cycle, the CPU writes the outputs, reads the inputs and executes program cycle
OBs. The program cycle event is required and is always enabled. You may have no program
cycle OBs, or you may have multiple OBs selected for the program cycle event. After the
program cycle event is triggered, the lowest numbered program cycle OB (usually OB1) is
executed. The other program cycle OBs are executed sequentially, in numerical order, within
the program cycle.
The cyclic interrupt events allows you to configure the execution of an interrupt OB at a
configured time interval. The time interval is configured when the OB is created and selected
to be a cyclic interrupt OB. The cyclic events will interrupt the program cycle and execute the
cyclic interrupt OB (the cyclic event is in a higher priority group than the program cycle
event). Only one cyclic interrupt OB can be attached to a cyclic event. The CPU supports
four cyclic interrupt events. The cyclic interrupt OBs have a phase shift property so that the
execution of cyclic interrupts with the same time period can be offset from one another by
the phase shift amount.
The startup event happens one time on a STOP to RUN transition and causes the startup
OBs to be executed. Multiple OBs can be selected for the startup event. The startup OBs are
executed in numerical order.
The time delay interrupt events allow you to configure the execution of an interrupt OB after
a specified delay time has expired. The delay time is specified with the SRT_DINT
instruction. The time delay events will interrupt the program cycle to execute the time delay
interrupt OB. Only one time delay interrupt OB can be attached to a time delay event. The
CPU supports four time delay events.
The hardware interrupt events are triggered by a change in the hardware, such as a rising or
falling edge on an input point, or a HSC (High Speed Counter) event. There can be one
interrupt OB selected for each hardware interrupt event. The hardware events are enabled in
Device configuration. The OBs are specified for the event in the Device configuration or with
an ATTACH instruction in the user program. The CPU supports several hardware interrupt
events. The exact events are based on the CPU model and the number of input points.
The time and diagnostic error interrupt events are triggered when the CPU detects an error.
These events are a higher priority group that the other interrupt events and can interrupt the
execution of the time delay, cyclic and hardware interrupt events. One interrupt OB can be
specified for each of the time error and diagnostic error interrupt events.

Understanding event execution priorities and queuing
The number of pending (queued) events from a single source is limited using a different
queue for each event type. Upon reaching the limit of pending events for a given event type,
the next event is lost. Refer to the following section on "Understanding time error events" for
more information regarding queue overflows.

https://sites.google.com/site/chauchiduc

PLC concepts
3.1 Execution of the user program

 S7-1200 Programmable controller
44 System Manual, 11/2009, A5E02486680-02

Each CPU event has an associated priority, and the event priorities are classified into priority
groups. The following table summarizes the queue depths, priority groups and priorities for
the supported CPU events.

 Note
You cannot change the priority or the priority group assignments or the queue depths.

In general, events are serviced in order of priority (highest priority first). Events of the same
priority are serviced on a "first-come, first-served" basis.

Event Type (OB) Quantity Valid OB

Numbers
Queue
Depth

Priority
Group

Priority

Program Cycle 1 program cycle event
Multiple OBs allowed

1 (default)
200 or greater

1 1

Startup 1 startup event 1
Multiple OBs allowed

100 (default)
200 or greater

1

1

1

Time Delay 4 time delay events
1 OB per event

200 or greater 8 3

Cyclic 4 cyclic events
1 OB per event

200 or greater 8 4

Edges 16 rising edge events
16 falling edge events
1 OB per event

200 or greater 32 5

HSC 6 CV = PV events
6 direction changed events
6 external reset events
1 OB per event

200 or greater 16 6

Diagnostic Error 1 event 82 only 8

2

9
Time Error event/
MaxCycle time
event

1 time error event
1 MaxCycle time event

80 only 8 3 26

2xMaxCycle time
event

1 2xMaxCycle time event No OB called - 3 27

1 Special cases for the startup event
 The startup event and the program cycle event will never occur at the same time because the

startup event will run to completion before the program cycle event will be started (controlled by
the operating system).

 No events are allowed to interrupt the startup event. Events that occur during the startup event
are instead queued for later processing after the startup event is finished.

After the execution of an OB has started, processing of the OB cannot be interrupted by the
occurrence of another event from the same or lower priority group. Such events are queued
for later processing, allowing the current OB to finish.
However, an event from a higher priority group will interrupt the current OB, and the CPU
then executes the OB for the higher-priority event. After the higher-priority OB finishes, the
CPU executes the OBs for any other events queued in this higher priority group, based on
the priority within that group. When no other events are pending (queued) in this higher

https://sites.google.com/site/chauchiduc

 PLC concepts
 3.1 Execution of the user program

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 45

priority group, the CPU then returns to the lower priority group and resumes the processing
of the pre-empted OB at the point where the processing of that OB had been interrupted.

Interrupt latency
The interrupt event latency (the time from notification of the CPU that an event has occurred
until the CPU begins execution of the first instruction in the OB that services the event) is
approximately 210 µsec, provided that a program cycle OB is the only event service routine
active at the time of the interrupt event.

Understanding time error events
The occurrence of any of several different time error conditions results in a time error event.
The following time errors are supported:
● Maximum cycle time exceeded
● Requested OB cannot be started
● Queue overflow occurred
The maximum cycle time exceeded condition results if the program cycle does not complete
within the specified maximum scan cycle time. See the section on "Monitoring the cycle time
(Page 43)" for more information regarding the maximum cycle time condition, how to
configure the maximum scan cycle time, and how to reset the cycle timer.
The requested OB cannot be started condition results if an OB is requested by a cyclic
interrupt or a time-delay interrupt, but the requested OB is already being executed.
The queue overflow occurred condition results if the interrupts are occurring faster than they
can be processed. The number of pending (queued) events is limited using a different queue
for each event type. If an event occurs when the corresponding queue is full, a time error
event is generated.
All time error events trigger the execution of OB 80 if it exists. If OB 80 does not exist, then
the CPU ignores the error. If two maximum cycle time exceeded conditions occur within the
same program cycle without resetting the cycle timer, then the CPU transitions to STOP,
regardless of whether OB 80 exists. See the section on "Monitoring the cycle time".
(Page 43)
OB 80 includes startup information that helps you determine which event and OB generated
the time error. You can program instructions inside OB 80 to examine these startup values
and to take appropriate action. The following startup locations are supported by OB 80:

Input Data type Description
fault_id BYTE 16#01 - maximum cycle time exceeded

16#02 - requested OB cannot be started
16#07 and 16#09 - queue overflow occurred

csg_OBnr OB_ANY Number of the OB which was being executed when the error
occurred

csg_prio UINT Priority of the OB causing the error

No time error interrupt OB 80 is present when you create a new project. If desired, you add a
time error interrupt OB 80 to your project by double-clicking "Add new block" under "Program
blocks" in the tree, then choose "Organization block", and then "Time error interrupt".

https://sites.google.com/site/chauchiduc

PLC concepts
3.1 Execution of the user program

 S7-1200 Programmable controller
46 System Manual, 11/2009, A5E02486680-02

Understanding diagnostic error events
Some devices are capable of detecting and reporting diagnostic errors. The occurrence or
removal of any of several different diagnostic error conditions results in a diagnostic error
event. The following diagnostic errors are supported:
● No user power
● High limit exceeded
● Low limit exceeded
● Wire break
● Short circuit
All diagnostic error events trigger the execution of OB 82 if it exists. If OB 82 does not exist,
then the CPU ignores the error. No diagnostic error interrupt OB 82 is present when you
create a new project. If desired, you add a diagnostic error interrupt OB 82 to your project by
double-clicking "Add new block" under "Program blocks" in the tree, then choose
"Organization block", and then "Diagnostic error interrupt".
OB 82 includes startup information that helps you determine whether the event is due to the
occurrence or removal of an error, and the device and channel which reported the error. You
can program instructions inside OB 82 to examine these startup values and to take
appropriate action. The following startup locations are supported by OB 82:

Input Data type Description
IOstate WORD IO state of the device
laddr HW_ANY Hardware identifier of the device or functional

unit that reported the error
channel UINT Channel number
multierror BOOL TRUE if more than one error is present (not

supported in early releases)

Bit 4 of the IO_state indicates whether the event is due to the occurrence or removal of an
error. Bit 4 is 1 if an error is present (example: wire break) and is 0 if the error is no longer
present.
The ladder input contains the hardware identifier (HW ID) of the device or functional unit
which returned the error. The HW ID is assigned automatically when components are
inserted in the device or network view and appears in the Constants tab of PLC tags. A
name is also assigned automatically for the HW ID. These entries in the Constants tab of the
PLC tags cannot be changed.
The channel number begins at 0 for the first input point (analog or digital) and begins at 64
for the first output point (analog or digital). The different offsets are necessary to distinguish
inputs from outputs in the event the device contains both. If an error affects the complete
device or functional unit, such as no user power, the most-significant bit of the channel-
number word is set (channel number 32768).

https://sites.google.com/site/chauchiduc

 PLC concepts
 3.1 Execution of the user program

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 47

Monitoring the cycle time
The cycle time is the time that the CPU operating system requires to execute the cyclic
phase of the RUN mode. The CPU provides two methods of monitoring the cycle time:
● Maximum scan cycle time
● Fixed minimum scan cycle time
Scan cycle monitoring begins after the startup event is complete. Configuration for this
feature appears under the "Device Configuration" for the CPU under "Cycle time".
The CPU always monitors the scan cycle and reacts if the maximum scan cycle time is
exceeded. If the configured maximum scan cycle time is exceeded, an error is generated
and is handled one of two ways:
● If no time error interrupt OB 80 is present, then the CPU generates an error and

continues to execute the user program
● If a time error interrupt OB 80 is present, then the CPU executes OB 80
The RE_TRIGR instruction (Re-trigger cycle time monitoring) allows you to reset the timer
that measures the cycle time. However, this instruction only functions if executed in a
program cycle OB; the RE_TRIGR instruction is ignored if executed in OB 80. If the
maximum scan cycle time is exceeded twice within the same program cycle with no
RE_TRIGR instruction execution between the two, then the CPU transitions to STOP
immediately. The use of repeated executions of the RE_TRIGR instruction can create an
endless loop or a very long scan.
Typically, the scan cycle executes as fast as it can be executed and the next scan cycle
begins as soon as the current one completes. Depending upon the user program and
communication tasks, the time period for a scan cycle can vary from scan to scan. To
eliminate this variation, the CPU supports an optional fixed minimum scan cycle time (also
called fixed scan cycle). When this optional feature is enabled and a fixed minimum scan
cycle time is provided in ms, the CPU will maintain the minimum cycle time within ±1 ms for
the completion of each CPU scan.
In the event that the CPU completes the normal scan cycle in less time than the specified
minimum cycle time, the CPU spends the additional time of the scan cycle performing
runtime diagnostics and/or processing communication requests. In this way the CPU always
takes a fixed amount of time to complete a scan cycle.
In the event that the CPU does not complete the scan cycle in the specified minimum cycle
time, the CPU completes the scan normally (including communication processing) and does
not create any system reaction as a result of exceeding the minimum scan time. The
following table defines the ranges and defaults for the cycle time monitoring functions.

Cycle time Range (ms) Default
Maximum scan cycle time1 1 to 6000 150 ms
Fixed minimum scan cycle time2 1 to maximum scan cycle time Disabled

1 The maximum scan cycle time is always enabled. Configure a cycle time between 1 ms to 6000
ms. The default is 150 ms.

2 The fixed minimum scan cycle time is optional , and is disabled by default. If required, configure a
cycle time between 1 ms and the maximum scan cycle time.

https://sites.google.com/site/chauchiduc

PLC concepts
3.1 Execution of the user program

 S7-1200 Programmable controller
48 System Manual, 11/2009, A5E02486680-02

Configuring the cycle time and communication load
You use the CPU properties in the Device configuration to configure the following
parameters:
● Cycle time: You can enter a maximum scan cycle time. You can also enter a fixed

minimum scan cycle time.

● Communications load: You can configure a percentage of the time to be dedicated for

communication tasks.

For more information about the scan cycle, see "Monitoring the cycle time". (Page 43)

3.1.3 CPU memory

Memory management
The CPU provides the following memory areas to store the user program, data, and
configuration:
● Load memory is non-volatile storage for the user program, data and configuration. When

a project is downloaded to the CPU, it is first stored in the Load memory area. This area
is located either in a memory card (if present) or in the CPU. This non-volatile memory
area is maintained through a power loss. The memory card supports a larger storage
space than that built-in to the CPU.

● Work memory is volatile storage for some elements of the user project while executing
the user program. The CPU copies some elements of the project from load memory into
work memory. This volatile area is lost when power is removed, and is restored by the
CPU when power is restored.

● Retentive memory is non-volatile storage for a limited quantity of work memory values.
The retentive memory area is used to store the values of selected user memory locations
during power loss. When a power down occurs, the CPU has enough hold-up time to
retain the values of a limited number of specified locations. These retentive values are
then restored upon power up.

To display the memory usage for the current project, right-click the CPU (or one of its blocks)
and select "Resources" from the context. To display the memory usage for the current CPU,
double-click "Online and diagnostics", expand "Diagnostics", and select "Memory".

https://sites.google.com/site/chauchiduc

 PLC concepts
 3.1 Execution of the user program

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 49

Retentive memory
Data loss after power failure can be avoided by marking certain data as retentive. The
following data can be configured to be retentive:
● Bit memory(M): You can define the precise width of the memory for bit memory in the

PLC tag table or in the assignment list. Retentive bit memory always starts at MB0 and
runs consecutively up through a specified number of bytes. Specify this value from the
PLC tag table or in the assignment list by clicking the "Retain" toolbar icon. Enter the
number of M bytes to retain starting at MB0.

● Tags of a function block (FB): If an FB was created with the "Symbolic access only" box
selected, then the interface editor for this FB includes a "Retain" column. In this column,
you can select either "Retain" or "Non-Retain" individually for each tag. An instance DB
that was created when this FB is placed in the program editor shows this retain column
as well, but only for display; you cannot change the retentive state from within the
instance DB interface editor for an FB that was configured to be "Symbolic access only".
If an FB was created with the "Symbolic access only" box deselected, then the interface
editor for this FB does not include a "Retain" column. An instance DB created when this
FB is inserted in the program editor shows a "Retain" column which is available for edit.
In this case, selecting the "Retain" option for any tag results in all tags being selected.
Similarly, deselecting the option for any tag results in all tags being deselected. For an FB
that was configured to not be "Symbolic access only", you can change the retentive state
from within the instance DB editor, but all tags are set to the same retentive state
together.
After you create the FB, you cannot change the option for "symbolic access only". This
option can only be selected when the FB is created. To determine whether an existing FB
was configured for "symbolic access only", right-click the FB in the Project tree, select
"Properties", and then select "Attributes".

● Tags of a global data block: The behavior of a global DB with regard to retentive state
assignment is similar to that of an FB. Depending on the setting for symbolic addressing
you can define the retentive state either for individual or for all tags of a global data block.
– If the "Symbolic access only" attribute of the DB is checked, the retentive state can be

set for each individual tag.
– If the "Symbolic access only" attribute of the DB is un-checked, the retentive-state

setting applies to all tags of the DB; either all tags are retentive or no tag is retentive.
A total of 2048 bytes of data can be retentive. To see how much is available, from the PLC
tag table or the assignment list, click on the "Retain" toolbar icon. Although this is where the
retentive range is specified for M memory, the second row indicates the total remaining
memory available for M and DB combined.

Diagnostics buffer
The CPU supports a diagnostic buffer which contains an entry for each diagnostic event.
Each entry includes a date and time the event occurred, an event category, and an event
description. The entries are displayed in chronological order with the most recent event at
the top. While the CPU maintains power, up to 50 most recent events are available in this
log. When the log is full, a new event replaces the oldest event in the log. When power is
lost, the ten most recent events are saved.

https://sites.google.com/site/chauchiduc

PLC concepts
3.1 Execution of the user program

 S7-1200 Programmable controller
50 System Manual, 11/2009, A5E02486680-02

The following types of events are recorded in the diagnostics buffer:
● Each system diagnostic event; for example, CPU errors and module errors
● Each state change of the CPU (each power up, each transition to STOP, each transition

to RUN)
To access the diagnostic buffer, you must be online. Locate the log under "Online &
diagnostics / Diagnostics / Diagnostics buffer". For more information regarding
troubleshooting and debugging, refer to the "Online and diagnostics" chapter.

Time of day clock
The CPU supports a time-of-day clock. A super-capacitor supplies the energy required to
keep the clock running during times when the CPU is powered down. The super-capacitor
charges while the CPU has power. After the CPU has been powered up at least 2 hours,
then the super-capacitor has sufficient charge to keep the clock running for typically 10 days.
The Time of Day Clock is set to system time, which is Coordinated Universal Time (UTC).
STEP 7 Basic sets the Time of Day Clock to system time. There are instructions to read the
system time (RD_SYS_T) or local time (RD_LOC_T). Local time is calculated by using the
time zone and daylight saving time offsets that you set in the CPU Clock device
configuration.
Configure the time-of-day clock for the CPU under the "Time of day" property. You can also
enable daylight saving time and specify the start and end times for daylight saving time. To
set the time-of-day clock, you must be online and in the "Online & diagnostics" view of the
CPU. Use the "Set time of day" function.

System and clock memory
You use the CPU properties to enable bytes for "system memory" and "clock memory". Your
program logic can reference the individual bits of these functions.
● You can assign one byte in M memory for system memory. The byte of system memory

provides the following four bits that can be referenced by your user program:
– "Always 0 (low)" bit is always set to 0.
– "Always 1 (high)" bit is always set to 1.
– "Diagnostic graph changed" is set to 1 for one scan after the CPU logs a diagnostic

event. Because the CPU does not set the "diagnostic graph changed" bit until the end
of the first execution of the of the program cycle OBs, your user program cannot
detect if there has been a diagnostic change either during the execution of the startup
OBs or the first execution of the program cycle OBs.

– "First scan" bit is set to1 for the duration of the first scan after the startup OB finishes.
(After the execution of the first scan, the "first scan" bit is set to 0.)

● You can assign one byte in M memory for clock memory. Each bit of the byte configured
as clock memory generates a square wave pulse. The byte of clock memory provides 8
different frequencies, from 0.5 Hz (slow) to 10 Hz (fast). You can use these bits as control
bits, especially when combined with edge instructions, to trigger actions in the user
program on a cyclic basis.

The CPU initializes these bytes on the transition from STOP mode to STARTUP mode. The
bits of the clock memory change synchronously to the CPU clock throughout the STARTUP
and RUN modes.

https://sites.google.com/site/chauchiduc

 PLC concepts
 3.1 Execution of the user program

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 51

CAUTION
Overwriting the system memory or clock memory bits can corrupt the data in these
functions and cause your user program to operate incorrectly, which can cause damage to
equipment and injury to personnel.
Because both the clock memory and system memory are unreserved in M memory,
instructions or communications can write to these locations and corrupt the data.
Avoid writing data to these locations to ensure the proper operation of these functions, and
always implement an emergency stop circuit for your process or machine.

System memory configures a byte that
turns on (value = 1) for the following
conditions.
 First scan: Turns on for the first

scan cycle in run mode
 Diagnostic graph changed:
 Always 1 (high): Always turned on
 Always 0 (low): Always turned off

Clock memory configures a byte that cycles
the individual bits on and off at fixed
intervals.
The clock flags each generate a square wave
pulse on the corresponding M memory bit.
These bits can be used as control bits,
especially when combined with edge
instructions, to trigger actions in the user
code on a cyclic basis.

Configuring the behavior of output values when the CPU is in STOP mode
You can configure the behavior of the digital and analog outputs when the CPU is in STOP
mode. For any output of a CPU, SB or SM, you can set the outputs to either freeze the value
or use a substitute value:
● Substituting a specified output value (default): You enter a substitute value for each

output (channel) of that CPU, SB, or SM device.
The default substitute value for digital output channels is OFF, and the default substitute
value for analog output channels is 0.

● Freezing the outputs to remain in last state: The outputs retain their current value at the
time of the transition from RUN to STOP. After power up, the outputs are set to the
default substitute value.

https://sites.google.com/site/chauchiduc

PLC concepts
3.1 Execution of the user program

 S7-1200 Programmable controller
52 System Manual, 11/2009, A5E02486680-02

You configure the behavior of the outputs in Device Configuration. Select the individual
devices and use the "Properties" tab to configure the outputs for each device.
When the CPU changes from RUN to STOP, the CPU retains the process image and writes
the appropriate values for both the digital and analog outputs, based upon the configuration.

3.1.4 Password protection for the S7-1200 CPU
The CPU provides 3 levels of security for restricting access to specific functions. When you
configure the security level and password for a CPU, you limit the functions and memory
areas that can be accessed without entering a password.

To configure the password, follow these
steps:
1. In the "Device configuration", select the

CPU.
2. In the inspector window, select the

"Properties" tab.
3. Select the "Protection" property to

select the protection level and to enter a
password.

The password is case sensitive.

Each level allows certain functions to be accessible without a password. The default
condition for the CPU is to have no restriction and no password-protection. To restrict access
to a CPU, you configure the properties of the CPU and enter the password.
Entering the password over a network does not compromise the password protection for the
CPU. A password-protected CPU allows only one user unrestricted access at a time.
Password protection does not apply to the execution of user program instructions including
communication functions. Entering the correct password provides access to all of the
functions.
PLC-to-PLC communications (using communication instructions in the code blocks) are not
restricted by the security level in the CPU. HMI functionality is also not restricted.

Security level Access restrictions
No protection Allows full access without password-protection.
Write protection Allows HMI access and all forms of PLC-to-PLC communications without

password-protection.
Password is required for modifying (writing to) the CPU and for changing the
CPU mode (RUN/STOP).

Read/write protection Allows HMI access and all forms of PLC-to-PLC communications without
password-protection.
Password is required for reading the data in the CPU, for modifying (writing
to) the CPU, and for changing the CPU mode (RUN/STOP).

https://sites.google.com/site/chauchiduc

 PLC concepts
 3.2 Data storage, memory areas and addressing

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 53

3.1.5 Recovery from a lost password
If you have lost the password for a password-protected CPU, use an empty transfer card to
delete the password-protected program. The empty transfer card erases the internal load
memory of the CPU. You can then download a new user program from STEP 7 Basic to the
CPU.
For information about the creation and use of an empty transfer card, see the section of
transfer cards (Page 63).

WARNING
If you insert a transfer card in a running CPU, the CPU goes to STOP. Control devices can
fail in an unsafe condition, resulting in unexpected operation of controlled equipment. Such
unexpected operations could result in death or serious injury to personnel, and/or damage
to equipment.

You must remove the transfer card before setting the CPU to RUN mode.

3.2 Data storage, memory areas and addressing
The CPU provides several options for storing data during the execution of the user program:
● Global memory: The CPU provides a variety of specialized memory areas, including

inputs (I), outputs (Q) and bit memory (M). This memory is accessible by all code blocks
without restriction

● Data block (DB): You can include DBs in your user program to store data for the code
blocks. The data stored persists when the execution of the associated code block comes
to an end. A "global" DB stores data that can be used by all code blocks, while an
instance DB stores data for a specific FB and is structured by the parameters for the FB.

● Temp memory: Whenever a code block is called, the operating system of the CPU
allocates the temporary, or local, memory (L) to be used during the execution of the
block. When the execution of the code block finishes, the CPU reallocates the local
memory for the execution of other code blocks.

Each different memory location has a unique address. Your user program uses these
addresses to access the information in the memory location.

Memory area Description Force Retentive

Copied from physical inputs at the beginning
of the scan cycle

No No I
Process image input
I_:P
(Physical input)

Immediate read of the physical input points
on the CPU, SB, and SM

Yes No

Copied to physical outputs at the beginning
of the scan cycle

No No Q
Process image output
Q_:P
(Physical output)

Immediate write to the physical output points
on the CPU, SB, and SM

Yes No

M
Bit memory

Control and data memory No Yes

https://sites.google.com/site/chauchiduc

PLC concepts
3.2 Data storage, memory areas and addressing

 S7-1200 Programmable controller
54 System Manual, 11/2009, A5E02486680-02

Memory area Description Force Retentive
L
Temp memory

Temporary data for a block, local to that
block

No No

DB
Data block

Data memory and also parameter memory
for FBs

No Yes

Each different memory location has a unique address. Your user program uses these
addresses to access the information in the memory location. The figure shows how to
access a bit (which is also called "byte.bit" addressing). In this example, the memory area
and byte address (I = input, and 3 = byte 3) are followed by a period (".") to separate the bit
address (bit 4).

A Memory area identifier
B Byte address: byte 3
C Separator ("byte.bit")
D Bit location of the byte (bit 4 of 8)
E Bytes of the memory area

F Bits of the selected byte

You can access data in most memory areas (I, Q, M, DB, and L) as bytes, words, or double
words by using the "byte address" format. To access a byte, word, or double word of data in
the memory, you must specify the address in a way similar to specifying the address for a
bit. This includes an area identifier, data size designation, and the starting byte address of
the byte, word, or double word value. Size designators are B (byte), W (word) and D (double-
word), for example, IB0, MW20, or QD8. References such as I0.3 and Q1.7 access the
process image. To access the physical input or output, append the reference with ":P" (such
as I0.3:P, Q1.7:P, or "Stop:P").

Accessing the data in the memory areas of the CPU
STEP 7 Basic facilitates symbolic programming. Typically, tags are created either in PLC
tags, a data block, or in the interface at the top of an OB, FC, or FB. These tags include a
name, data type, offset, and comment. Additionally, in a data block, an initial value can be
specified. You can use these tags when programming by entering the tag name at the
instruction parameter. Optionally you can enter the absolute operand (memory, area, size
and offset) at the instruction parameter. The examples in the following sections show how to
enter absolute operands. The % character is inserted automatically in front of the absolute
operand by the program editor. You can toggle the view in the program editor to one of
these: symbolic, symbolic and absolute, or absolute.
I (process image input): The CPU samples the peripheral (physical) input points just prior to
the cyclic OB execution of each scan cycle and writes these values to the input process
image. You can access the input process image as bits, bytes, words, or double words. Both
read and write access is permitted, but typically, process image inputs are only read.

https://sites.google.com/site/chauchiduc

 PLC concepts
 3.2 Data storage, memory areas and addressing

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 55

Bit I[byte address].[bit address] I0.1
Byte, Word, or Double Word I[size][starting byte address] IB4, IW5, or ID12

By appending a ":P" to the address, you can immediately read the digital and analog inputs
of the CPU, SB or SM. The difference between an access using I_:P instead of I is that the
data comes directly from the points being accessed rather than from the input process
image. This I_:P access is referred to as an "immediate read" access because the data is
retrieved immediately from the source instead of from a copy that was made the last time the
input process image was updated.
Because the physical input points receive their values directly from the field devices
connected to these points, writing to these points is prohibited. That is, I_:P accesses are
read-only, as opposed to I accesses which can be read or write.
I_:P accesses are also restricted to the size of inputs supported by a single CPU, SB, or SM,
rounded up to the nearest byte. For example, if the inputs of a 2 DI / 2 DQ SB are configured
to start at I4.0, then the input points can be accessed as I4.0:P and I4.1:P or as IB4:P.
Accesses to I4.2:P through I4.7:P are not rejected, but make no sense since these points are
not used. Accesses to IW4:P and ID4:P are prohibited since they exceed the byte offset
associated with the SB.
Accesses using I_:P do not affect the corresponding value stored in the input process image.

Bit I[byte address].[bit address]:P I0.1:P
Byte, Word, or Double word I[size][starting byte address]:P IB4:P, IW5:P, or ID12:P

Q (process image output): The CPU copies the values stored in the output process image to
the physical output points. You can access the output process image in bits, bytes, words, or
double words. Both read and write access is permitted for process image outputs.

Bit Q[byte address].[bit address] Q1.1
Byte, Word, or Double word Q[size][starting byte address] QB5, QW10, QD40

By appending a ":P" to the address, you can immediately write to the physical digital and
analog outputs of the CPU, SB or SM. The difference between an access using Q_:P instead
of Q is that the data goes directly to the points being accessed in addition to the output
process image (writes to both places). This Q_:P access is sometimes referred to as an
"immediate write" access because the data is sent immediately to the target point; the target
point does not have to wait for the next update from the output process image.
Because the physical output points directly control field devices that are connected to these
points, reading from these points is prohibited. That is, Q_:P accesses are write-only, as
opposed to Q accesses which can be read or write.
Q_:P accesses are also restricted to the size of outputs supported by a single CPU, SB, or
SM, rounded up to the nearest byte. For example, if the outputs of a 2 DI / 2 DQ SB are
configured to start at Q4.0, then the output points can be accessed as Q4.0:P and Q4.1:P or
as QB4:P. Accesses to Q4.2:P through Q4.7:P are not rejected, but make no sense since
these points are not used. Accesses to QW4:P and QD4:P are prohibited since they exceed
the byte offset associated with the SB.

https://sites.google.com/site/chauchiduc

PLC concepts
3.2 Data storage, memory areas and addressing

 S7-1200 Programmable controller
56 System Manual, 11/2009, A5E02486680-02

Accesses using Q_:P affect both the physical output as well as the corresponding value
stored in the output process image.

Bit Q[byte address].[bit address]:P Q1.1:P
Byte, Word, or Double word Q[size][starting byte address]:P QB5:P, QW10:P or QD40:P

M (bit memory area): Use the bit memory area (M memory) for both control relays and data
to store the intermediate status of an operation or other control information. You can access
the bit memory area in bits, bytes, words, or double words. Both read and write access is
permitted for M memory.

Bit M[byte address].[bit address] M26.7
Byte, Word, or Double Word M[size][starting byte address] MB20, MW30, MD50

Temp (temporary memory): The CPU allocates the temp memory on an as-needed basis.
The CPU allocates the temp memory for the code block at the time when the code block is
started (for an OB) or is called (for an FC or FB). The allocation of temp memory for a code
block might reuse the same temp memory locations previously used by a different OB, FC or
FB. The CPU does not initialize the temp memory at the time of allocation and therefore the
temp memory might contain any value.
Temp memory is similar to M memory with one major exception: M memory has a "global"
scope, and temp memory has a "local" scope:
● M memory: Any OB, FC, or FB can access the data in M memory, meaning that the data

is available globally for all of the elements of the user program.
● Temp memory: Access to the data in temp memory is restricted to the OB, FC, or FB that

created or declared the temp memory location. Temp memory locations remain local and
are not shared by different code blocks, even when the code block calls another code
block. For example: When an OB calls an FC, the FC cannot access the temp memory of
the OB that called it.

The CPU provides temp (local) memory for each of the three OB priority groups:
● 16 Kbytes for startup and program cycle, including associated FBs and FCs
● 4 Kbytes for standard interrupt events including FBs and FCs
● 4 Kbytes for error interrupt events including FBs and FCs
You access temp memory by symbolic addressing only.
DB (data block): Use the DB memory for storing various types of data, including intermediate
status of an operation or other control information parameters for FBs, and data structures
required for many instructions such as timers and counters. You can specify a data block to
be either read/write or read only. You can access data block memory in bits, bytes, words, or
double words. Both read and write access is permitted for read/write data blocks. Only read
access is permitted for read-only data blocks.

Bit DB[data block number].DBX[byte

address].[bit address]
DB1.DBX2.3

Byte, Word, or Double Word DB[data block number].DB
[size][starting byte address]

DB1.DBB4, DB10.DBW2,
DB20.DBD8

https://sites.google.com/site/chauchiduc

 PLC concepts
 3.3 Data types

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 57

Addressing the I/O in the CPU and I/O modules

When you add a CPU and I/O modules to your
configuration screen, I and Q addresses are
automatically assigned.
You can change the default addressing by
selecting the address field in the configuration
screen and typing new numbers. Digital inputs
and outputs are assigned in complete 8 bit bytes,
whether the module uses all the points or not.
Analog inputs and outputs are assigned in groups
of 2 points (4 bytes). In this example, you could
change the address of the DI16 to 2..3 instead of
8..9. The tool will assist you by changing address
ranges that are the wrong size or conflict with
other addresses.
The figure shows an example of a CPU 1214C
with two SMs.

3.3 Data types
Data types are used to specify both the size of a data element as well as how the data are to
be interpreted. Each instruction parameter supports at least one data type, and some
parameters support multiple data types. Hold the cursor over the parameter field of an
instruction to see which data types are supported for a given parameter.
A formal parameter is the identifier on an instruction that marks the location of data to be
used by that instruction (example: the IN1 input of an ADD instruction). An actual parameter
is the memory location or constant containing the data to be used by the instruction
(example %MD400 "Number_of_Widgets"). The data type of the actual parameter specified
by you must match one of the supported data types of the formal parameter specified by the
instruction.
When specifying an actual parameter, you must specify either a tag (symbol) or an absolute
memory address. Tags associate a symbolic name (tag name) with a data type, memory
area, memory offset, and comment, and can be created either in the PLC tags editor or in
the Interface editor for a block (OB, FC, FB, or DB). If you enter an absolute address that
has no associated tag, you must use an appropriate size that matches a supported data
type, and a default tag will be created upon entry.
You can also enter a constant value for many of the input parameters. The following table
describes the supported elementary data types including examples of constant entry. All
except String are available in the PLC tags editor and the block Interface editors. String is
available only in the block Interface editors. The following table defines the elementary data
types.

https://sites.google.com/site/chauchiduc

PLC concepts
3.3 Data types

 S7-1200 Programmable controller
58 System Manual, 11/2009, A5E02486680-02

Data type Size (bits) Range Constant Entry Examples
Bool 1 0 to 1 TRUE, FALSE, 0, 1
Byte 8 16#00 to 16#FF 16#12, 16#AB
Word 16 16#0000 to 16#FFFF 16#ABCD, 16#0001
DWord 32 16#00000000 to 16#FFFFFFFF 16#02468ACE
Char 8 16#00 to 16#FF 'A', 't', '@'
Sint 8 -128 to 127 123, -123
Int 16 -32,768 to 32,767 123, -123
Dint 32 -2,147,483,648 to 2,147,483,647 123, -123
USInt 8 0 to 255 123
UInt 16 0 to 65,535 123
UDInt 32 0 to 4,294,967,295 123
Real 32 +/-1.18 x 10 -38 to +/-3.40 x 10 38 123.456, -3.4, -1.2E+12, 3.4E-3
LReal 64 +/-2.23 x 10-308 to +/-1.79 x 10308 12345.123456789

-1.2E+40
Time 32 T#-24d_20h_31m_23s_648ms to

T#24d_20h_31m_23s_647ms
Stored as: -2,147,483,648 ms to
+2,147,483,647 ms

T#5m_30s
5#-2d
T#1d_2h_15m_30x_45ms

String Variable 0 to 254 byte-size characters 'ABC'

Although not available as data types, the following BCD numeric format is supported by the
conversion instructions.

Format Size (bits) Numeric Range Constant Entry Examples
BCD16 16 -999 to 999 123, -123
BCD32 32 -9999999 to 9999999 1234567, -1234567

Format for real numbers
Real (or floating-point) numbers are represented as 32-bit single-precision numbers (Real),
or 64-bit double-precision numbers (LReal) as described in the ANSI/IEEE 754-1985
standard. Single-precision floating-point numbers are accurate up to 6 significant digits and
double-precision floating point numbers are accurate up to 15 significant digits. You can
specify a maximum of 6 significant digits (Real) or 15 (LReal) when entering a floating-point
constant to maintain precision.
Calculations that involve a long series of values including very large and very small numbers
can produce inaccurate results. This can occur if the numbers differ by 10 to the power of x,
where x > 6 (Real), or 15 (LReal). For example (Real): 100 000 000 + 1 = 100 000 000.

Format for the string data type
The CPU supports the STRING data type for storing a sequence of single-byte characters.
The STRING data type contains a total character count (number of characters in the string)
and the current character count. The STRING type provides up to 256 bytes for storing the

https://sites.google.com/site/chauchiduc

 PLC concepts
 3.3 Data types

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 59

maximum total character count (1 byte), the current character count (1 byte), and up to 254
characters, with each character stored in 1 byte.
You can use literal strings (constants) for instruction parameters of type IN using single
quotes. For example, ‘ABC’ is a three-character string that could be used as input for
parameter IN of the S_CONV instruction. You can also create string variables by selecting
data type "String" in the block interface editors for OB, FC, FB, and DB. You cannot create a
string in the PLC tags editor. You can specify the maximum string size in bytes when
declaring your string; for example, "MyString[10]" would specify a 10-byte maximum size for
MyString. If you do not include the brackets with a max size specifier, 254 is assumed.
The following example defines a STRING with maximum character count of 10 and current
character count of 3. This means the STRING currently contains 3 one-byte characters, but
could be expanded to contain up to 10 one-byte characters.

Total Character

Count
Current Character

Count
Character 1 Character 2 Character 3 ... Character

10
10 3 'C' (16#43) 'A' (16#41) 'T' (16#54) ... -

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 ... Byte 11

Arrays
You can create an array that contains multiple elements of an elementary type. Arrays can
be created in the block interface editors for OB, FC, FB, and DB. You cannot create an array
in the PLC tags editor.
To create an array from the block interface editor, choose data type "Array [lo .. hi] of type",
then edit "lo", "hi", and "type" as follows:
● lo - the starting (lowest) index for your array
● hi - the ending (highest) index for your array
● type - one of the elementary data types, such as BOOL, SINT, UDINT
Negative indices are supported. You can name the array in the Name column of the block
interface editor. The following table shows examples of arrays as they might appear in the
block interface editor:

Name Data type Comment
My_Bits Array [1 .. 10] of BOOL This array contains 10 Boolean values
My_Data Array [-5 .. 5] of SINT This array contains 11 SINT values, including index 0

You reference elements of arrays in your program using the following syntax:
● Array_name[i], where i is the desired index.
Examples as they might appear in the program editor as a parameter input:
● #My_Bits[3] - references the third bit of array "My_Bits"
● #My_Data[-2] - references the fourth SINT of array "My_Data"
The # symbol is inserted automatically by the program editor.

https://sites.google.com/site/chauchiduc

PLC concepts
3.3 Data types

 S7-1200 Programmable controller
60 System Manual, 11/2009, A5E02486680-02

DTL (Data and Time Long) data type
The DTL data type is a structure of 12 bytes that saves information on date and time in a
predefined structure. You can define a DTL in either the Temp memory of the block or in a
DB.

Length
(bytes)

Format Value range Example of value input

12 Clock and calendar
(Year-Month
tag:Hour:Minute:Second.Na
noseconds)

Min.: DTL#1970-01-01-
00:00:00.0
Max.: DTL#2554-12-31-
23:59:59.999 999 999

DTL#2008-12-16-
20:30:20.250

Each component of the DTL contains a different data type and range of values. The data
type of a specified value must match the data type of the corresponding components.

Byte Component Data type Value range
0
1

Year UINT 1970 to 2554

2 Month USINT 1 to 12
3 Day USINT 1 to 31
4 Day of week USINT 1(Sunday) to 7(Saturday)

The weekday is not considered in the value
entry.

5 Hour USINT 0 to 23
6 Minute USINT 0 to 59
7 Second USINT 0 to 59
8
9
10
11

Nanoseconds UDINT 0 to 999 999 999

https://sites.google.com/site/chauchiduc

 PLC concepts
 3.4 Using a memory card

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 61

3.4 Using a memory card

NOTICE
The CPU supports only the pre-formatted SIMATIC memory card (Page 318). If you use a
Windows formatter to reformat the SIMATIC memory card, the CPU cannot use the
reformatted memory card.
Before you copy any program to the formatted memory card, delete any previously saved
program from the memory card.

Use the memory card either as transfer card or as a program card. Any program that you
copy to the memory card contains all of the code blocks and data blocks, any technology
objects, and the device configuration. The program does not contain force values.
● Use a transfer card to copy a program to the internal load memory of the CPU without

using STEP 7 Basic. After you insert the transfer card, the CPU first erases the user
program and any force values from the internal load memory, and then copies the
program from the transfer card to the internal load memory. When the transfer process is
complete, you must remove the transfer card.
You can use an empty transfer card to access a password-protected CPU when the
password has been lost or forgotten (Page 53). Inserting the empty transfer card deletes
the password-protected program in the internal load memory of the CPU. You can then
download a new program to the CPU.

● Use a program card as external load memory for the CPU. Inserting a program card in
the CPU erases all of the CPU internal load memory (the user program and any force
values). The CPU then executes the program in external load memory (the program
card). Downloading to a CPU that has a program card updates only the external load
memory (the program card).
Because the internal load memory of the CPU was erased when you inserted the
program card, the program card must remain in the CPU. If you remove the program
card, the CPU goes to STOP mode. (The error LED flashes to indicate that program card
has been removed.)

The program on a memory card includes the code blocks, the data blocks, the technology
objects, and the device configuration. The memory card does not contain any force values.
The force values are not part of the program, but are stored in the load memory, whether the
internal load memory of the CPU, or the external load memory (a program card). If a
program card is inserted in the CPU, then STEP 7 Basic applies the force values only to the
external load memory on the program card.

https://sites.google.com/site/chauchiduc

PLC concepts
3.4 Using a memory card

 S7-1200 Programmable controller
62 System Manual, 11/2009, A5E02486680-02

3.4.1 Inserting a memory card in the CPU

WARNING
If you insert a memory card (whether configured as a program or transfer card) into a
running CPU, the CPU goes immediately to STOP mode. Control devices can fail in an
unsafe condition, resulting in unexpected operation of controlled equipment. Such
unexpected operations could result in death or serious injury to personnel, and/or damage
to equipment. Always install an emergency stop circuit for your application or process.

CAUTION
Electrostatic discharge can damage the memory card or the receptacle on the CPU.
Make contact with a grounded conductive pad and/or wear a grounded wrist strap when
you handle the memory card. Store the memory card in a conductive container.

To insert a memory card, open the top CPU door and insert the memory card in the slot. A
push-push type connector allows for easy insertion and removal. The memory card is keyed
for proper installation.

Check that the memory card is not
write-protected. Slide the protection
switch away from the "Lock" position.

 Note
If you insert a memory card with the CPU in STOP mode, the diagnostic buffer displays a
message that the memory card evaluation has been initiated. Please disregard this
message. The evaluation of the memory card does not start until you change the CPU to
RUN mode, reset the CPU memory with an MRES, or power-cycle the CPU.

https://sites.google.com/site/chauchiduc

 PLC concepts
 3.4 Using a memory card

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 63

3.4.2 Configuring the startup parameter of the CPU before copying the project to the
memory card

When you copy a program to a transfer card or a program card, the program includes the
startup parameter for the CPU. Before copying the program to the memory card, always
ensure that you have configured the operating mode for the CPU following a power-cycle.
Select whether the CPU starts in STOP mode, RUN mode, or in the previous mode (prior to
the power cycle).

3.4.3 Transfer card

CAUTION
Electrostatic discharge can damage the memory card or the receptacle on the CPU.
Make contact with a grounded conductive pad and/or wear a grounded wrist strap
whenever you handle the memory card. Store the memory card in a conductive container.

Creating a transfer card
Always remember to configure the startup parameter of the CPU (Page 63) before copying a
program to the transfer card. To create a transfer card, follow these steps:
1. Insert a blank memory card into the card reader/writer attached to your programming

device.
(If the memory card is not blank, delete the "SIMATIC.S7S" folder and the "S7_JOB.S7S"
file on the memory card using an application such as Windows Explorer.)

2. In the Project tree (Project view), expand the "SIMATIC Card Reader" folder and select
your card reader.

3. Display the "Memory card" dialog by right-clicking the memory card in the card reader
and selecting "Properties" from the context menu.

4. In the "Memory card" dialog, select "Transfer" from the drop-down menu.
At this point, STEP 7 Basic creates the empty transfer card. If you are creating an empty
transfer card, such as to recover from a lost CPU password (Page 53), remove the
transfer card from the card reader.

https://sites.google.com/site/chauchiduc

PLC concepts
3.4 Using a memory card

 S7-1200 Programmable controller
64 System Manual, 11/2009, A5E02486680-02

5. Add the program by selecting the CPU device (such as PLC_1 [CPU 1214 DC/DC/DC]) in

the Project tree and dragging the CPU device to the memory card. (Another method is to
copy the CPU device and paste it to the memory card.) Copying the CPU device to the
memory card opens the "Load preview" dialog.

6. In the "Load preview" dialog, click the "Load" button to copy the CPU device to the
memory card.

7. When the dialog displays a message that the CPU device (program) has been loaded
without errors, click the "Finish" button.

Using a transfer card
To transfer the program to a CPU, follow these steps:
1. Insert the transfer card into the CPU (Page 62). If the CPU is in RUN, the CPU will go to

STOP mode. (The maintenance LED flashes to indicate that the memory card needs to
be evaluated.)

2. Use one of the following options to evaluate the memory card:
– Power-cycle the CPU.
– Perform a STOP-to-RUN transition.
– Perform a memory reset (MRES).

3. After the rebooting and evaluating the memory card, the CPU copies the program to the
internal load memory of the CPU. When the copy operation is complete, the CPU flashes
the maintenance LED to indicate that the transfer card can be removed.

4. Remove the "Transfer" card from the CPU.
5. Use one of the following options to evaluate the new program transferred to internal load

memory:
– Power-cycle the CPU.
– Perform a STOP-to-RUN transition.
– Perform a memory reset (MRES).

https://sites.google.com/site/chauchiduc

 PLC concepts
 3.4 Using a memory card

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 65

The CPU then goes to the start-up mode (RUN or STOP) that you configured for the project.

 Note
You must remove the transfer card before setting the CPU to RUN mode.

3.4.4 Program card

CAUTION
Electrostatic discharge can damage the memory card or the receptacle on the CPU.
Make contact with a grounded conductive pad and/or wear a grounded wrist strap when
you handle the memory card. Store the memory card in a conductive container.

Check that the memory card is not write-protected. Slide the protection
switch away from the "Lock" position.
Before you copy any program elements to the program card, delete any
previously saved programs from the memory card.

Creating a program card
When used as a program card, the memory card is the external load memory of the CPU. If
you remove the program card, the internal load memory of the CPU is empty.

 Note
If you insert a blank memory card into the CPU and perform a memory card evaluation by
either power cycling the CPU, performing a STOP to RUN transition, or performing a
memory reset (MRES), the program and force values in internal load memory of the CPU are
copied to the memory card. (The memory card is now a program card.) After the copy has
been completed, the program in internal load memory of the CPU is then erased. The CPU
then goes to the configured startup mode (RUN or STOP).

https://sites.google.com/site/chauchiduc

PLC concepts
3.4 Using a memory card

 S7-1200 Programmable controller
66 System Manual, 11/2009, A5E02486680-02

Always remember to configure the startup parameter of the CPU (Page 63) before copying a
project to the program card. To create a program card with STEP 7 Basic, follow these
steps:
1. Insert a blank memory card into the card reader/writer attached to your programming

device.
(If the memory card is not blank, delete the "SIMATIC.S7S" folder and the "S7_JOB.S7S"
file on the memory card using an application such as Windows Explorer.)

2. In the Project tree (Project view), expand the "SIMATIC Card Reader" folder and select
your card reader.

3. Display the "Memory card" dialog by right-clicking the memory card in the card reader
and selecting "Properties" from the context menu.

4. In the "Memory card" dialog, select "Program" from the drop-down menu.

5. Add the program by selecting the CPU device (such as PLC_1 [CPU 1214 DC/DC/DC]) in

the Project tree and dragging the CPU device to the memory card. (Another method is to
copy the CPU device and paste it to the memory card.) Copying the CPU device to the
memory card opens the "Load preview" dialog.

6. In the "Load preview" dialog, click the "Load" button to copy the CPU device to the
memory card.

7. When the dialog displays a message that the CPU device (program) has been loaded
without errors, click the "Finish" button.

https://sites.google.com/site/chauchiduc

 PLC concepts
 3.4 Using a memory card

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 67

Using a program card as the load memory for your CPU

CAUTION
If you insert a blank memory card into the CPU, the CPU goes to STOP mode. If you
power-cycle the CPU, change the CPU from STOP to RUN mode, or reset the CPU
memory (MRES), the CPU copies the internal load memory of the CPU to the memory card
(which configure the memory card as a program card) and erases the program from the
internal load memory. If you remove the program card, the CPU has no program in the
internal load memory.

To use a program card with your CPU, follow these steps:
1. Insert the program card into the CPU. If the CPU is in RUN mode, the CPU goes to STOP

mode. The maintenance LED flashes to indicate that the program card needs to be
evaluated

2. Use one of the following options to evaluate the program card:
– Power-cycle the CPU.
– Perform a STOP-to-RUN transition.
– Perform a memory reset (MRES).

3. The CPU reboots itself. After rebooting and evaluating the program card, the CPU erases
the internal load memory of the CPU.

The CPU then goes to the start-up mode (RUN or STOP) that you configured for the CPU.
The program card must remain in the CPU. Removing the program card leaves the CPU with
no program in internal load memory.

WARNING
If you remove the program card, the CPU loses its external load memory and generates an
error. The CPU goes to STOP mode and flashes the error LED.
Control devices can fail in an unsafe condition, resulting in unexpected operation of
controlled equipment. Such unexpected operations could result in death or serious injury to
personnel, and/or damage to equipment.

https://sites.google.com/site/chauchiduc

PLC concepts
3.4 Using a memory card

 S7-1200 Programmable controller
68 System Manual, 11/2009, A5E02486680-02

https://sites.google.com/site/chauchiduc

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 69

Device configuration 4

You create the device configuration for your PLC by adding a CPU and additional modules to
your project.

① Communications module (CM): Up to 3, inserted in slots 101, 102, and 103
② CPU: Slot 1
③ Ethernet port of CPU
④ Signal board (SB): up to 1, inserted in the CPU
⑤ Signal module (SM) for digital or analog I/O: up to 8, inserted in slots 2 through 9

(CPU 1214C allows 8, CPU 1212C allows 2, CPU 1211C does not allow any)

 To create the device configuration,
add a device to your project.
 In the Portal view, select

"Devices & Networks" and click
"Add device".

 In the Project view, under the

project name, double-click "Add
new device".

https://sites.google.com/site/chauchiduc

Device configuration
4.2 Inserting a CPU

 S7-1200 Programmable controller
70 System Manual, 11/2009, A5E02486680-02

4.2 Inserting a CPU
You create your device configuration by inserting a CPU into your project. Selecting the CPU
from the "Add a new device" dialog creates the rack and CPU.

"Add a new device" dialog

Device view of the hardware
configuration

Selecting the CPU in the
Device view displays the CPU
properties in the inspector
window.

 Note
The CPU does not have a pre-configured IP address. You must manually assign an IP
address for the CPU during the device configuration. If your CPU is connected to a router on
the network, you also enter the IP address for a router.

https://sites.google.com/site/chauchiduc

 Device configuration
 4.3 Detecting the configuration for an unspecified CPU

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 71

4.3 Detecting the configuration for an unspecified CPU

Uploading an existing hardware configuration is easy

If you are connected to a CPU, you can upload the configuration
of that CPU, including any modules, to your project. Simply create
a new project and select the "unspecified CPU" instead of
selecting a specific CPU. (You can also skip the device
configuration entirely by selecting the "Create a PLC program"
from the "First steps". STEP 7 Basic then automatically creates an
unspecified CPU.)
From the program editor, you select the "Hardware detection"
command from the "Online" menu.

From the device configuration editor, you select the option for detecting the configuration of
the connected device.

After you select the CPU from the online dialog, STEP 7 Basic uploads the hardware
configuration from the CPU, including any modules (SM, SB, or CM). You can then
configure the parameters for the CPU and the modules.

https://sites.google.com/site/chauchiduc

Device configuration
4.4 Configuring the operation of the CPU

 S7-1200 Programmable controller
72 System Manual, 11/2009, A5E02486680-02

4.4 Configuring the operation of the CPU
To configure the operational parameters for the CPU, select the CPU in the Device view
(blue outline around whole CPU), and use the "Properties" tab of the inspector window.

Edit the properties to configure the following parameters:
● PROFINET interface: Sets the IP address for the CPU and time synchronization
● DI, DO, and AI: Configures the behavior of the local (on-board) digital and analog I/O
● High-speed counters and pulse generators: Enables and configures the high-speed

counters (HSC) and the pulse generators used for pulse-train operations (PTO) and
pulse-width modulation (PWM)
When you configure the outputs of the CPU or signal board as pulse generators (for use
with the PWM or basic motion control instructions), the corresponding outputs addresses
(Q0.0, Q0.1, Q4.0, and Q4.1) are removed from the Q memory and cannot be used for
other purposes in your user program. If your user program writes a value to an output
used as a pulse generator, the CPU does not write that value to the physical output.

● Startup: Selects the behavior of the CPU following an off-to-on transition, such as to start
in STOP mode or to go to RUN mode after a warm restart

● Time of day: Sets the time, time zone and daylight saving time
● Protection: Sets the read/write protection and password for accessing the CPU
● System and clock memory: Enables a byte for "system memory" functions (for a "first-

scan" bit, an "always-on" bit, and an "always-off" bit) and enables a byte for "clock
memory" functions (where each bit toggles on and off at a predefined frequency).

● Cycle time: Defines a maximum cycle time or a fixed minimum cycle time
● Communications load: Allocates a percentage of the CPU time to be dedicated to

communication tasks

https://sites.google.com/site/chauchiduc

 Device configuration
 4.5 Adding modules to the configuration

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 73

4.5 Adding modules to the configuration
Use the hardware catalog to add modules to the CPU. There are three types of modules:
● Signal modules (SM) provide additional digital or analog I/O points. These modules are

connected to the right side of the CPU.
● Signal boards (SB) provide just a few additional I/O points for the CPU. The SB is

installed on the front of the CPU.
● Communication modules (CM) provide an additional communication port (RS232 or

RS485) for the CPU. These modules are connected to the left side of the CPU.
To insert a module into the hardware configuration, select the module in the hardware
catalog and either double-click or drag the module to the highlighted slot.

Module Select the module Insert the module Result
SM

SB

CM

https://sites.google.com/site/chauchiduc

Device configuration
4.6 Configuring the parameters of the modules

 S7-1200 Programmable controller
74 System Manual, 11/2009, A5E02486680-02

4.6 Configuring the parameters of the modules
To configure the operational parameters for the modules, select the module in the Device
view and use the "Properties" tab of the inspector window to configure the parameters for the
module.

Configuring a signal module (SM) or a signal board (SB)

 Digital I/O: Inputs can be configured for rising-edge
detection or falling-edge detection (associating
each with an event and hardware interrupt) and
also for "pulse catch" (to stay on after a momentary
pulse) through the next update of the input process
image. Outputs can use a freeze or substitute
value.

 Analog I/O: For individual inputs, configure
parameters, such as measurement type (voltage or
current), range and smoothing, and to enable
underflow or overflow diagnostics. Outputs provide
parameters such as output type (voltage or current)
and for diagnostics, such as short-circuit (for
voltage outputs) or upper/lower limit diagnostics

 I/O diagnostic addresses: Configures the start address for the set of inputs and outputs
of the module

Configuring a communication module (CM)

 Port configuration: Configures the communication

parameters, such as baud rate, parity, data bits,
stop bits, flow control, XON and XOFF characters,
and wait time

 Transmit message configuration: Enables and
configures transmit related options

 Receive message configuration: Enables and
configures the message-start and message-end
parameters

These configuration parameters can be changed by your program.

https://sites.google.com/site/chauchiduc

 Device configuration
 4.7 Creating a network connection

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 75

4.7 Creating a network connection
Use the "Network view" of Device configuration to create the network connections between
the devices in your project. After creating the network connection, use the "Properties" tab of
the inspector window to configure the parameters of the network.

Action Result
Select "Network view" to display the
devices to be connected.

Select the port on one device and
drag the connection to the port on
the second device.

Release the mouse button to create
the network connection.

https://sites.google.com/site/chauchiduc

Device configuration
4.8 Configuring an IP address in your project

 S7-1200 Programmable controller
76 System Manual, 11/2009, A5E02486680-02

4.8 Configuring an IP address in your project

Configuring the PROFINET interface
After you configure the rack with the CPU (Page 72) , you can configure parameters for the
PROFINET interface. To do so, click the green PROFINET box on the CPU to select the
PROFINET port. The "Properties" tab in the inspector window displays the PROFINET port.

① PROFINET port

Configuring the IP address
Ethernet (MAC) address: In a PROFINET network, each device is assigned a Media Access
Control address (MAC address) by the manufacturer for identification. A MAC address
consists of six groups of two hexadecimal digits, separated by hyphens (-) or colons (:), in
transmission order, (for example, 01-23-45-67-89-AB or 01:23:45:67:89:AB).
IP address: Each device must also have an Internet Protocol (IP) address. This address
allows the device to deliver data on a more complex, routed network.
Each IP address is divided into four 8-bit segments and is expressed in a dotted, decimal
format (for example, 211.154.184.16). The first part of the IP address is used for the Network
ID (What network are you on?), and the second part of the address is for the Host ID (unique
for each device on the network). An IP address of 192.168.x.y is a standard designation
recognized as part of a private network that is not routed on the Internet.
Subnet mask: A subnet is a logical grouping of connected network devices. Nodes on a
subnet tend to be located in close physical proximity to each other on a Local Area Network
(LAN). A mask (known as the subnet mask or network mask) defines the boundaries of an IP
subnet.
A subnet mask of 255.255.255.0 is generally suitable for a small local network. This means
that all IP addresses on this network should have the same first 3 octets, and the various
devices on this network are identified by the last octet (8-bit field). An example of this is to
assign a subnet mask of 255.255.255.0 and an IP addresses of 192.168.2.0 through
192.168.2.255 to the devices on a small local network.
The only connection between different subnets is via a router. If subnets are used, an IP
router must be employed.
IP router: Routers are the link between LANs. Using a router, a computer in a LAN can send
messages to any other networks, which might have other LANs behind them. If the
destination of the data is not within the LAN, the router forwards the data to another network
or group of networks where it can be delivered to its destination.
Routers rely on IP addresses to deliver and receive data packets.

https://sites.google.com/site/chauchiduc

 Device configuration
 4.8 Configuring an IP address in your project

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 77

IP addresses properties:
In the Properties window,
select the "Ethernet
address" configuration
entry. The TIA Portal
displays the Ethernet
address configuration
dialog, which associates
the software project with
the IP address of the CPU
that will receive that
project.

 Note
The CPU does not have a pre-configured IP address. You must manually assign an IP
address for the CPU. If your CPU is connected to a router on a network, you must also enter
the router's IP address. All IP addresses are configured when you download the project.
Refer to "Assigning IP addresses to programming and network devices (Page 212)" for more
information.

The following table defines the parameters for the IP address:

Parameter Description
Subnet Name of the Subnet to which the device is connected. Click the "Add new subnet"

button to create a new subnet. "Not connected" is the default.
Two connection types are possible:
 The "Not connected" default provides a local connection.
 A subnet is required when your network has two or more devices.

IP address Assigned IP address for the CPU
Subnet mask Assigned subnet mask
Use IP router Click the checkbox to indicate the use of an IP router

IP protocol

Router address Assigned IP address for the router, if applicable

https://sites.google.com/site/chauchiduc

Device configuration
4.8 Configuring an IP address in your project

 S7-1200 Programmable controller
78 System Manual, 11/2009, A5E02486680-02

https://sites.google.com/site/chauchiduc

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 79

Programming concepts 5
5.1 Guidelines for designing a PLC system

When designing a PLC system, you can choose from a variety of methods and criteria. The
following general guidelines can apply to many design projects. Of course, you must follow
the directives of your own company's procedures and the accepted practices of your own
training and location.

Recommended steps Tasks
Partition your process
or machine

Divide your process or machine into sections that have a level of independence from each other.
These partitions determine the boundaries between controllers and influence the functional
description specifications and the assignment of resources.

Create the functional
specifications

Write the descriptions of operation for each section of the process or machine, such as the I/O
points, the functional description of the operation, the states that must be achieved before
allowing action for each actuator (such as a solenoid, a motor, or a drive), a description of the
operator interface, and any interfaces with other sections of the process or machine.

Design the safety
circuits

Identify any equipment that might require hard-wired logic for safety. Remember that control
devices can fail in an unsafe manner, which can produce unexpected startup or change in the
operation of machinery. Where unexpected or incorrect operation of the machinery could result in
physical injury to people or significant property damage, consider the implementation of
electromechanical overrides (which operate independently of the PLC) to prevent unsafe
operations. The following tasks should be included in the design of safety circuits:
 Identify any improper or unexpected operation of actuators that could be hazardous.
 Identify the conditions that would assure the operation is not hazardous, and determine how

to detect these conditions independently of the PLC.
 Identify how the PLC affects the process when power is applied and removed, and also

identify how and when errors are detected. Use this information only for designing the normal
and expected abnormal operation. You should not rely on this "best case" scenario for safety
purposes.

 Design the manual or electromechanical safety overrides that block the hazardous operation
independent of the PLC.

 Provide the appropriate status information from the independent circuits to the PLC so that
the program and any operator interfaces have necessary information.

 Identify any other safety-related requirements for safe operation of the process.

Specify the operator
stations

Based on the requirements of the functional specifications, create the following drawings of the
operator stations:
 Overview drawing that shows the location of each operator station in relation to the process

or machine.
 Mechanical layout drawing of the devices for the operator station, such as display, switches,

and lights.
 Electrical drawings with the associated I/O of the PLC and signal modules.

https://sites.google.com/site/chauchiduc

Programming concepts
5.2 Structuring your user program

 S7-1200 Programmable controller
80 System Manual, 11/2009, A5E02486680-02

Recommended steps Tasks
Create the
configuration drawings

Based on the requirements of the functional specification, create configuration drawings of the
control equipment:
 Overview drawing that shows the location of each PLC in relation to the process or machine.
 Mechanical layout drawing of each PLC and any I/O modules, including any cabinets and

other equipment.
 Electrical drawings for each PLC and any I/O modules, including the device model numbers,

communications addresses, and I/O addresses.

Create a list of
symbolic names

Create a list of symbolic names for the absolute addresses. Include not only the physical I/O
signals, but also the other elements (such as tag names) to be used in your program.

5.2 Structuring your user program
When you create a user program for the automation tasks, you insert the instructions for the
program into code blocks:
● An organization block (OB) responds to a specific event in the CPU and can interrupt the

execution of the user program. The default for the cyclic execution of the user program
(OB 1) provides the base structure for your user program and is the only code block
required for a user program. If you include other OBs in your program, these OBs
interrupt the execution of OB 1. The other OBs perform specific functions, such as for
startup tasks, for handling interrupts and errors, or for executing specific program code at
specific time intervals.

● A function block (FB) is a subroutine that is executed when called from another code
block (OB, FB, or FC). The calling block passes parameters to the FB and also identifies
a specific data block (DB) that stores the data for the specific call or instance of that FB.
Changing the instance DB allows a generic FB to control the operation of a set of
devices. For example, one FB can control several pumps or valves, with different
instance DBs containing the specific operational parameters for each pump of valve.

● A function (FC) is a subroutine that is executed when called from another code block
(OB, FB, or FC). The FC does not have an associated instance DB. The calling block
passes parameters to the FC. The output values from the FC must be written to a
memory address or to a global DB.

Choosing the type of structure for your user program
Based on the requirements of your application, you can choose either a linear structure or a
modular structure for creating your user program:
● A linear program executes all of the instructions for your automation tasks in sequence,

one after the other. Typically, the linear program puts all of the program instructions into
the OB for the cyclic execution of the program (OB 1).

● A modular program calls specific code blocks that perform specific tasks. To create a
modular structure, you divide the complex automation task into smaller subordinate tasks
that correspond to the technological functions of the process. Each code block provides
the program segment for each subordinate task. You structure your program by calling
one of the code blocks from another block.

https://sites.google.com/site/chauchiduc

 Programming concepts
 5.3 Using blocks to structure your program

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 81

Linear structure: Modular structure:

By creating generic code blocks that can be reused within the user program, you can simplify
the design and implementation of the user program. Using generic code blocks has a
number of benefits:
● You can create reusable blocks of code for standard tasks, such as for controlling a pump

or a motor. You can also store these generic code blocks in a library that can be used by
different applications or solutions.

● When you structure the user program into modular components that relate to functional
tasks, the design of your program can be easier to understand and to manage. The
modular components not only help to standardize the program design, but can also help
to make updating or modifying the program code quicker and easier.

● Creating modular components simplifies the debugging of your program. By structuring
the complete program as a set of modular program segments, you can test the
functionality of each code block as it is developed.

● Creating modular components that relate to specific technological functions can help to
simplify and reduce the time involved with commissioning the completed application.

5.3 Using blocks to structure your program
By designing FBs and FCs to perform generic tasks, you create modular code blocks. You
then structure your program by having other code blocks call these reusable modules. The
calling block passes device-specific parameters to the called block.

A Calling block
B Called (or interrupting) block
① Program execution
② Operation that calls another block
③ Program execution
④ Block end (returns to calling block)

When a code block calls another code block, the CPU executes the program code in the
called block. After execution of the called block is complete, the CPU resumes the execution
of the calling block.

https://sites.google.com/site/chauchiduc

Programming concepts
5.3 Using blocks to structure your program

 S7-1200 Programmable controller
82 System Manual, 11/2009, A5E02486680-02

Processing continues with
execution of the instruction that
follows after the block call.
You can nest the block calls for a
more modular structure.
① Start of cycle
② Nesting depth

Creating reusable code blocks

Use the "Add new block" dialog
under "Program blocks" in the
Project navigator to create OBs,
FBs, FCs, and global DBs.
When you create code block, you
select the programming language
for the block. You do not select a
language for a DB because it only
stores data.

5.3.1 Organization block (OB)
Organization blocks provide structure for your program. They serve as the interface between
the operating system and the user program. OBs are event driven. An event, such as a
diagnostic interrupt or a time interval, will cause the CPU to execute an OB. Some OBs have
predefined start events and behavior.
The program cycle OB contains your main program. You can include more than one program
cycle OB in your user program. During RUN mode, the program cycle OBs execute at the
lowest priority level and can be interrupted by all other types of program processing. The
startup OB does not interrupt the program cycle OB because the CPU executes the startup
OB before going to RUN mode.

https://sites.google.com/site/chauchiduc

 Programming concepts
 5.3 Using blocks to structure your program

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 83

After finishing the processing of the program cycle OBs, the CPU immediately executes the
program cycle OBs again. This cyclic processing is the "normal" type of processing used for
programmable logic controllers. For many applications, the entire user program is located in
a single program cycle OB.
You can create other OBs to perform specific functions, such as startup tasks, for handling
interrupts and errors, or for executing specific program code at specific time intervals. These
OBs interrupt the execution of the program cycle OBs.
Use the "Add new block" dialog to create new OBs in your user program.

Depending on their respective
priority levels, one OB can
interrupt another OB. Interrupt
handling is always event-driven.
When such an event occurs, the
CPU interrupts the execution of
the user program and calls the OB
that was configured to handle that
event. After finishing the execution
of the interrupting OB, the CPU
resumes the execution of the user
program at the point of
interruption.

The CPU determines the order for handling interrupt events by a priority assigned to each
OB. Each event has a particular servicing priority. Several interrupt events can be combined
into priority classes. For more information, refer to the PLC concepts chapter section on
execution of the user program (Page 37).

Creating an additional OB within a class of OB
You can create multiple OBs for your user program, even for the program cycle and startup
OB classes. Use the "Add new block" dialog to create a OB. Enter the name for your OB and
enter an OB number greater than 200.
If you create multiple program cycle OBs for your user program, the CPU executes each
program cycle OB in numerical sequence, starting with the main program cycle OB (default:
OB 1). For example: after first program cycle OB (OB1) finishes, the CPU executes the
second program cycle OB (such as OB 200).

https://sites.google.com/site/chauchiduc

Programming concepts
5.3 Using blocks to structure your program

 S7-1200 Programmable controller
84 System Manual, 11/2009, A5E02486680-02

Configuring the operation of an OB

You can modify the operational
parameters for an OB. For example,
you can configure the time parameter
for a time-delay OB or for a cyclic OB.

5.3.2 Function (FC)
A function (FC) is a code block that typically performs a specific operation on a set of input
values. The FC stores the results of this operation in memory locations.
Use FCs to perform the following tasks:
● To perform standard and reusable operations, such as for mathematical calculations.
● To perform technological functions, such as for individual controls using bit logic

operations.
An FC can also be called several times at different points in a program. This reuse simplifies
the programming of frequently recurring tasks.
An FC does not have an associated instance data block (DB). The FC uses the local data
stack for the temporary data used to calculate the operation. The temporary data is not
saved. To store data permanently, assign the output value to a global memory location, such
as M memory or to a global DB.

5.3.3 Function block (FB)
A function block (FB) is a code block that uses an instance data block for its parameters and
static data. FBs have variable memory that is located in a data block (DB), or "instance" DB.
The instance DB provides a block of memory that is associated with that instance (or call) of
the FB and stores data after the FB finishes. You can associate different instance DBs with
different calls of the FB. The instance DBs allow you to use one generic FB to control
multiple devices. You structure your program by having one code block make a call to an FB
and an instance DB. The CPU then executes the program code in that FB, and stores the
block parameters and the static local data in the instance DB. When the execution of the FB
finishes, the CPU returns to the code block that called the FB. The instance DB retains the
values for that instance of the FB. These values are available to subsequent calls to the
function block either in the same scan cycle or other scan cycles.

https://sites.google.com/site/chauchiduc

 Programming concepts
 5.3 Using blocks to structure your program

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 85

Reusable code blocks with associated memory
You typically use an FB to control the operation for tasks or devices that do not finish their
operation within one scan cycle. To store the operating parameters so that they can be
quickly accessed from one scan to the next, each FB in your user program has one or more
instance DBs. When you call an FB, you also specify an instance DB that contains the block
parameters and the static local data for that call or "instance" of the FB. The instance DB
maintains these values after the FB finishes execution.
By designing the FB for generic control tasks, you can reuse the FB for multiple devices by
selecting different instance DBs for different calls of the FB.
An FB stores the input (IN), output (OUT), and in/out (IN_OUT) parameters in an instance
DB.

Assigning initial values
If the input, output, or in/out parameters of a function block (FB) are not assigned with
values, the values stored in the instance data block (DB) will be used. In some cases, you
must assign parameters.
You can assign initial values to the parameters in the FB interface. These values are
transferred to the associated instance DB. If you do not assign parameters, the values
currently stored in the instance DB will be used.

Using a single FB with DBs
The following figure shows an OB that calls one FB three times, using a different data block
for each call. This structure allows one generic FB to control several similar devices, such as
motors, by assigning a different instance data block for each call for the different devices.
Each instance DB stores the data (such as speed, ramp-up time, and total operating time)
for an individual device. In this example, FB 22 controls three separate devices, with DB 201
storing the operational data for the first device, DB 202 storing the operational data for the
second device, and DB 203 storing the operational data for the third device.

https://sites.google.com/site/chauchiduc

Programming concepts
5.4 Understanding data consistency

 S7-1200 Programmable controller
86 System Manual, 11/2009, A5E02486680-02

5.3.4 Data block (DB)
You create data blocks (DB) in your user program to store data for the code blocks. All of the
program blocks in the user program can access the data in a global DB, but an instance DB
stores data for a specific function block (FB). You can define a DB as being read-only.
The data stored in a DB is not deleted when the execution of the associated code block
comes to an end. There are two types of DBs:
● A global DB stores data for the code blocks in your program. Any OB, FB, or FC can

access the data in a global DB.
● An instance DB stores the data for a specific FB. The structure of the data in an instance

DB reflects the parameters (Input, Output, and InOut) and the static data for the FB. (The
Temp memory for the FB is not stored in the instance DB.)

Note
Although the instance DB reflects the data for a specific FB, any code block can access
the data in an instance DB.

5.4 Understanding data consistency
The CPU maintains the data consistency for all of the elementary data types (such as Words
or DWords) and all of the system-defined structures (for example, IEC_TIMERS or DTL).
The reading or writing of the value cannot be interrupted. (For example, the CPU protects
the access to a DWord value until the four bytes of the DWord have been read or written.) To
ensure that the program cycle OBs and the interrupt OBs cannot write to the same memory
location at the same time, the CPU does not execute an interrupt OB until the read or write
operation in the program cycle OB has been completed.
If your user program shares multiple values in memory between a program cycle OB and an
interrupt OB, your user program must also ensure that these values are modified or read
consistently. You can use the DIS_AIRT and EN_AIRT instructions in your program cycle OB
to protect any access to the shared values.
● Insert a DIS_AIRT instruction in the code block to ensure that an interrupt OB cannot be

executed during the read or write operation.
● Insert the instructions that read or write the values that could be altered by an interrupt

OB.
● Insert an EN_AIRT instruction at the end of the sequence to cancel the the DIS_AIRT and

allow the execution of the interrupt OB.
A communication request from an HMI device or another CPU can also interrupt execution of
the program cycle OB. The communication requests can also cause issues with data
consistency issues. The CPU ensures that the elementary data types are always read and
written consistently by the user program instructions. Because the user program is
interrupted periodically by communications, it is not possible to guarantee that multiple
values in the CPU will all be updated at the same time by the HMI. For example, the values
displayed on a given HMI screen could be from different scan cycles of the CPU.
The PtP (Point-to-Point) instructions, and the PROFINET instructions (such as TSEND_C
and TRCV_C) transfer buffers of data that could be interrupted. Ensure the data consistency
for the buffers of data by avoiding any read or write operation to the buffers in both the
program cycle OB and an interrupt OB. If it is necessary to modify the buffer values for these

https://sites.google.com/site/chauchiduc

 Programming concepts
 5.5 Selecting the programming language

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 87

instructions in an interrupt OB, use a DIS_AIRT instruction to delay any interruption (an
interrupt OB or a communication interrupt from an HMI or another CPU) until an EN_AIRT
instruction is executed.

 Note
The use of the DIS_AIRT instruction delays the processing of interrupt OBs until the
EN_AIRT instruction is executed, affecting the interrupt latency (time from an event to the
time when the interrupt OB is executed) of your user program.

5.5 Selecting the programming language
You have the option of choosing either the LAD (ladder logic) or FBD (Function Block
Diagram) programming language.

LAD programming language
LAD is a graphical programming language. The representation is based on circuit diagrams.

The elements of a circuit
diagram, such as normally
closed and normally open
contacts, and coils are
linked to form networks.

To create the logic for complex operations, you can insert branches to create the logic for
parallel circuits. Parallel branches are opened downwards or are connected directly to the
power rail. You terminate the branches upwards.
LAD provides "box" instructions for a variety of functions, such as math, timer, counter, and
move.
Consider the following rules when creating a LAD network:
● Every LAD network must terminate with a coil or a box instruction. Do not terminate a

network with either a Compare instruction or an Edge-detection (Positive-edge or
Negative-edge) instruction.

● You cannot create a branch that could result in a power flow in the reverse direction.

https://sites.google.com/site/chauchiduc

Programming concepts
5.5 Selecting the programming language

 S7-1200 Programmable controller
88 System Manual, 11/2009, A5E02486680-02

● You cannot create a branch that would cause a short circuit.

Function Block Diagram (FBD) programming language
Like LAD, FBD is also a graphical programming language. The representation of the logic is
based on the graphical logic symbols used in Boolean algebra.

Mathematical functions and other complex
functions can be represented directly in
conjunction with the logic boxes. To create
the logic for complex operations, insert
parallel branches between the boxes.

Understanding EN and ENO for the "box" instructions
Both LAD and FBD use "power flow" (EN and ENO) for some "box" instructions. Certain
instructions (such as math and move instructions) display parameters for EN and ENO.
These parameters relate to power flow and determine whether the instruction is executed
during that scan.
● EN (Enable In) is a Boolean input for boxes in LAD and FBD. Power flow (EN = 1) must

be present at this input for the box instruction to be executed. If the EN input of a LAD
box is connected directly to the left power rail, then box will always be executed.

● ENO (Enable Out) is a Boolean output for boxes in LAD and FBD. If the box has power
flow at the EN input and the box executes its function without error, then the ENO output
passes power flow (ENO = 1) to the next element. If an error is detected in the execution
of the box instruction, then power flow is terminated (ENO = 0) at the box instruction that
generated the error.

Program editor Inputs/outputs Operands Data type
LAD EN, ENO Power flow BOOL

EN I, I:P, Q, M, DB, Temp, Power Flow BOOL FBD
ENO Power Flow BOOL

https://sites.google.com/site/chauchiduc

 Programming concepts
 5.6 Copy protection

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 89

5.6 Copy protection

Copy or "know-how" protection allows
you to prevent one or more code
blocks (OB, FB, or FC) in your
program from unauthorized access.
You create a password to limit
access to the code block.
When you configure a block for
"know-how" protection, the code
within the block cannot be accessed
except after entering the password.
To copy-protect the block, select the
"Know how protection" command
from the "Edit" menu. You then enter
a password that allows access to the
block.

The password-protection prevents unauthorized reading or modification of the code block.
Without the password, you can read only the following information about the code block:
● Block title, block comment, and block properties
● Transfer parameters (IN, OUT, IN_OUT, Return)
● Call structure of the program
● Global tags in the cross references (without information on the point of use), but local

tags are hidden

5.7 Downloading the elements of your program
You can download the elements of your project from the programming device to the CPU.
When you download a project, the CPU stores the user program (OBs, FCs, FBs and DBs)
in permanent memory.

You can download your project
from the programming device to
your CPU from any of the
following locations:
 "Project tree": Right-click the

program element, and then
click the context-sensitive
"Download" selection.

 "Online" menu: Click the
"Download to device"
selection.

 Toolbar: Click the "Download
to device" icon.

https://sites.google.com/site/chauchiduc

Programming concepts
5.8 Uploading the elements of your program

 S7-1200 Programmable controller
90 System Manual, 11/2009, A5E02486680-02

5.8 Uploading the elements of your program
You can upload all program blocks and the tag table from an online CPU to an offline project,
but you cannot upload the device configuration or watch tables. You cannot upload into an
empty project; you must have an offline CPU to be able to upload. You cannot upload a
single block; you can only upload the whole program. If an upload is performed, the offline
CPU will be "cleared" (all blocks and tag table are deleted) before the upload after a check-
question. You cannot edit a block in the online area; you must first upload it to the offline
area, then modify it there, and then download it back to the PLC.
There are two ways to perform the upload: drag and drop in the Project tree, or synchronize
in the Compare editor.

Drag and drop in the project tree
1. Create a new project.
2. Add a CPU device which matches the CPU you are uploading from.
3. Expand the CPU node once so that the "Program blocks" folder is visible.
4. From the Project tree, expand the node for "Online access", expand the node for the

desired network, and double click "Update accessible devices.
5. After the available CPUs are listed, expand the node for the CPU of interest.
6. Left-click and hold the Program blocks folder from the Online access area and drag it up

to the Program blocks folder from the offline area, then release the left mouse button. The
mouse pointer should change to a ‘+’ when you are over the correct area.

7. You should see the "Upload preview" dialog open. Click in the box for "Continue", and
then click "Upload from device".

8. Allow the upload to complete. You should now see all the program blocks, technology
blocks, and tags in the offline area.

9. Since the device configuration cannot be uploaded, use Device configuration to manually
setup the CPU properties, including the desired IP address, and to add the other devices
to the offline project.

You can also drag from the online area to the "Program blocks" area of an existing program.
That is, the Program-blocks offline area does not have to be empty. In this case, the existing
program will be deleted and replaced by the online program.

Synchronize in the compare editor
1. Open the project that contains the project.
2. In the Project tree, select the offline CPU to compare.
3. Open the "Compare" editor either by right-clicking the offline CPU, or by selecting the

"Compare offline/online" command from the "Tools" menu.
4. The Compare editor lists the differences under the "Program blocks" folder. Click the

symbol in the action column. To upload the project, select "Upload from device".
5. Click the "Synchronize online and offline" button to copy the project from the online CPU

to the offline CPU.

https://sites.google.com/site/chauchiduc

 Programming concepts
 5.9 Debugging and testing the program

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 91

5.9 Debugging and testing the program
You use "watch tables" for monitoring and modifying the values of a user program being
executed by the online CPU. You can create and save different watch tables in your project
to support a variety of test environments. This allows you to reproduce tests during
commissioning or for service and maintenance purposes.
With a watch table, you can monitor and interact with the CPU as it executes the user
program. You can display or change values not only for the tags of the code blocks and data
blocks, but also for the memory areas of the CPU, including the inputs and outputs (I and Q),
peripheral inputs and outputs (I:P and Q:P), bit memory (M), and data blocks (DB).
With the watch table, you can enable the physical outputs (Q:P) of a CPU in STOP mode.
For example, you can assign specific values to the outputs when testing the wiring for the
CPU.
The watch table also allows you to "force" or set a tag to a specific value. For more
information about forcing, see the section on forcing values in the CPU (Page 273) in the
"Online and Diagnostics" chapter.

https://sites.google.com/site/chauchiduc

Programming concepts
5.9 Debugging and testing the program

 S7-1200 Programmable controller
92 System Manual, 11/2009, A5E02486680-02

https://sites.google.com/site/chauchiduc

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 93

Programming instructions 6
6.1 Basic instructions

6.1.1 Bit logic

LAD contacts

Normally
Open

Normally
Closed

You can connect contacts to other contacts and create your own combination
logic. If the input bit you specify uses memory identifier I (input) or Q (output),
then the bit value is read from the process-image register. The physical contact
signals in your control process are wired to I terminals on the PLC. The CPU
scans the wired input signals and continuously updates the corresponding
state values in the process-image input register.
You can specify an immediate read of a physical input using ":P" following the I
offset (example: "%I3.4:P"). For an immediate read, the bit data values are
read directly from the physical input instead of the process image. An
immediate read does not update the process image.

Parameter Data type Description
IN Bool Assigned bit

● The Normally Open contact is closed (ON) when the assigned bit value is equal to 1.
● The Normally Closed contact is closed (ON) when the assigned bit value is equal to 0.
● Contacts connected in series create AND logic networks.
● Contacts connected in parallel create OR logic networks.

FBD, AND, OR, and XOR boxes
In FBD programming, LAD contact networks are transformed into AND (&), OR (>=1), and
exclusive OR (x) box networks where you can specify bit values for the box inputs and
outputs. You may also connect to other logic boxes and create your own logic combinations.
After the box is placed in your network, you can drag the "Insert binary input" tool from the
"Favorites" toolbar or instruction tree and then drop it onto the input side of the box to add
more inputs. You can also right-click on the box input connector and select "Insert input".
Box inputs and outputs can be connected to another logic box, or you can enter a bit
address or bit symbol name for an unconnected input. When the box instruction is executed,
the current input states are applied to the binary box logic and, if true, the box output will be
true.

https://sites.google.com/site/chauchiduc

Programming instructions
6.1 Basic instructions

 S7-1200 Programmable controller
94 System Manual, 11/2009, A5E02486680-02

AND logic OR logic XOR logic

Parameter Data type Description
IN1, IN2 Bool Input bit

● All inputs of an AND box must be TRUE for the output to be TRUE.
● Any input of an OR box must be TRUE for the output to be TRUE.
● An odd number of the inputs of an XOR box must be TRUE for the output to be TRUE.

NOT logic inverter
For FBD programming, you can drag the "Negate binary input" tool from the "Favorites"
toolbar or instruction tree and then drop it on an input or output to create a logic inverter on
that box connector.

LAD: NOT contact
inverter

FBD: AND box with one
inverted logic input

FBD: AND box with inverted logic
input and output

The LAD NOT contact inverts the logical state of power flow input.
● If there is no power flow into the NOT contact, then there is power flow out.
● If there is power flow into the NOT contact, then there is no power flow out.

LAD output coil

Output coil

Inverted
output coil

The coil output instruction writes a value for an output bit. If the output bit
you specify uses memory identifier Q, then the CPU turns the output bit in
the process-image register on or off, setting the specified bit equal to
power flow status. The output signals for your control actuators are wired
to the Q terminals of the S7-1200. In RUN mode, the CPU system
continuously scans your input signals, processes the input states
according to your program logic, and then reacts by setting new output
state values in the process-image output register. After each program
execution cycle, the CPU system transfers the new output state reaction
stored in the process-image register to the wired output terminals.

You can specify an immediate write of a physical output using ":P" following the Q offset
(example: "%Q3.4:P"). For an immediate write, the bit data values are written to the process
image output and directly to physical output.

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.1 Basic instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 95

Parameter Data type Description
OUT Bool Assigned bit

● If there is power flow through an output coil, then the output bit is set to 1.
● If there is no power flow through an output coil, then the output coil bit is set to 0.
● If there is power flow through an inverted output coil, then the output bit is set to 0.
● If there is no power flow through an inverted output coil, then the output bit is set to 1.

FBD output assignment box
In FBD programming, LAD coils are transformed into assignment (= and /=) boxes where
you specify a bit address for the box output. Box inputs and outputs can be connected to
other box logic or you can enter a bit address.

Output assignment Inverted output
assignment

Output assignment
with inverted output

Parameter Data type Description
OUT Bool Assigned bit

● If the output box input is 1, then the OUT bit is set to 1.
● If the output box input is 0, then the OUT bit is set to 0.
● If the inverted output box input is 1, then the OUT bit is set to 0.
● If the inverted output box input is 0, then the OUT bit is set to 1.

6.1.1.1 Set and reset instructions

S and R: Set and Reset 1 bit
● When S (Set) is activated, then the data value at the OUT address is set to 1. When S is

not activated, OUT is not changed.
● When R (Reset) is activated, then the data value at the OUT address is set to 0. When R

is not activated, OUT is not changed.
● These instructions can be placed anywhere in the network.

LAD: Set LAD: Reset FBD: Set FBD: Reset

https://sites.google.com/site/chauchiduc

Programming instructions
6.1 Basic instructions

 S7-1200 Programmable controller
96 System Manual, 11/2009, A5E02486680-02

Parameter Data type Description
IN (or connect to contact/gate logic) Bool Bit location to be monitored
OUT Bool Bit location to be set or reset

SET_BF and RESET_BF: Set and Reset Bit Field

LAD: SET_BF LAD: RESET_BF FBD: SET_BF FBD: RESET_BF

Parameter Data type Description
n Constant Number of bits to write
OUT Element of a boolean array Starting element of a bit field to be set or reset

Example: #MyArray[3]

● When SET_BF is activated, a data value of 1 is assigned to "n" bits starting at address
OUT. When SET_BF is not activated, OUT is not changed.

● RESET_BF writes a data value of 0 to "n" bits starting at address OUT. When RESET_BF
is not activated, OUT is not changed.

● These instructions must be the right-most instruction in a branch.

RS and SR: Set-dominant and Reset-dominant bit latches

RS is a set dominant latch where the set dominates. If the set (S1) and reset
(R) signals are both true, the output address OUT will be 1.
SR is a reset dominant latch where the reset dominates. If the set (S) and
reset (R1) signals are both true, the output address OUT will be 0.
The OUT parameter specifies the bit address that is set or reset. The
optional OUT output Q reflects the signal state of the "OUT" address.

Parameter Data type Description
S, S1 BOOL Set input; 1 indicates dominance
R, R1 BOOL Reset input; 1 indicates dominance
OUT BOOL Assigned bit output "OUT"
Q BOOL Follows state of "OUT" bit

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.1 Basic instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 97

Instruction S1 R "OUT" bit

RS 0 0 Previous state
 0 1 0
 1 0 1
 1 1 1
 S R1

SR 0 0 Previous state
 0 1 0
 1 0 1
 1 1 0

6.1.1.2 Positive and negative edge instructions

Positive and Negative transition detectors

P contact: LAD N contact: LAD P box: FBD N box: FBD

P coil: LAD N coil: LAD P= box: FBD N= box: FBD

P_TRIG: LAD\FBD N_TRIG: LAD\FBD

Parameter Data type Description
M_BIT Bool Memory bit in which the previous state of the input is saved
IN Bool Input bit whose transition edge is to be detected
OUT Bool Output bit which indicates a transition edge was detected
CLK Bool Power flow or input bit whose transition edge is to be detected
Q Bool Output which indicates an edge was detected

https://sites.google.com/site/chauchiduc

Programming instructions
6.1 Basic instructions

 S7-1200 Programmable controller
98 System Manual, 11/2009, A5E02486680-02

P contact:
LAD

The state of this contact is TRUE when a positive transition (OFF-to-ON) is
detected on the assigned "IN" bit. The contact logic state is then combined
with the power flow in state to set the power flow out state. The P contact can
be located anywhere in the network except the end of a branch.

N contact:
LAD

The state of this contact is TRUE when a negative transition (ON-to-OFF) is
detected on the assigned input bit. The contact logic state is then combined
with the power flow in state to set the power flow out state. The N contact
can be located anywhere in the network except the end of a branch.

P box:
FBD

The output logic state is TRUE when a positive transition (OFF-to-ON) is
detected on the assigned input bit. The P box can only be located at the
beginning of a branch.

N box:
FBD

The output logic state is TRUE when a negative transition (ON-to-OFF) is
detected on the assigned input bit. The N box can only be located at the
beginning of a branch.

P coil:
LAD

The assigned bit "OUT" is TRUE when a positive transition (OFF-to-ON) is
detected on the power flow entering the coil. The power flow in state always
passes through the coil as the power flow out state. The P coil can be
located anywhere in the network.

N coil:
LAD

The assigned bit "OUT" is TRUE when a negative transition (ON-to-OFF) is
detected on the power flow entering the coil. The power flow in state always
passes through the coil as the power flow out state. The N coil can be
located anywhere in the network.

P= box:
FBD

The assigned bit "OUT" is TRUE when a positive transition (OFF-to-ON) is
detected on the logic state at the box input connection or on the input bit
assignment if the box is located at the start of a branch. The input logic state
always passes through the box as the output logic state. The P= box can be
located anywhere in the branch.

N= box:
FBD

The assigned bit "OUT" is TRUE when a negative transition (ON-to-OFF) is
detected on the logic state at the box input connection or on the input bit
assignment if the box is located at the start of a branch. The input logic state
always passes through the box as the output logic state. The N= box can be
located anywhere in the branch.

P_TRIG:
LAD/FBD

The Q output power flow or logic state is TRUE when a positive transition
(OFF-to-ON) is detected on the CLK input state (FBD) or CLK power flow in
(LAD). In LAD, the P_TRIG instruction cannot be located at the beginning or
end of a network. In FBD, the P_TRIG instruction can be located anywhere
except the end of a branch.

N_TRIG
(LAD/FBD)

The Q output power flow or logic state is TRUE when a negative transition
(ON-to-OFF) is detected on the CLK input state (FBD) or CLK power flow in
(LAD). In LAD, the N_TRIG instruction cannot be located at the beginning or
end of a network. In FBD, the P_TRIG instruction can be located anywhere
except the end of a branch.

All edge instructions use a memory bit (M_BIT) to store the previous state of the input signal
being monitored. An edge is detected by comparing the state of the input with the state of
the memory bit. If the states indicate a change of the input in the direction of interest, then an
edge is reported by writing the output TRUE. Otherwise, the output is written FALSE.

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.1 Basic instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 99

 Note
Edge instructions evaluate the input and memory-bit values each time they are executed,
including the first execution. You must account for the initial states of the input and memory
bit in your program design either to allow or to avoid edge detection on the first scan.
Because the memory bit must be maintained from one execution to the next, you should use
a unique bit for each edge instruction, and you should not use this bit any other place in your
program. You should also avoid temporary memory and memory that can be affected by
other system functions, such as an I/O update. Use only M, global DB, or Static memory (in
an instance DB) for M_BIT memory assignments.

6.1.2 Timers
You use the timer instructions to create programmed time delays:
● TP: The Pulse timer generates a pulse with a preset width time.
● TON: The ON-delay timer output Q is set to ON after a preset time delay.
● TOF: The OFF-delay timer output Q is reset to OFF after a preset time delay.
● TONR: The ON-delay Retentive timer output is set to ON after a preset time delay.

Elapsed time is accumulated over multiple timing periods until the R input is used to reset
the elapsed time.

● RT: Reset a timer by clearing the time data stored in the specified timer instance data
block.

Each timer uses a structure stored in a data block to maintain timer data. You assign the
data block when the timer instruction is placed in the editor.
When you place timer instructions in a function block, you can select the Multi-instance data
block option, the timer structure names can be different with separate data structures, but
the timer data is contained in a single data block and does not require a separate data block
for each timer. This reduces the processing time and data storage necessary for handling
the timers. There is no interaction between the timer data structures in the shared Multi-
instance data block.

TP, TON, and TOF timers have the same input and output parameters.

The TONR timer has the additional reset input parameter R.
Create you own "Timer name" that names the timer Data Block and
describes the purpose of this timer in your process.

 "Timer name"
 ----[RT]----

 The RT instruction resets the timer data for the specified timer.

https://sites.google.com/site/chauchiduc

Programming instructions
6.1 Basic instructions

 S7-1200 Programmable controller
100 System Manual, 11/2009, A5E02486680-02

Parameter Data type Description
IN Bool Enable timer input
R Bool Reset TONR elapsed time to zero
PT Bool Preset time value input
Q Bool Timer output
ET Time Elapsed time value output
Timer data block DB Specify which timer to reset with the RT instruction

Parameter IN starts and stops the timers:
● The 0 to 1 transition of parameter IN starts timers TP, TON, and TONR.
● The 1 to 0 transition of parameter IN starts timer TOF.
The following table shows the effect of value changes in the PT and IN parameters.

Timer Changes in the PT and IN parameters
TP Changing PT has no effect while the timer runs.

 Changing IN has no effect while the timer runs.

TON Changing PT has no effect while the timer runs.
 Changing IN to FALSE, while the timer runs, resets and stops the timer.

TOF Changing PT has no effect while the timer runs.
 Changing IN to TRUE, while the timer runs, resets and stops the timer.

TONR Changing PT has no effect while the timer runs, but has an effect when the timer
resumes.

 Changing IN to FALSE, while the timer runs, stops the timer but does not reset the
timer. Changing IN back to TRUE will cause the timer to start timing from the
accumulated time value.

TIME values
PT (preset time) and ET (elapsed time) values are stored in memory as signed double
integers that represent milliseconds of time. TIME data uses the T# identifier and can be
entered as a simple time unit "T#200ms" or as compound time units "T#2s_200ms".

Data type Size Valid number ranges
TIME 32 bits

Stored as
T#-24d_20h_31m_23s_648ms to T#24d_20h_31m_23s_647ms
-2,147,483,648 ms to +2,147,483,647 ms

 Note
The negative range of the TIME data type shown above cannot be used with the timer
instructions. Negative PT (preset time) values are set to zero when the timer instruction is
executed. ET (elapsed time) is always a positive value.

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.1 Basic instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 101

TP:
Pulse timing
diagram

TON:
ON-delay
timing
diagram

TOF:
OFF-delay
timing
diagram

https://sites.google.com/site/chauchiduc

Programming instructions
6.1 Basic instructions

 S7-1200 Programmable controller
102 System Manual, 11/2009, A5E02486680-02

TONR:
ON-delay
Retentive
timing
diagram

6.1.3 Counters

6.1.3.1 Counters
You use the counter instructions to count internal program events and external process
events:
● CTU is a count up counter.
● CTD is a count down counter.
● CTUD is a count up and down counter.
Each counter uses a structure stored in a data block to maintain counter data. You assign
the data block when the counter instruction is placed in the editor. These instructions use
software counters whose maximum counting rate is limited by the execution rate of the OB in
which they are placed. The OB that the instructions are placed in must be executed often
enough to detect all transitions of the CU or CD inputs. For faster counting operations, see
the CTRL_HSC instruction.
When you place counter instructions in a function block, you can select the Multi-instance
data block option, the counter structure names can be different with separate data
structures, but the counter data is contained in a single data block and does not require a
separate data block for each counter. This reduces the processing time and data storage
necessary for the counters. There is no interaction between the counter data structures in
the shared multi-instance data block.

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.1 Basic instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 103

Select the count value data type from the drop-down list under the box
name.

Create your own "Counter name" that names the counter Data Block and
describes the purpose of this counter in your process.

Parameter Data type Description
CU, CD Bool Count up or count down, by one count
R (CTU, CTUD) Bool Reset count value to zero
LOAD (CTD, CTUD) Bool Load control for preset value
PV SInt, Int, DInt, USInt, UInt,

UDInt
Preset count value

Q, QU Bool True if CV >= PV
QD Bool True if CV <= 0
CV SInt, Int, DInt, USInt, UInt,

UDInt
Current count value

The numerical range of count values depends on the data type you select. If the count value
is an unsigned integer type, you can count down to zero or count up to the range limit. If the
count value is a signed integer, you can count down to the negative integer limit and count
up to the positive integer limit.

https://sites.google.com/site/chauchiduc

Programming instructions
6.1 Basic instructions

 S7-1200 Programmable controller
104 System Manual, 11/2009, A5E02486680-02

CTU: CTU counts up by 1 when the value of parameter CU changes from 0 to 1. If the value
of parameter CV (Current count value) is greater than or equal to the value of parameter PV
(Preset count value), then the counter output parameter Q = 1. If the value of the reset
parameter R changes from 0 to 1, then the current count value is reset to 0. The following
figure shows a CTU timing diagram with an unsigned integer count value (where PV = 3).

CTD: CTD counts down by 1 when the value of parameter CD changes from 0 to 1. If the
value of parameter CV (Current count value) is equal to or less than 0, the counter output
parameter Q = 1. If the value of parameter LOAD changes from 0 to 1, the value at
parameter PV (Preset value) is loaded to the counter as the new CV (Current count value).
The following figure shows a CTD timing diagram with an unsigned integer count value
(where PV = 3).

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.1 Basic instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 105

CTUD: CTUD counts up or down by 1 on the 0 to 1 transition of the Count up (CU) or Count
down (CD) inputs. If the value of parameter CV (Current count value) is equal to or greater
than the value of parameter PV (Preset value), then the counter output parameter QU = 1. If
the value of parameter CV is less than or equal to zero, then the counter output parameter
QD = 1. If the value of parameter LOAD changes from 0 to 1, then the value at parameter
PV (Preset value) is loaded to the counter as the new CV (Current count value). If the value
of the reset parameter R is changes from 0 to 1, the current count value is reset to 0. The
following figure shows a CTUD timing diagram with an unsigned integer count value (where
PV = 4).

6.1.3.2 CTRL_HSC instruction
The CTRL_HSC instruction controls the high-speed counters that are used to count events
that occur faster than the OB execution rate. The counting rate of the CTU, CTD, and CTUD
counter instructions is limited by the execution rate of the OB in which they are placed. Refer
to the CPU technical specifications (Page 284) for the HSC maximum clock input rates.
A typical use for high-speed counters is to count pulses generated by a motion control shaft
encoder.

Each CTRL_HSC instruction uses a structure stored in a
data block to maintain data. You assign the data block when
the CTRL_HSC instruction is placed in the editor.
Create you own "Counter name" that names the counter
Data Block and describes the purpose of this counter in
your process.

https://sites.google.com/site/chauchiduc

Programming instructions
6.1 Basic instructions

 S7-1200 Programmable controller
106 System Manual, 11/2009, A5E02486680-02

Parameter Parameter

type
Data type Description

HSC IN HW_HSC HSC identifier
DIR IN Bool 1 = Request new direction
CV IN Bool 1 = Request to set new counter value
RV IN Bool 1= Request to set new reference value
PERIOD IN Bool 1 = Request to set new period value

(only for frequency measurement mode)
NEW_DIR IN Int New direction:

 1= forward
-1= backward

NEW_CV IN DInt New counter value
NEW_RV IN DInt New reference value
NEW_PERIOD IN Int New period value in seconds: .01, .1, or 1

(only for frequency measurement mode)
BUSY OUT Bool Function busy
STATUS OUT Word Execution condition code

You must configure the high-speed counters in the project settings PLC device configuration
before you can use high-speed counters in your program. The HSC device configuration
settings select counting modes, I/O connections, interrupt assignment, and operation as a
high-speed counter or as a device to measure pulse frequency. You can operate the high-
speed counter with no program control or with program control.
Many high-speed counter configuration parameters are set only in the project device
configuration. Some high-speed counter parameters are initialized in the project device
configuration, but can be modified later under program control.
The CTRL_HSC instruction parameters provide program control of the counting process:
● Set the counting direction to a NEW_DIR value
● Set the current count value to a NEW_CV value
● Set the reference value to a NEW_RV value
● Set the Period value (for frequency measurement mode) to a NEW_PERIOD value
If the following boolean flag values are set to 1 when the CTRL_HSC instruction is executed,
the corresponding NEW_xxx value is loaded to the counter. Multiple requests (more than
one flag is set at the same time) are processed in a single execution of the CTRL_HSC
instruction.
● DIR = 1 is a request to load a NEW_DIR value, 0 = no change
● CV = 1 is a request to load a NEW_CV value, 0 = no change
● RV = 1 is a request to load a NEW_RV value, 0 = no change
● PERIOD = 1 is a request to load a NEW_PERIOD value, 0 = no change
The CTRL_HSC instruction is usually placed in a hardware interrupt OB that is executed
when the counter hardware interrupt event is triggered. For example, if a CV=RV event
triggers the counter interrupt, then a hardware interrupt OB code block executes the
CTRL_HSC instruction and can change the reference value by loading a NEW_RV value.

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.1 Basic instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 107

The current count value is not available in the CTRL_HSC parameters. The Process Image
address that stores the current count value is assigned during the high-speed counter
hardware configuration. You may use program logic to directly read the count value and the
value returned to your program will be a correct count for the instant in which the counter
was read. The counter will continue to count high-speed events. Therefore, the actual count
value could change before your program completes a process using an old count value.
CTRL_HSC parameter details:
● If an update of a parameter value is not requested, then the corresponding input values

are ignored.
● The DIR parameter is only valid if the configured counting direction is set to "User

program (internal direction control)". You determine how to use this parameter in the HSC
device configuration.

● For a S7-1200 HSC on the CPU or on the Signal Board, the BUSY parameter always has
a value of 0.

Condition codes: In the case of an error, ENO is set to 0, and the STATUS output contains a
condition code.

STATUS value
(W#16#...)

Description

0 No error
80A1 HSC identifier does not address a HSC
80B1 Illegal value in NEW_DIR
80B2 Illegal value in NEW_CV
80B3 Illegal value in NEW_RV
80B4 Illegal value in NEW_PERIOD

6.1.3.3 Operation of the high-speed counter
A high-speed counter (HSC) can be used as an input for an incremental shaft encoder. The
shaft encoder provides a specified number of counts per revolution and a reset pulse that
occurs once per revolution. The clock(s) and the reset pulse from the shaft encoder provide
the inputs to the HSC.
The HSC is loaded with the first of several presets, and the outputs are activated for the time
period where the current count is less than the current preset. The HSC provides an interrupt
when the current count is equal to preset, when reset occurs, and also when there is a
direction change.
As each current-count-value-equals-preset-value interrupt event occurs, a new preset is
loaded and the next state for the outputs is set. When the reset interrupt event occurs, the
first preset and the first output states are set, and the cycle is repeated.
Since the interrupts occur at a much lower rate than the counting rate of the HSC, precise
control of high-speed operations can be implemented with relatively minor impact to the scan
cycle of the CPU. The method of interrupt attachment allows each load of a new preset to be
performed in a separate interrupt routine for easy state control. (Alternatively, all interrupt
events can be processed in a single interrupt routine.)

https://sites.google.com/site/chauchiduc

Programming instructions
6.1 Basic instructions

 S7-1200 Programmable controller
108 System Manual, 11/2009, A5E02486680-02

Selecting the functionality for the HSC
All HSCs function the same way for the same counter mode of operation. There are four
basic types of HSC:
● Single-phase counter with internal direction control
● Single-phase counter with external direction control
● Two-phase counter with 2 clock inputs
● A/B phase quadrature counter
You can use each HSC type with or without a reset input. When you activate the reset input
(with some restrictions, see the following table), the current value is cleared and held clear
until you deactivate the reset input.
● Frequency function: Some HSC modes allow the HSC to be configured (Type of

counting) to report the frequency instead of a current count of pulses. Three different
frequency measuring periods are available: 0.01, 0.1, or 1.0 seconds.
The frequency measuring period determines how often the HSC calculates and reports a
new frequency value. The reported frequency is an average value determined by the total
number of counts in the last measuring period. If the frequency is rapidly changing, the
reported value will be an intermediate between the highest and lowest frequency
occurring during the measuring period. The frequency is always reported in Hertz (pulses
per second) regardless of the frequency-measuring-period setting.

● Counter modes and inputs: The following table shows the inputs used for the clock,
direction control, and reset functions associated with the HSC.
The same input cannot be used for two different functions, but any input not being used
by the present mode of its HSC can be used for another purpose. For example, if HSC1
is in a mode that uses built-in inputs but does not use the external reset (I0.3), then I0.3
can be used for edge interrupts or for HSC2.

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.1 Basic instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 109

Description Default Input Assignment Function
HSC1 Built In

or Signal Board
or monitor PTO 01

I0.0
I4.0
PTO 0 Pulse

I0.1
I4.1
PTO 0 Direction

I0.3
I4.3
-

HSC: Built In
or signal board

or monitor PTO 11

I0.2
I4.2
PTO 1 Pulse

I0.3
I4.3
PTO 1 Direction

I0.1
I4.1
-

HSC32 Built In I0.4 I0.5 I0.7
HSC43 Built In I0.6 I0.7 I0.5
HSC54 Built In

or Signal Board
I1.0
I4.0

I1.1
I4.1

I1.2
I4.3

HSC

HSC6 4 Built In
or signal board

I1.3
I4.2

I1.4
I4.3

I1.5
I4.1

- Count or Frequency Single-phase counter with internal
direction control

Clock -
Reset Count
- Count or Frequency Single-phase counter with external

direction control
Clock Direction

Reset Count
- Count or Frequency Two-phase counter with 2 clock

inputs
Clock up Clock down

Reset Count
- Count or Frequency A/B-phase quadrature counter Phase A Phase B
Phase Z Count

Mode

Monitor pulse train outputs (PTO)1 Clock Direction - Count
1 Pulse train output monitoring always uses clock and direction. If the corresponding PTO output is configured for pulse

only, then the direction output should generally be set for positive counting.
2 HSC3 with a reset input is not possible for the CPU 1211C which supports only 6 built-in inputs.
3 HSC4 is not possible for the CPU 1211C which supports only 6 built-in inputs.
4 HSC5 and HSC6 are only supported by the CPU 1211C and CPU 1212C when a signal board is installed.

Accessing the current value for the HSC
The CPU stores the current value of each HSC in an input (I) address. The following table
shows the default addresses assigned to the current value for each HSC. You can change
the I address for the current value by modifying the properties of the CPU in the Device
Configuration.

High-speed counter Data type Default address
HSC1 DInt ID1000
HSC2 DInt ID1004
HSC3 DInt ID1008
HSC4 DInt ID1012
HSC5 DInt ID1016
HSC6 DInt ID1020

https://sites.google.com/site/chauchiduc

Programming instructions
6.1 Basic instructions

 S7-1200 Programmable controller
110 System Manual, 11/2009, A5E02486680-02

Digital I/O points assigned to HSC devices cannot be forced
The digital I/O points used by high-speed counter devices are assigned during device
configuration. When digital I/O point addresses are assigned to these devices, the values of
the assigned I/O point addresses cannot be modified by the Watch table force function.

6.1.3.4 Configuration of the HSC

The CPU allows you to configure up to 6 high-speed
counters. You edit the "Properties" of the CPU to
configure the parameters of each individual HSC.
Configure the parameters for the high-speed counters
by editing the "Properties" of the CPU.
After enabling the HSC, configure the other
parameters, such as counter function, initial values,
reset options and interrupt events.
After configuring the HSC, you use the CTRL_HSC
instruction in your user program to control the
operation of the HSC.

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.1 Basic instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 111

6.1.4 Compare

LAD FBD

You use the compare instructions to compare two values of
the same data type. When the LAD contact comparison is
TRUE, then the contact is activated. When the FBD box
comparison is TRUE, then the box output is TRUE.

After you click on the instruction in the program editor, you can select the comparison type
and data type from the drop-down menus.

https://sites.google.com/site/chauchiduc

Programming instructions
6.1 Basic instructions

 S7-1200 Programmable controller
112 System Manual, 11/2009, A5E02486680-02

Relation type The comparison is true if:
== IN1 is equal to IN2
<> IN1 is not equal to IN2
>= IN1 is greater than or equal to IN2
<= IN1 is less than or equal to IN2
> IN1 is greater than IN2
< IN1 is less than IN2

Parameter Data type Description
IN1, IN2 SInt, Int, DInt, USInt, UInt, UDInt, Real, LReal,

String, Char, Time, DTL, Constant
Values to compare

In Range and Out of Range instructions

LAD FBD

You use the IN_RANGE and OUT_RANGE
instructions to test whether an input value is in or
out of a specified value range. If the comparison
is TRUE, then the box output is TRUE.
The input parameters MIN, VAL, and MAX must
be the same data type.
After you click on the instruction in the program
editor, you can select the data type from the
dropdown menus.

Relation type The comparision is TRUE if:
IN_RANGE MIN <= VAL <= MAX
OUT_RANGE VAL < MIN or VAL > MAX

Parameter Data type Description
MIN, VAL, MAX SInt, Int, DInt, USInt, UInt, UDInt, Real,

Constant
Comparator inputs

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.1 Basic instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 113

OK and Not OK instructions

LAD FBD

You use the OK and NOT_OK instructions to test whether
an input data reference is a valid real number according to
IEEE specification 754. When the LAD contact is TRUE, the
contact is activated and passes power flow. When the FBD
box is TRUE, then the box output is TRUE.

A Real or LReal value is invalid if it is +/- INF (infinity), NaN (Not a Number), or if it is a
denormalized value. A denormalized value is a number very close to zero. The CPU
substitutes a zero for a denormalized value in calculations.

Instruction The Real number test is TRUE if:
OK The input value is a valid Real number
NOT_OK The input value is not a valid Real number

Parameter Data type Description
IN Real, LReal Input data

6.1.5 Math

Add, subtract, multiply and divide instructions

You use a math box instruction to program the basic mathematical
operations:
 ADD: Addition (IN1 + IN2 = OUT)
 SUB: Subtraction (IN1 - IN2 = OUT)
 MUL: Multiplication (IN1 * IN2 = OUT)
 DIV: Division (IN1 / IN2 = OUT)

An Integer division operation truncates the fractional part of the quotient
to produce an integer output.

Click below the box name and select a data type from the drop-down menu.

 Note
The basic math instruction parameters IN1, IN2, and OUT must be the same data type.

https://sites.google.com/site/chauchiduc

Programming instructions
6.1 Basic instructions

 S7-1200 Programmable controller
114 System Manual, 11/2009, A5E02486680-02

Parameter Data type Description
IN1, IN2 SInt, Int, DInt, USInt, UInt, UDInt, Real, LReal, Constant Math operation inputs
OUT SInt, Int, DInt, USInt, UInt, UDInt, Real, LReal Math operation output

When enabled (EN = 1), the math instruction performs the specified operation on the input
values (IN1 and IN2) and stores the result in the memory address specified by the output
parameter (OUT). After the successful completion of the operation, the instruction sets ENO
= 1.

ENO status Description
1 No error
0 The Math operation result value would be outside the valid number range of the data

type selected. The least significant part of the result that fits in the destination size is
returned.

0 Division by 0 (IN2 = 0): The result is undefined and zero is returned.
0 Real/LReal: If one of the input values is NaN (not a number) then NaN is returned.
0 ADD Real/LReal: If both IN values are INF with different signs, this is an illegal

operation and NaN is returned.
0 SUB Real/LReal: If both IN values are INF with the same sign, this is an illegal

operation and NaN is returned.
0 MUL Real/LReal: If one IN value is zero and the other is INF, this is an illegal

operation and NaN is returned.
0 DIV Real/LReal: If both IN values are zero or INF, this is an illegal operation and NaN

is returned.

6.1.5.1 MOD instruction

You use a MOD (modulo) instruction for the IN1 modulo IN2 math
operation. The operation IN1 MOD IN2 = IN1 - (IN1 / IN2) = parameter
OUT.
Click below the box name and select a data type from the drop-down
menu.

 Note
The IN1, IN2, and OUT parameters must be the same data type.

Parameter Data type Description
IN1 and IN2 Int, DInt, USInt, UInt, UDInt, Constant Modulo inputs
OUT Int, DInt, USInt, UInt, UDInt Modulo output

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.1 Basic instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 115

ENO status Description

1 No error
0 Value IN2 = 0, OUT is assigned the value zero

NEG instruction

You use the NEG (negation) instruction to invert the arithmetic sign of the
value at parameter IN and store the result in parameter OUT.
Click below the box name and select a data type from the drop-down
menu.

 Note
The IN and OUT parameters must be the same data type.

Parameter Data type Description
IN SInt, Int, DInt, Real, LReal, Constant Math operation input
OUT SInt, Int, DInt, Real, LReal Math operation output

ENO status Description

1 No error
0 The resulting value is outside the valid number range of the selected data type.

Example for SInt: NEG (-128) results in +128 which exceeds the data type
maximum.

Increment and Decrement instructions

You use the INC and DEC instructions to:
 Increment a signed or unsigned integer number value

INC (increment): Parameter IN/OUT value +1 = parameter IN/OUT
value

 Decrement a signed or unsigned integer number value
DEC (decrement): Parameter IN/OUT value - 1 = parameter IN/OUT
value

Click below the box name and select a data type from the drop-down
menu.

Parameter Data type Description
IN/OUT SInt, Int, DInt, USInt, UInt, UDInt Math operation input and output

https://sites.google.com/site/chauchiduc

Programming instructions
6.1 Basic instructions

 S7-1200 Programmable controller
116 System Manual, 11/2009, A5E02486680-02

ENO status Description

1 No error
0 The resulting value is outside the valid number range of the selected data type.

Example for SInt: INC (127) results in -128 which exceeds the data type maximum.

Absolute Value instruction

You use the ABS instruction to get the absolute value of a signed integer
or real number at parameter IN and store the result in parameter OUT.
Click below the box name and select a data type from the drop-down
menu.

 Note
The IN and OUT parameters must be the same data type.

Parameter Data type Description
IN SInt, Int, DInt, Real, LReal Math operation input
OUT SInt, Int, DInt, Real, LReal Math operation output

ENO status Description

1 No error
0 The math operation result value is outside the valid number range of the selected

data type.
Example for SInt: ABS (-128) results in +128 which exceeds the data type maximum.

MIN and MAX instructions

You use the MIN (minimum) and MAX (maximum) instructions as follows:
 MIN compares the value of two parameters IN1 and IN2 and assigns

the minimum (lesser) value to parameter OUT.
 MAX compares the value of two parameters IN1 and IN2 and assigns

the maximum (greater) value to parameter OUT.
Click below the box name and select a data type from the drop-down
menu.

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.1 Basic instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 117

 Note
The IN1, IN2, and OUT parameters must be the same data type.

Parameter Data type Description
IN1, IN2 SInt, Int, DInt, USInt, UInt, UDInt, Real,

Constant
Math operation inputs

OUT SInt, Int, DInt, USInt, UInt, UDInt, Real Math operation output

ENO status Description

1 No error
0 For Real data type only:

 One or both inputs is not a Real number (NaN).
 The resulting OUT is +/- INF (infinity).

Limit instruction

You use the Limit instruction to test if the value of parameter IN is inside the value range
specified by parameters MIN and MAX. The OUT value is clamped at the MIN or MAX
value, if the IN value is outside this range.

 If the value of parameter IN is inside specified range, then the value of IN
is stored in parameter OUT.

 If the value of parameter IN is outside of the specified range, then the
OUT value is the value of parameter MIN (if the IN value is less than the
MIN value) or the value of parameter MAX (if the IN value is greater than
the MAX value).

Click below the box name and select a data type from the drop-down menu.

 Note
The MIN, IN, MAX, and OUT parameters must be the same data type.

Parameter Data type Description
MIN, IN, and MAX SInt, Int, DInt, USInt, UInt, UDInt, Real, Constant Math operation inputs
OUT SInt, Int, DInt, USInt, UInt, UDInt, Real Math operation output

https://sites.google.com/site/chauchiduc

Programming instructions
6.1 Basic instructions

 S7-1200 Programmable controller
118 System Manual, 11/2009, A5E02486680-02

ENO status Description

1 No error
0 Real: If one or more of the values for MIN, IN and MAX is NaN (Not a Number),

then NaN is returned.
0 If MIN is greater than MAX, the value IN is assigned to OUT.

Floating-point math instructions
You use the floating point instructions to program mathematical operations using a Real or
LReal data type:
● SQR: Square (IN 2 = OUT)
● SQRT: Square root (√IN = OUT)
● LN: Natural logarithm (LN(IN) = OUT)
● EXP: Natural exponential (e IN =OUT), where base e = 2.71828182845904523536
● SIN: Sine (sin(IN radians) = OUT)
● COS: Cosine (cos(IN radians) = OUT)
● TAN: Tangent (tan(IN radians) = OUT)
● ASIN: Inverse sine (arcsine(IN) = OUT radians), where the sin(OUT radians) = IN
● ACOS: Inverse cosine (arccos(IN) = OUT radians), where the cos(OUT radians) = IN
● ATAN: Inverse tangent (arctan(IN) = OUT radians), where the tan(OUT radians) = IN
● FRAC: Fraction (fractional part of floating point number IN = OUT)
● EXPT: General exponential (IN1 IN2 = OUT)

Click below the box name and select a data type from the drop-down
menu. EXPT parameters IN1 and OUT are always Real. You can select
the data type for the exponent parameter IN2.

Parameter Data type Description
IN, IN1 Real, LReal, Constant Inputs
IN2 SInt, Int, DInt, USInt, UInt,UDInt, Real, LReal,

Constant
EXPT exponent input

OUT Real, LReal Outputs

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.1 Basic instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 119

ENO
status

Instruction Condition Result (OUT)

1 All No error Valid result
Result exceeds valid Real/LReal range +INF SQR
IN is +/- NaN (not a number) +NaN
IN is negative -NaN SQRT
IN is +/- INF (infinity) or +/- NaN +/- INF or +/- NaN
IN is 0.0, negative, -INF, or -NaN -NaN LN
IN is +INF or +NaN +INF or +NaN
Result exceeds valid Real/LReal range +INF EXP
IN is +/- NaN +/- NaN

SIN, COS, TAN IN is +/- INF or +/- NaN +/- INF or +/- NaN
IN is outside valid range of -1.0 to +1.0 +NaN ASIN, ACOS
IN is +/- NaN +/- NaN

ATAN IN is +/- NaN +/- NaN
FRAC IN is +/- INF or +/- NaN +NaN

IN1 is +INF and IN2 is not -INF +INF
IN1 is negative or -INF +NaN if IN2 is

Real/LReal,
-INF otherwise

IN1 or IN2 is +/- NaN +NaN

0

EXPT

IN1 is 0.0 and IN2 is Real/LReal (only) +NaN

6.1.6 Move

Move and Block Move instructions

Use the move instructions to copy data elements to a new memory address and convert
from one data type to another. The source data is not changed by the move process.
 MOVE: Copies a data element stored at a specified address to a new address
 MOVE_BLK: Interruptible move that copies a block of data elements to a new address
 UMOVE_BLK: Uninterruptible move that copies a block of data elements to a new

address

https://sites.google.com/site/chauchiduc

Programming instructions
6.1 Basic instructions

 S7-1200 Programmable controller
120 System Manual, 11/2009, A5E02486680-02

MOVE

Parameter Data type Description
IN SInt, Int, DInt, USInt, UInt, UDInt, Real, LReal, Byte,

Word, DWord, Char, Array, Struct, DTL, Time
Source address

OUT SInt, Int, DInt, USInt, UInt, UDInt, Real, LReal, Byte,
Word, DWord, Char, Array, Struct, DTL, Time

Destination address

MOVE_BLK, UMOVE_BLK

Parameter Data type Description
IN SInt, Int, DInt, USInt, UInt, UDInt, Real,

Byte, Word, DWord
Source start address

COUNT UInt Number of data elements to copy
OUT SInt, Int, DInt, USInt, UInt, UDInt, Real,

Byte, Word, DWord
Destination start address

 Note
Rules for data copy operations
 To copy the Bool data type, use SET_BF, RESET_BF, R, S, or output coil (LAD)
 To copy a single elementary data type, use MOVE
 To copy an array of an elementary data type, use MOVE_BLK or UMOVE_BLK
 To copy a structure, use MOVE
 To copy a string, use S_CONV
 To copy a single character in a string, use MOVE
 The MOVE_BLK and UMOVE_BLK instructions cannot be used to copy arrays or

structures to the I, Q, or M memory areas.

The MOVE instruction copies a single data element from the source address specified by the
IN parameter to the destination address specified by the OUT parameter.
The MOVE_BLK and UMOVE_BLK instructions have an additional COUNT parameter. The
COUNT specifies how many data elements are copied. The number of bytes per element
copied depends on the data type assigned to the IN and OUT parameter tag names in the
PLC tag table.
MOVE_BLK and UMOVE_BLK instructions differ in how interrupts are handled:
● Interrupt events are queued and processed during MOVE_BLK execution. Use the

MOVE_BLK instruction when the data at the move destination address is not used within
an interrupt OB subprogram or, if used, the destination data does not have to be
consistent. If a MOVE_BLK operation is interrupted, then the last data element moved is
complete and consistent at the destination address. The MOVE_BLK operation is
resumed after the interrupt OB execution is complete.

● Interrupt events are queued but not processed until UMOVE_BLK execution is complete.
Use the UMOVE_BLK instruction when the move operation must be completed and the
destination data consistent, before the execution of an interrupt OB subprogram. For
more information, see the section on data consistency (Page 86).

ENO is always true following execution of the MOVE instruction.

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.1 Basic instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 121

ENO status Condition Result
1 No error All COUNT elements were

successfully copied
0 Either the source (IN) range or the

destination (OUT) range exceeds the
available memory area

Elements that fit are copied. No
partial elements are copied.

Fill instructions

You use the FILL_BLK and UFILL_BLK instructions as follows:
 FILL_BLK: The interruptible fill instruction fills an address range with

copies of a specified data element.
 UFILL_BLK: The uninterruptible fill instruction fills an address range

with copies of a specified data element.

Parameter Data type Description
IN SInt, Int, DIntT, USInt, UInt, UDInt, Real, BYTE,

Word, DWord
Data source address

COUNT USInt, UInt Number of data elements to copy
OUT SInt, Int, DIntT, USInt, UInt, UDInt, Real, BYTE,

Word, DWord
Data destination address

 Note
Rules for data fill operations
 To fill with the BOOL data type, use SET_BF, RESET_BF, R, S, or output coil (LAD)
 To fill with a single elementary data type, use MOVE
 To fill an array with an elementary data type, use FILL_BLK or UFILL_BLK
 To fill a single character in a string, use MOVE
 The FILL_BLK and UFILL_BLK instructions cannot be used to fill arrays in the I, Q, or M

memory areas.

The FILL_BLK and UFILL_BLK instructions copy the source data element IN to the
destination where the initial address is specified by the parameter OUT. The copy process
repeats and a block of adjacent addresses is filled until the number of copies is equal to the
COUNT parameter.

https://sites.google.com/site/chauchiduc

Programming instructions
6.1 Basic instructions

 S7-1200 Programmable controller
122 System Manual, 11/2009, A5E02486680-02

 FILL_BLK and UFILL_BLK instructions differ in how interrupts are handled:
● Interrupt events are queued and processed during FILL_BLK execution. Use the

FILL_BLK instruction when the data at the move destination address is not used within an
interrupt OB subprogram or, if used, the destination data does not have to be consistent.

● Interrupt events are queued but not processed until UFILL_BLK execution is complete.
Use the UFILL_BLK instruction when the move operation must be completed and the
destination data consistent, before the execution of an interrupt OB subprogram.

ENO status Condition Result
1 No error The IN element was successfully copied

to all COUNT destinations
0 The destination (OUT) range exceeds the

available memory area
Elements that fit are copied. No partial
elements are copied.

6.1.6.1 Swap instruction

You use the SWAP instruction to reverse the byte order for two-byte and
four-byte data elements. No change is made to the bit order within each
byte. ENO is always TRUE following execution of the SWAP instruction.
Click below the box name and select a data type from the drop menu.

Parameter Data type Description
IN Word, DWord Ordered data bytes IN
OUT Word, DWord Reverse ordered data bytes OUT

 Example: Parameter IN = MB0

Pre SWAP execution
Example: Parameter OUT = MB4,
Post SWAP execution

Address MB0 MB1 MB4 MB5
W#16#1234
WORD

12
MSB

34
LSB

34
MSB

12
LSB

Address MB0 MB1 MB2 MB3 MB4 MB5 MB6 MB7
DW#16#
12345678
DWORD

12

MSB

34

56 78

LSB

78

MSB

56 34 12

LSB

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.1 Basic instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 123

6.1.7 Convert

Convert instruction

You use the CONVERT instruction to convert a data element from one
data type to another data type. Click below the box name and then select
IN and OUT data types from the dropdown list.

After you select the (convert from) data type, a list of possible conversions is shown in the
(convert to) dropdown list. Conversions from and to BCD16 are restricted to the Int data
type. Conversions from and to BCD32 are restricted to the DInt data type.
Click below the box name and select data types from the drop-down menus.

Parameter Data type Description
IN SInt, Int, DInt, USInt, UInt, UDInt, Byte, Word, DWord,

Real, LReal, Bcd16, Bcd32
IN value

OUT SInt, Int, DInt, USInt, UInt, UDInt, Byte, Word, DWord,
Real, LReal, Bcd16, Bcd32

IN value converted to a new
data type

ENO status Description Result OUT
1 No error Valid result
0 IN is +/- INF or +/- NaN +/- INF or +/- NaN
0 Result exceeds valid range for OUT data

type
OUT is set to the least-significant
bytes of IN

Round and Truncate instructions

ROUND converts a real number to an integer. The real number fraction is
rounded to the nearest integer value (IEEE - round to nearest). If the Real
number is exactly one-half the span between two integers (i.e. 10.5), then
the Real number is rounded to the even integer. For example, ROUND
(10.5) = 10 or ROUND (11.5) = 12.

TRUNC converts a real number to an integer. The fractional part of the real
number is truncated to zero (IEEE - round to zero).

Parameter Data type Description
IN Real, LReal Floating point input
OUT SInt, Int, DInt, USInt, UInt, UDInt, Real, LReal Rounded or truncated output

https://sites.google.com/site/chauchiduc

Programming instructions
6.1 Basic instructions

 S7-1200 Programmable controller
124 System Manual, 11/2009, A5E02486680-02

ENO status Description Result OUT
1 No error Valid result
0 IN is +/- INF or +/- NaN +/- INF or +/- NaN

Ceiling and Floor instructions

CEIL converts a real number to the smallest integer greater than or equal
to that real number (IEEE - round to +infinity).

FLOOR converts a real number to the greatest integer smaller than or
equal to that real number (IEEE - round to -infinity).

Parameter Data type Description
IN Real, LReal Floating point input
OUT SInt, Int, DInt, USInt, UInt, UDInt, Real, LReal Converted output

ENO status Description Result OUT
1 No error Valid result
0 IN is +/- INF or +/- NaN +/- INF or +/- NaN

6.1.7.1 Scale and normalize instructions

Scale and normalize instructions

SCALE_X scales the normalized real parameter VALUE where (0.0 <=
VALUE <= 1.0) in the data type and value range specified by the MIN and
MAX parameters:
OUT = VALUE (MAX - MIN) + MIN
For SCALE_X, parameters MIN, MAX, and OUT must be the same data type.

NORM_X normalizes the parameter VALUE inside the value range specified
by the MIN and MAX parameters:
OUT = (VALUE - MIN) / (MAX - MIN), where (0.0 <= OUT <= 1.0)
For NORM_X, parameters MIN, VALUE, and MAX must be the same data
type.

Click below the box name and select a data type from the drop-down menu.

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.1 Basic instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 125

Parameter Data type Description
MIN SInt, Int, DInt, USInt, UInt, UDInt, Real Input minimum value for range
VALUE SCALE_X: Real

NORM_X: SInt, Int, DInt, USInt, UInt, UDInt, Real
Input value to scale or normalize

MAX SInt, Int, DInt, USInt, UInt, UDInt, Real Input maximum value for range
OUT SCALE_X: SInt, Int, DInt, USInt, UInt, UDInt, Real

NORM_X: Real
Scaled or Normalized output
value

 Note
SCALE_X parameter VALUE should be restricted to (0.0 <= VALUE <= 1.0)
If parameter VALUE is less than 0.0 or greater than 1.0:
 The linear scaling operation can produce OUT values that are less than the parameter

MIN value or above the parameter MAX value for OUT values that fit within the value
range of the OUT data type. SCALE_X execution sets ENO = TRUE for these cases.

 It is possible to generate scaled numbers that are not within the range of the OUT data
type. For these cases, the parameter OUT value is set to an intermediate value equal to
the least-significant portion of the scaled real number prior to final conversion to the OUT
data type. SCALE_X execution sets ENO = FALSE in this case.

NORM_X parameter VALUE should be restricted to (MIN <= VALUE <= MAX)
If parameter VALUE is less than MIN or greater than MAX, the linear scaling operation can
produce normalized OUT values that are less than 0.0 or greater than 1.0. NORM_X
execution sets ENO = TRUE in this case.

ENO status Condition Result OUT

1 No error Valid result
0 Result exceeds valid range for the

OUT data type
Intermediate result: The least-significant portion
of a real number prior to final conversion to the
OUT data type.

0 Parameters MAX <= MIN SCALE_X: The least-significant portion of the
Real number VALUE to fill up the OUT size.
NORM_X: VALUE in VALUE data type
extended to fill a double word size.

0 Parameter VALUE = +/- INF or +/-
NaN

VALUE is written to OUT

https://sites.google.com/site/chauchiduc

Programming instructions
6.1 Basic instructions

 S7-1200 Programmable controller
126 System Manual, 11/2009, A5E02486680-02

6.1.8 Program control

Jump and label instructions

You use program control instructions for conditional control of the execution sequence:

JMP: If there is power flow to a JMP coil (LAD), or if the JMP
box input is true (FBD), then program execution continues
with the first instruction following the specified label.

JMPN: If there is no power flow to a JMP coil (LAD), or if the
JMP box input is false (FBD), then program execution
continues with the first instruction following the specified label.

LAD FBD

Label: Destination label for a JMP or JMPN jump instruction.

Parameter Data type Description
Label_name Label identifier Identifier for Jump instructions and the corresponding

jump destination program label

You create your label names by typing in the LABEL instruction directly. The available label
names for the JMP and JMPN label name field can be selected using the parameter helper
icon. You can also type a label name directly into the JMP or JMPN instruction.

Return_Value (RET) execution control instruction

LAD FBD

You use the RET instruction to terminate the execution of
the current block.

Parameter Data type Description
Return_Value Bool The "Return_value" parameter of the RET instruction is assigned to

the ENO output of the block call box in the calling block.

The optional RET instruction is used to terminate the execution of the current block. If and
only if there is power flow to the RET coil (LAD) or if the RET box input is true (FBD), then
program execution of the current block will end at that point and instructions beyond the RET
instruction will not be executed. If the current block is an OB, the "Return_Value" parameter
is ignored. If the current block is a FC or FB, the value of the "Return_Value " parameter is
passed back to the calling routine as the ENO value of the called box.
You are not required to use a RET instruction as the last instruction in a block; this is done
automatically for you. You can have multiple RET instructions within a single block.

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.1 Basic instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 127

Sample steps for using the RET instruction inside an FC code block:
1. Create a new project and add an FC:
2. Edit the FC:

– Add instructions from the instruction tree.
– Add a RET instruction, including one of the following for the "Return_Value"

parameter:
TRUE, FALSE, or a memory location that specifies the required return value.

– Add more instructions.
3. Call the FC from MAIN [OB1].
The EN input on the FC box in the MAIN code block must be true to begin execution of the
FC.
The value specified by the RET instruction in the FC will be present on the ENO output of the
FC box in the MAIN code block following execution of the FC for which power flow to the
RET instruction is true.

6.1.9 Logical operations

AND, OR, and XOR instructions

AND: Logical AND for BYTE, WORD, and DWORD data types
OR: Logical OR for BYTE, WORD, and DWORD data types
XOR: Logical exclusive OR for BYTE, WORD, and DWORD data types
Click below the box name and select a data type from the drop menu.

Parameter Data type Description
IN1, IN2 Byte, Word, DWord Logical inputs
OUT Byte, Word, DWord Logical output

The data type selection sets parameters IN1, IN2, and OUT to the same data type. The
corresponding bit values of IN1 and IN2 are combined to produce a binary logic result, at
parameter OUT. ENO is always TRUE following the execution of these instructions.

Invert instruction

You use the INV instruction to get the binary one's complement of the
parameter IN. The one's complement is formed by inverting each bit value
of the IN parameter (changing each 0 to 1 and each 1 to 0). ENO is always
TRUE following the execution of this instruction.

Click below the box name and select a data type from the drop-down menu.

https://sites.google.com/site/chauchiduc

Programming instructions
6.1 Basic instructions

 S7-1200 Programmable controller
128 System Manual, 11/2009, A5E02486680-02

Parameter Data type Description
IN SInt, Int, DInt, USInt, UInt, UDInt, Byte, Word, DWord Data element to invert
OUT SInt, Int, DInt, USInt, UInt, UDInt, Byte, Word, DWord Inverted output

Encode and decode instructions

ENCO encodes a bit pattern to a binary number.
DECO decodes a binary number to a bit pattern.
Click below the box name and select a data type from the
drop-down menu.

Parameter Data type Description
IN ENCO: Byte, Word, DWord

DECO: UInt
ENCO: Bit pattern to encode
DECO: Value to decode

OUT ENCO: Int
DECO: Byte, Word, DWord

ENCO: Encoded value
DECO: Decoded bit pattern

The ENCO instruction converts parameter IN to the binary number corresponding to the bit
position of the least-significant set bit of parameter IN and returns the result to parameter
OUT. If parameter IN is either 0000 0001 or 0000 0000, then a value of 0 is returned to OUT.
If the parameter IN value is 0000 0000, then ENO is set to FALSE.
The DECO instruction decodes a binary number from parameter IN, by setting the
corresponding bit position in parameter OUT to a 1 (all other bits are set to 0). ENO is
always TRUE following execution of the DECO instruction.
The DECO parameter OUT data type selection of a Byte, Word, or DWord restricts the
useful range of parameter IN. If the value of parameter IN exceeds the useful range, then a
modulo operation is performed to extract the least significant bits shown below.
DECO parameter IN range:
● 3 bits (values 0-7) IN are used to set 1 bit position in a byte OUT
● 4-bits (values 0-15) IN are used to set 1 bit position in a word OUT
● 5 bits (values 0-31) IN are used to set 1 bit position in a double word OUT

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.1 Basic instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 129

DECO IN value DECO OUT value (Decode single bit position)
 Byte OUT (8 bits):
Min. IN 0 00000001
Max. IN 7 10000000

 Word OUT (16 bits):
Min. IN 0 0000000000000001
Max. IN 15 1000000000000000

 DWord OUT: (32 bits):
Min. IN 0 00000000000000000000000000000001
Max. IN 31 10000000000000000000000000000000

ENO status Condition Result (OUT)

1 No error Valid bit number
0 IN is zero OUT is set to zero

Select (SEL) and Multiplex (MUX) instructions

 SEL assigns one of two input values to parameter OUT, depending on
the parameter G value.

 MUX assigns one of many input values to parameter OUT, depending
on the parameter K value. If the parameter K value exceeds the valid
range, the parameter ELSE value is assigned to parameter OUT.

Click below the box name and select a data type from the drop-down
menu.

SEL Data type Description
G Bool Selector switch:

 FALSE for IN0
 TRUE for IN1

IN0, IN1 SInt, Int, DInt, USInt, UInt, UDInt, Real, Byte, Word,
DWord, Time, Char

Inputs

OUT SInt, Int, DInt, USInt, UInt, UDInt, Real, Byte, Word,
DWord, Time, Char

Output

https://sites.google.com/site/chauchiduc

Programming instructions
6.1 Basic instructions

 S7-1200 Programmable controller
130 System Manual, 11/2009, A5E02486680-02

MUX Data type Description
K UInt Selector value:

 0 for IN0
 1 for IN1
 ...

IN0, IN1, SInt, Int, DInt, USInt, UInt, UDInt, Real, Byte, Word,
DWord, Time, Char

Inputs

ELSE SInt, Int, DInt, USInt, UInt, UDInt, Real, Byte, Word,
DWord, Time, Char

Input substitute value
(optional)

OUT SInt, Int, DInt, USInt, UInt, UDInt, Real, Byte, Word,
DWord, Time, Char

Output

Input variables and the output variable must be of the same data type.
● The SEL instruction always selects between two IN values.
● The MUX instruction has two IN parameters when first placed in the program editor, but it

can be expanded to add more IN parameters.
Use the following methods to add and remove input parameters for the MUX instruction:
● To add an input, right-click on an input stub for one of the existing IN parameters and

select the "Insert input" command.
● To remove an input, right-click on an input stub for one of the existing IN parameters

(when there are more than the original two inputs) and select the "Delete" command.
Condition codes: ENO is always TRUE following execution of the SEL instruction.

ENO status (MUX) MUX condition MUX result OUT
1 No error Selected IN value is assigned to OUT
0 K is greater than or equal to the

number of IN parameters
No ELSE provided:
OUT is unchanged
ELSE provided:
ELSE value assigned to OUT

6.1.10 Shift and Rotate

Shift instruction

You use the shift instructions to shift the bit pattern of parameter IN. The
result is assigned to parameter OUT. Parameter N specifies the number of
bit positions shifted:
 SHR: Shift bit pattern right
 SHL: Shift bit pattern left

Click below the box name and select a data type from the drop-down list.

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.1 Basic instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 131

Parameter Data type Description
IN Byte, Word, DWord Bit pattern to shift
N UInt Number of bit positions to shift
OUT Byte, Word, DWord Bit pattern after shift operation

● For N=0, no shift occurs and the IN value is assigned to OUT.
● Zeros are shifted into the bit positions emptied by the shift operation.
● If the number of positions to shift (N) exceeds the number of bits in the target value (8 for

Byte, 16 for Word, 32 for DWord), then all original bit values will be shifted out and
replaced with zeros (zero is assigned to OUT).

● ENO is always TRUE for the shift operations.

SHL example for Word size data: Shift in zeros from the left
IN 1110 0010 1010 1101 OUT value before first shift: 1110 0010 1010 1101
 After first shift left: 1100 0101 0101 1010
 After second shift left: 1000 1010 1011 0100
 After third shift left: 0001 0101 0110 1000

Rotate instruction

You use the rotate instructions to rotate the bit pattern of parameter IN. The
result is assigned to parameter OUT. Parameter N defines the number of bit
positions rotated.
 ROR: Rotate bit pattern right
 ROL: Rotate bit pattern left

Click below the box name and select a data type from the drop-down menu.

Parameter Data type Description
IN Byte, Word, DWord Bit pattern to rotate
N UInt Number of bit positions to rotate
OUT Byte, Word, DWord Bit pattern after rotate operation

● For N=0, no rotate occurs and the IN value is assigned to OUT.
● Bit data rotated out one side of the target value is rotated into the other side of the target

value, so no original bit values are lost.
● If the number of bit positions to rotate (N) exceeds the number of bits in the target value

(8 for Byte, 16 for Word, 32 for DWord), then the rotation is still performed.
● ENO is always TRUE following execution of the rotate instructions.

ROR example for WORD size data: Rotate bits out the right -side into the left -side
IN 0100 0000 0000 0001 OUT value before first rotate: 0100 0000 0000 0001
 After first rotate right: 1010 0000 0000 0000
 After second rotate right: 0101 0000 0000 0000

https://sites.google.com/site/chauchiduc

Programming instructions
6.2 Extended instructions

 S7-1200 Programmable controller
132 System Manual, 11/2009, A5E02486680-02

6.2 Extended instructions

6.2.1 Common error parameters for extended instructions
The extended instruction descriptions describe run-time errors that can occur for each
program instruction. In addition to these errors, the common errors listed below are also
possible. When a code block is executed and one of the common errors occurs, then the
CPU will go to STOP mode unless you use the GetError or GetErrorID instructions within
that code block to create a programmed reaction to the error.

Condition code value (W#16#....) Description
8022 Area too small for input
8023 Area too small for output
8024 Illegal input area
8025 Illegal output area
8028 Illegal input bit assignment
8029 Illegal output bit assignment
8030 Output area is a read-only DB
803A DB does not exist

6.2.2 Clock and calendar instructions

Date and Time instructions
You use the date and time instructions to program calendar and time calculations.
● T_CONV converts the data type of a time value: (Time to DInt) or (DInt to Time)
● T_ADD adds Time and DTL values: (Time + Time = Time) or (DTL + Time = DTL)
● T_SUB subtracts Time and DTL values: (Time - Time = Time) or (DTL - Time = DTL)
● T_DIFF provides the difference between two DTL values as a Time value: DTL - DTL =

Time

Data type Size (bits) Valid ranges
Time 32

Stored as

T#-24d_20h_31m_23s_648ms to
T#24d_20h_31m_23s_647ms
-2,147,483,648 ms to +2,147,483,647 ms

DTL data structure
Year: UInt 16 1970 to 2554
Month: USInt 8 1 to 12
Day: USInt 8 1 to 31
Weekday: USInt 8 1=Sunday to 7=Saturday
Hour: USInt 8 0 to 23

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.2 Extended instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 133

Data type Size (bits) Valid ranges
Minute: USInt 8 0 to 59
Second: USInt 8 0 to 59
Nanoseconds: UDInt 32 0 to 999,999,999

T_CONV (Time Convert) converts a Time data type to a DInt data type, or
the reverse conversion from DInt data type to Time data type.

Parameter Parameter

type
Data type Description

IN IN DInt, Time Input Time value or Dint value
OUT OUT DInt, Time Converted DInt value or Time value

Select the IN and OUT data types from the drop-down lists available below the instruction name.

T_ADD (Time Add) adds the input IN1 value (DTL or Time data types) with
the input IN2 Time value. Parameter OUT provides the DTL or Time value
result.

Two data type operations are possible:
● Time + Time = Time
● DTL + Time = DTL

Parameter Parameter

type
Data type Description

IN1 IN DTL, Time DTL or Time value
IN2 IN Time Time value to add
OUT OUT DTL, Time DTL or Time sum

Select the IN1 data type from the drop-down list available below the instruction name. The IN1 data
type selection also sets the data type of parameter OUT.

T_SUB (Time Subtract) subtracts the IN2 Time value from IN1 (DTL or Time
value). Parameter OUT provides the difference value as a DTL or Time data
type.

Two data type operations are possible:
● Time - Time = Time
● DTL - Time = DTL

https://sites.google.com/site/chauchiduc

Programming instructions
6.2 Extended instructions

 S7-1200 Programmable controller
134 System Manual, 11/2009, A5E02486680-02

Parameter Parameter

type
Data type Description

IN1 IN DTL, Time DTL or Time value
IN2 IN Time Time value to subtract
OUT OUT DTL, Time DTL or Time difference

Select the IN1 data type from the drop-down list available below the instruction name. The IN1 data
type selection also sets the data type of parameter OUT.

T_DIFF (Time Difference) subtracts the IN2 DTL value from IN1 DTL value.
Parameter OUT provides the difference value as a Time data type.
 DTL - DTL = Time

Parameter Parameter

type
Data type Description

IN1 IN DTL DTL value
IN2 IN DTL DTL value to subtract
OUT OUT Time Time difference

Condition codes: ENO = 1 means no error occurred. ENO = 0 and parameter OUT = 0
errors:
● Invalid DTL value
● Invalid Time value

Clock instructions
You use the clock instructions to set and read the PLC system clock. The data type DTL is
used to provide date and time values.

DTL structure Size Valid ranges
Year: UInt 16 bits 1970 to 2554
Month: USInt 8 bits 1 to 12
Day: USInt 8 bits 1 to 31
Weekday: USInt 8 bits 1=Sunday to 7=Saturday
Hour: USInt 8 bits 0 to 23
Minute: USInt 8 bits 0 to 59
Second: USInt 8 bits 0 to 59
Nanoseconds: UDInt 32 bits 0 to 999,999,999

WR_SYS_T (Write System Time) sets the PLC time of day clock with a DTL
value at parameter IN. This time value does not include local time zone or
daylight saving time offsets.

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.2 Extended instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 135

Parameter Parameter

type
Data type Description

IN IN DTL Time of day to set in the PLC system clock
RET_VAL OUT Int Execution condition code

RD_SYS_T (Read System Time) reads the current system time from the
PLC. This time value does not include local time zone or daylight saving time
offsets.

Parameter Parameter

type
Data type Description

RET_VAL OUT Int Execution condition code
OUT OUT DTL Current PLC system time

RD_LOC_T (Read Local Time) provides the current local time of the PLC as
a DTL data type.

Parameter Parameter

type
Data type Description

RET_VAL OUT Int Execution condition code
OUT OUT DTL Local time

● The local time is calculated by using the time zone and daylight saving time offsets that
you set in the CPU Clock device configuration.

● Time zone configuration is an offset to Coordinated Universal Time (UTC) system time.
● Daylight saving time configuration specifies the month, week, day, and hour when

daylight saving time begins.
● Standard time configuration also specifies the month, week, day, and hour when standard

time begins.
● The time zone offset is always applied to the system time value. The daylight saving time

offset is only applied when daylight saving time is in effect.
Condition codes: ENO = 1 means no error occurred. ENO = 0 means an execution error
occurred, and a condition code is provided at the RET_VAL output.

RET_VAL (W#16#....) Description
0000 No error
8080 Local time not available
8081 Illegal year value
8082 Illegal month value

https://sites.google.com/site/chauchiduc

Programming instructions
6.2 Extended instructions

 S7-1200 Programmable controller
136 System Manual, 11/2009, A5E02486680-02

RET_VAL (W#16#....) Description
8083 Illegal day value
8084 Illegal hour value
8085 Illegal minute value
8086 Illegal second value
8087 Illegal nanosecond value
80B0 The real-time clock has failed

6.2.3 String and character instructions

6.2.3.1 String data overview

String data type
String data is stored as a 2-byte header followed by up to 254 character bytes of ASCII
character codes. A String header contains two lengths. The first byte is the maximum length
that is given in square brackets when you initialize a string, or 254 by default. The second
header byte is the current length that is the number of valid characters in the string. The
current length must be smaller than or equal to the maximum length. The number of stored
bytes occupied by the String format is 2 bytes greater than the maximum length.

Initialize your String data
String input and output data must be initialized as valid strings in memory, before execution
of any string instructions.

Valid String data
Valid string has a maximum length that must be greater than zero but less than 255. The
current length must be less than or equal to the maximum length.
Strings cannot be assigned to I or Q memory areas.
For more information see: Format of the String data type (Page 57)

6.2.3.2 String conversion instructions

String to value and value to string conversions
You can convert number character strings to number values or number values to number
character strings with these instructions:
● S_CONV converts (number string to a number value) or (number value to a number

string)
● STRG_VAL converts a number string to a number value with format options
● VAL_STRG converts a number value to a number string with format options

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.2 Extended instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 137

S_CONV (String Convert) converts a character string to the corresponding
value, or a value to the corresponding character string. The S_CONV
instruction has no output formatting options. This makes the S_CONV
instruction simpler, but less flexible, than the STRG_VAL and VAL_STRG
instructions.
Select the parameter data types from the drop-down lists.

S_CONV (String to value conversions)

Parameter Parameter type Data type Description
IN IN String Input character string
OUT OUT String, SInt, Int, DInt, USInt, UInt,

UDInt, Real
Output number value

Conversion of the string parameter IN starts at the first character and continues until the end
of the string, or until the first character is encountered that is not "0" through "9", "+", "-", or
".". The result value is provided at the location specified in parameter OUT. If the output
number value does not fit in the range of the OUT data type, then parameter OUT is set to 0
and ENO is set to FALSE. Otherwise, parameter OUT contains a valid result and ENO is set
to TRUE.
Input String format rules:
● If a decimal point is used in the IN string, you must use the "." character.
● Comma characters "," used as a thousands separator to the left of the decimal point are

allowed and ignored.
● Leading spaces are ignored.
● Only fixed-point representation is supported. The characters "e" and "E" are not

recognized as exponential notation.

S_CONV (Value to string conversions)

Parameter Parameter type Data type Description
IN IN String, SInt, Int, DInt, USInt, UInt,

UDInt, Real
Input number value

OUT OUT String Output character string

An integer, unsigned integer, or floating point value IN is converted to the corresponding
character string at OUT. The parameter OUT must reference a valid string before the
conversion is executed. A valid string consists of a maximum string length in the first byte,
the current string length in the second byte, and the current string characters in the next
bytes. The converted string replaces characters in the OUT string starting at the first
character and adjusts the current length byte of the OUT string. The maximum length byte of
the OUT string is not changed.
How many characters are replaced depends on the parameter IN data type and number
value. The number of characters replaced must fit within the parameter OUT string length.
The maximum string length (first byte) of the OUT string should be greater than or equal to
the maximum expected number of converted characters.

https://sites.google.com/site/chauchiduc

Programming instructions
6.2 Extended instructions

 S7-1200 Programmable controller
138 System Manual, 11/2009, A5E02486680-02

The following table shows the maximum possible string lengths required for each supported
data type.

IN data
type

Maximum number of converted
characters in OUT string

Example Total string length including
maximum and current length bytes

USInt 3 255 5
SInt 4 -128 6
UInt 5 65535 7
Int 6 -32768 8
UDInt 10 4294967295 12
DInt 11 -2147483648 13

Output String format rules:
● Values written to parameter OUT do not use a leading "+" sign.
● Fixed-point representation is used (no exponential notation).
● The period character "." is used to represent the decimal point when parameter IN is the

Real data type.

STRG_VAL instruction

STRG_VAL (String to Value) converts a number character string
to the corresponding integer or floating point representation.
Conversion begins in the string IN at character offset P and
continues until the end of the string, or until the first character is
encountered that is not "+", "-", ".", ",", "e", "E", or "0" to "9". The
result is placed at the location specified in parameter OUT.

Parameter P is also returned as an offset count in the original string at the position where the
conversion terminated. String data must be initialized before execution as a valid string in
memory.

Parameter Parameter type Data type Description
IN IN String The ASCII character string to convert
FORMAT IN Word Output format options
P IN_OUT UInt IN: Index to the first character to be

converted (first character = 1)
OUT: Index to the next character after
conversion process ends

OUT OUT SInt, Int, DInt, USInt,
UInt, UDInt, Real

Converted number value

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.2 Extended instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 139

STRG_VAL FORMAT parameter
The FORMAT parameter for the STRG_VAL instruction is defined below. The unused bit
positions must be set to zero.

Bit
16

 Bit 8 Bit 7 Bit 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 f r

f = Notation format 1= Exponential notation

0 = Fixed point notation

r = Decimal point format 1 = "," (comma character)
0 = "." (period character)

FORMAT (W#16#) Notation format Decimal point representation
0000 (default) "."
0001

Fixed point
","

0002 "."
0003

Exponential
","

0004 to FFFF Illegal values

Rules for STRG_VAL conversion:
● If the period character "." is used for the decimal point, then commas "," to the left of the

decimal point are interpreted as thousands separator characters. The comma characters
are allowed and ignored.

● If the comma character "," is used for the decimal point, then periods "." to the left of the
decimal point are interpreted as thousands separator characters. These period
characters are allowed and ignored.

● Leading spaces are ignored.

VAL_STRG instruction

VAL_STRG (Value to String) converts an integer, unsigned
integer, or floating point value to the corresponding character
string representation. The value represented by parameter IN is
converted to a string referenced by parameter OUT. The
parameter OUT must be a valid string before the conversion is
executed.

The converted string will replace characters in the OUT string starting at character offset
count P to the number of characters specified by parameter SIZE. The number of characters
in SIZE must fit within the OUT string length, counting from character position P. This
instruction is useful for embedding number characters into a text string. For example, you
can put the numbers "120" into the string "Pump pressure = 120 psi".

https://sites.google.com/site/chauchiduc

Programming instructions
6.2 Extended instructions

 S7-1200 Programmable controller
140 System Manual, 11/2009, A5E02486680-02

Parameter Parameter

type
Data type Description

IN IN SInt, Int, DInt, USInt, UInt,
UDInt, Real

Value to convert

SIZE IN USInt Number of characters to be written to the
OUT string

PREC IN USInt The precision or size of the fractional
portion. This does not include the decimal
point.

FORMAT IN Word Output format options
P IN_OUT UInt IN: Index to the first OUT string character

to be replaced (first character = 1)
OUT: Index to the next OUT string
character after replacement

OUT OUT String The converted string

Parameter PREC specifies the precision or number of digits for the fractional part of the
string. If the parameter IN value is an integer, then PREC specifies the location of the
decimal point. For example, if the data value is 123 and PREC = 1, then the result is "12.3".
The maximum supported precision for the REAL data type is 7 digits.
If parameter P is greater than the current size of the OUT string, then spaces are added, up
to position P, and the result is appended to the end of the string. The conversion ends if the
maximum OUT string length is reached.

VAL_STRG FORMAT parameter
The FORMAT parameter for the VAL_STRG instruction is defined below. The unused bit
positions must be set to zero.

Bit
16

 Bit 8 Bit 7 Bit 0

0 0 0 0 0 0 0 0 0 0 0 0 0 s f r

s = Number sign character 1= use sign character "+" and "-"

0 = use sign character "-" only

f = Notation format 1= Exponential notation
0 = Fixed point notation

r = Decimal point format 1 = "," (comma character)
0 = "." (period character)

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.2 Extended instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 141

FORMAT (WORD)

Number sign character Notation format Decimal point
representation

W#16#0000 "."
W#16#0001

Fixed point
","

W#16#0002 "."
W#16#0003

"-" only

Exponential
","

W#16#0004 "."
W#16#0005

Fixed Point
","

W#16#0006 "."
W#16#0007

"+" and "-"

Exponential
","

W#16#0008 to
W#16#FFFF

Illegal values

Parameter OUT string format rules:
● Leading space characters are added to the leftmost part of the string when the converted

string is smaller than the specified size.
● When the FORMAT parameter sign bit is FALSE, unsigned and signed integer data type

values are written to the output buffer without the leading "+" sign. The "-" sign is used if
required.
<leading spaces><digits without leading zeroes>'.'<PREC digits>

● When the sign bit is TRUE, unsigned and signed integer data type values are written to
the output buffer always with a leading sign character.
<leading spaces><sign><digits without leading zeroes>'.'<PREC digits>

● When the FORMAT is set to exponential notation, REAL data type values are written to
the output buffer as:
<leading spaces><sign><digit> '.' <PREC digits>'E' <sign><digits without leading zero>

● When the FORMAT is set to fixed point notation, integer, unsigned integer, and real data
type values are written to the output buffer as:
<leading spaces><sign><digits without leading zeroes>'.'<PREC digits>

● Leading zeros to the left of the decimal point (except the digit adjacent to the decimal
point) are suppressed.

● Values to the right of the decimal point are rounded to fit in the number of digits to the
right of the decimal point specified by the PREC parameter.

● The size of the output string must be a minimum of three bytes more than the number of
digits to the right of the decimal point.

● Values are right-justified in the output string.

Conditions reported by ENO
When an error is encountered during the conversion operation, the following results will be
returned:
● ENO is set to 0.
● OUT is set to 0, or as shown in the examples for string to value conversion.
● OUT is unchanged, or as shown in the examples when OUT is a string.

https://sites.google.com/site/chauchiduc

Programming instructions
6.2 Extended instructions

 S7-1200 Programmable controller
142 System Manual, 11/2009, A5E02486680-02

ENO status Description

1 No error
0 Illegal or invalid parameter; for example, an access to a DB that does not exist
0 Illegal string where the maximum length of the string is 0 or 255
0 Illegal string where the current length is greater than the maximum length
0 The converted number value is too large for the specified OUT data type
0 The OUT parameter maximum string size must be large enough to accept the number

of characters specified by parameter SIZE, starting at the character position
parameter P

0 Illegal P value where P=0 or P is greater than the current string length
0 Parameter SIZE must be greater than parameter PREC

Examples of S_CONV string to value conversion

IN string OUT data type OUT value ENO
"123" Int/DInt 123 TRUE
"-00456" Int/DInt -456 TRUE
"123.45" Int/DInt 123 TRUE
"+2345" Int/DInt 2345 TRUE
"00123AB" Int/DInt 123 TRUE
"123" Real 123.0 TRUE
"123.45" Real 123.45 TRUE
"1.23e-4" Real 1.23 TRUE
"1.23E-4" Real 1.23 TRUE
"12,345.67" Real 12345.67 TRUE
"3.4e39" Real 3.4 TRUE
"-3.4e39" Real -3.4 TRUE
"1.17549e-38" Real 1.17549 TRUE
"12345" SInt 0 FALSE
"A123" N/A 0 FALSE
"" N/A 0 FALSE
"++123" N/A 0 FALSE
"+-123" N/A 0 FALSE

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.2 Extended instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 143

Examples of S_CONV value to string conversion

Data type IN value OUT string ENO
UInt 123 "123" TRUE
UInt 0 "0" TRUE
UDInt 12345678 "12345678" TRUE
Real -INF "INF" FALSE
Real +INF "INF" FALSE
Real NaN "NaN" FALSE

Examples of STRG_VAL conversion

IN string FORMAT

(W#16#....)
OUT data type OUT value ENO

"123" 0000 Int/DInt 123 TRUE
"-00456" 0000 Int/DInt -456 TRUE
"123.45" 0000 Int/DInt 123 TRUE
"+2345" 0000 Int/DInt 2345 TRUE
"00123AB" 0000 Int/DInt 123 TRUE
"123" 0000 Real 123.0 TRUE
"-00456" 0001 Real -456.0 TRUE
"+00456" 0001 Real 456.0 TRUE
"123.45" 0000 Real 123.45 TRUE
"123.45" 0001 Real 12345.0 TRUE
"123,45" 0000 Real 12345.0 TRUE
"123,45" 0001 Real 123.45 TRUE
".00123AB" 0001 Real 123.0 TRUE
"1.23e-4" 0000 Real 1.23 TRUE
"1.23E-4" 0000 Real 1.23 TRUE
"1.23E-4" 0002 Real 1.23E-4 TRUE
"12,345.67" 0000 Real 12345.67 TRUE
"12,345.67" 0001 Real 12.345 TRUE
"3.4e39" 0002 Real +INF TRUE
"-3.4e39" 0002 Real -INF TRUE
"1.1754943e-38"
(and smaller)

0002 Real 0.0 TRUE

"12345" N/A SInt 0 FALSE
"A123" N/A N/A 0 FALSE
"" N/A N/A 0 FALSE
"++123" N/A N/A 0 FALSE
"+-123" N/A N/A 0 FALSE

https://sites.google.com/site/chauchiduc

Programming instructions
6.2 Extended instructions

 S7-1200 Programmable controller
144 System Manual, 11/2009, A5E02486680-02

Examples of VAL_STRG conversion
The examples are based on an OUT string initialized as follows:
"Current Temp = xxxxxxxxxx C"
The "x"character represents space characters allocated for the converted value.

Data
type

IN value P SIZE FORMAT
(W#16#....)

PREC OUT string ENO

UInt 123 16 10 0000 0 Current Temp =
xxxxxxx123 C TRUE

UInt 0 16 10 0000 2 Current Temp =
xxxxxx0.00 C TRUE

UDInt 12345678 16 10 0000 3 Current Temp =
x12345.678 C TRUE

UDInt 12345678 16 10 0001 3 Current Temp =
x12345,678 C TRUE

Int 123 16 10 0004 0 Current Temp =
xxxxxx+123 C TRUE

Int -123 16 10 0004 0 Current Temp =
xxxxxx-123 C TRUE

Real -0.00123 16 10 0004 4 Current Temp =
xxx-0.0012 C TRUE

Real -0.00123 16 10 0006 4 Current Temp =
-1.2300E-3 C TRUE

Real -INF 16 10 N/A 4 Current Temp =
xxxxxx-INF C FALSE

Real +INF 16 10 N/A 4 Current Temp =
xxxxxx+INF C FALSE

Real NaN 16 10 N/A 4 Current Temp =
xxxxxxxNaN C FALSE

UDInt 12345678 16 6 N/A 3 Current Temp =
xxxxxxxxxx C FALSE

6.2.3.3 String operation instructions
Your control program can use the following string and character instructions to create
messages for operator display and process logs.

Common errors for all String operations
String operation instructions that are executed with the illegal or invalid String conditions
shown below result in an ENO = 0 and a null string output. Error conditions that occur for a
specific instruction are listed below the instruction operation description.

ENO Condition OUT

Current length of IN1 exceeds maximum length of IN1, or current
length of IN2 exceeds maximum length of IN2 (invalid string)
Maximum length of IN1, IN2 or OUT does not fit within allocated
memory range

0

Maximum length of IN1, IN2 or OUT is 0 or 255 (illegal length)

Current length is set
to 0

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.2 Extended instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 145

LEN: Get string length

CONCAT: Concatenate two
strings

LEFT: Get left substring from
string

RIGHT: Get right substring
form string

MID: Get middle substring
from string

FIND: Find substring or
character in string

INSERT: Insert substring in
string

DELETE: Delete substring
from string

REPLACE: Replace substring
in string

LEN instruction

Parameter Parameter

type
Data type Description

IN IN String Input string
OUT OUT UInt Number of valid characters of IN string

LEN (Length of string) gives the current length of the string IN at output OUT. An empty
string has a length of zero. The following table shows the condition codes for the instruction.

ENO Condition OUT
1 No invalid string condition Valid string length

https://sites.google.com/site/chauchiduc

Programming instructions
6.2 Extended instructions

 S7-1200 Programmable controller
146 System Manual, 11/2009, A5E02486680-02

CONCAT instruction

Parameter Parameter

type
Data type Description

IN1 IN String Input string 1
IN2 IN String Input string 2
OUT OUT String Combined string (string 1 + string 2)

CONCAT (Concatenate strings) joins String parameters IN1 and IN2 to form one string
provided at OUT. After concatenation, String IN1 is the left part and String IN2 is the right
part of the combined string. The following table shows the condition codes for the instruction.

ENO Condition OUT
1 No errors detected Valid characters
0 Resulting string after concatenation is larger

than maximum length of OUT string
Resulting string characters are copied
until the maximum length of the OUT is
reached

LEFT instruction

Parameter Parameter

type
Data type Description

IN IN String Input string
L IN Int Length of the substring to be created, using the left-

most L characters of the IN string
OUT OUT String Output string

LEFT (Left substring) provides a substring made of the first L characters of string parameter
IN.
● If L is greater than the current length of the IN string, then the entire IN string is returned

in OUT.
● If an empty string is the input, then an empty string is returned in OUT.
The following table shows the condition codes for the instruction.

ENO Condition OUT
1 No errors detected Valid characters

L is less than or equal to 0 Current length is set to 0 0
Substring length (L) to be copied is larger than
maximum length of OUT string

Characters are copied until the maximum
length of OUT is reached

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.2 Extended instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 147

RIGHT instruction

Parameter Parameter

type
Data type Description

IN IN String Input string
L IN Int Length of the substring to be created, using the right-

most L characters of the IN string
OUT OUT String Output string

RIGHT (Right substring) provides the last L characters of a string.
● If L is greater than the current length of the IN string, then the entire IN string is returned

in parameter OUT.
● If an empty string is the input, then an empty string is returned in OUT.
The following table shows the condition codes for the instruction.

ENO Condition OUT
1 No errors detected Valid characters

L is less than or equal to 0 Current length is set to 0 0
Substring length (L) to be copied is larger than
maximum length of OUT string

Characters are copied until the maximum
length of OUT is reached

MID instruction

Parameter Parameter

type
Data type Description

IN IN String Input string
L IN Int Length of the substring to be created, using L characters of

the IN string, beginning at character position P
P IN Int Position of first substring character to be copied:

P= 1, for the initial character position of the IN string
OUT OUT String Output string

MID (Middle substring) provides the middle part of a string. The middle substring is L
characters long and starts at character position P (inclusive).
If the sum of L and P exceeds the current length of the String parameter IN, then a substring
is returned that starts at character position P and continues to the end of the IN string. The
following table shows the condition codes for the instruction.

ENO Condition OUT
1 No errors detected Valid characters

L or P is less than or equal to 0
P is greater than maximum length of IN

Current length is set to 0 0

Substring length (L) to be copied is larger than
maximum length of OUT string

Characters are copied beginning at
position P until the maximum length of
OUT is reached

https://sites.google.com/site/chauchiduc

Programming instructions
6.2 Extended instructions

 S7-1200 Programmable controller
148 System Manual, 11/2009, A5E02486680-02

DELETE instruction

Parameter Parameter

type
Data type Description

IN IN String Input string
L IN Int Number of characters to be deleted
P IN Int Position of the first character to be deleted: The first

character of the IN string is position number 1
OUT OUT String Output string

DELETE (Delete substring) deletes L characters from string IN. Character deletion starts at
character position P (inclusive), and the remaining substring is provided at parameter OUT.
● If L is equal to zero, then the input string is returned in OUT.
● If the sum of L and P is greater than the length of the input string, then the string is

deleted to the end.
The following table shows the condition codes for the instruction.

ENO Condition OUT
1 No errors detected Valid characters

P is greater than current length of IN IN is copied to OUT with no characters
deleted

L is less than 0, or P is less than or equal to 0 Current length is set to 0

0

Resulting string after characters are deleted is
larger than maximum length of OUT string

Resulting string characters are copied
until the maximum length of OUT is
reached

INSERT

Parameter Parameter

type
Data type Description

IN1 IN String Input string 1
IN2 IN String Input string 2
P IN Int Last character position in string IN1 before the insertion

point for string IN2. The first character of string IN1 is
position number 1.

OUT OUT String Result string

INSERT (Insert substring) inserts string IN2 into string IN1. Insertion begins after the
character at position P. The following table shows the condition codes for the instruction.

ENO Condition OUT
1 No errors detected Valid characters

P is greater than length of IN1 IN2 is concatenated with IN1
immediately following the last IN1
character

0

P is less than or equal to 0 Current length is set to 0

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.2 Extended instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 149

ENO Condition OUT
Resulting string after insertion is larger than
maximum length of OUT string

Resulting string characters are copied
until the maximum length of OUT is
reached

REPLACE

Parameter Parameter

type
Data type Description

IN1 IN String Input string
IN2 IN String String of replacement characters
L IN Int Number of characters to replace
P IN Int Position of first character to be replaced
OUT OUT String Result string

REPLACE (Replace substring) replaces L characters in the string parameter IN1.
Replacement starts at string IN1 character position P (inclusive), with replacement
characters coming from the string parameter IN2.
● If parameter L is equal to zero, then the string IN2 is inserted at position P of string IN1

without deleting any characters from string IN1.
● If P is equal to one, then the first L characters of string IN1 are replaced with string IN2

characters.
The following table shows the condition codes for the instruction.

ENO Condition OUT
1 No errors detected Valid characters

P is greater than length of IN1 IN2 is concatenated with IN1
immediately following the last IN1
character

P points within IN1, but fewer than L characters
remain in IN1

IN2 replaces the end characters of IN1
beginning at position P

L is less than 0, or P is less than or equal to 0 Current length is set to 0

0

Resulting string after replacement is larger than
maximum length of OUT string

Resulting string characters are copied
until the maximum length of OUT is
reached

FIND

Parameter Parameter

type
Data type Description

IN1 IN String Search inside this string
IN2 IN String Search for this string
OUT OUT Int Character position in string IN1 of the first search match

FIND (Find substring) provides the character position of the substring or character specified
by IN2 within the string IN1. The search starts on the left. The character position of the first

https://sites.google.com/site/chauchiduc

Programming instructions
6.2 Extended instructions

 S7-1200 Programmable controller
150 System Manual, 11/2009, A5E02486680-02

occurrence of IN2 string is returned at OUT. If the string IN2 is not found in the string IN1,
then zero is returned. The following table shows the condition codes for the instruction.

ENO Condition OUT
1 No errors detected Valid character position
0 IN2 is larger than IN1 Character position is set to 0

6.2.4 Program control instructions

6.2.4.1 Reset scan cycle watchdog instruction

RE_TRIGR (Re-trigger scan time watchdog) is used to extend the
maximum time allowed before the scan cycle watchdog timer generates an
error.

Use the RE_TRIGR instruction to restart the scan cycle timer during a single scan cycle. This
has the effect of extending the allowed maximum scan cycle time by one maximum cycle
time period, from the last execution of the RE_TRIGR function.
The CPU restricts the use of the RE_TRIGR instruction to the program cycle, for example,
OB1 and functions that are called from the program cycle. This means that the watchdog
timer is reset, and ENO = EN, if RE_TRIGR is called from any OB of the program cycle OB
list.
ENO = FALSE and the watchdog timer is not reset if RE_TRIGR is executed from a start up
OB, an interrupt OB, or an error OB.

Setting the PLC maximum cycle time
You can set the value for maximum scan cycle time in the PLC device configuration for
"Cycle time".

Cycle time monitor Minimum value Maximum value Default value
Maximum cycle time 1 ms 6000 ms 150 ms

Watchdog timeout
If the maximum scan cycle timer expires before the scan cycle has been completed, an error
is generated. If the error handling code block OB80 is included in the user program, the PLC
executes OB 80 where you may add program logic to create a special reaction. If OB80 is
not included, the first timeout condition is ignored.
If a second maximum scan time timeout occurs in the same program scan (2 times the
maximum cycle time value), an error is triggered that causes the PLC to transition to STOP
mode.
In STOP mode, your program execution stops while PLC system communications and
system diagnostics continue.

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.2 Extended instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 151

6.2.4.2 Stop scan cycle instruction

STP (Stop PLC scan cycle) puts the PLC in Stop mode. When the PLC is in
Stop mode, the execution of your program and physical updates from the
process image are stopped.

For more information see: Configuring the outputs on a RUN-to-STOP transition (Page 48)
If EN = TRUE, then the PLC will enter STOP mode, program execution stops, and the ENO
state is meaningless. Otherwise, EN = ENO = 0.

6.2.4.3 Get Error instructions
The get error instructions provide information about program block execution errors. If you
add a GetError or GetErrorID instruction to your code block, you can handle program errors
within your program block.

GET_ERROR

GET_ERROR indicates that a program block execution error has occurred
and fills a predefined error data structure with detailed error information.

Parameter Data type Description
ERROR ErrorStruct Error data structure: You can rename the structure, but not

the members within the structure.

ErrorStruct data element Data

type
Description

ERROR_ID Word Error identifier
FLAGS Byte Always set to 0.
REACTION Byte Reaction to the error:

 0 = Ignore; nothing written (write error)
 1 = Substitute: a 0 was used for the input value (read

error)
 2 = Skip the instruction

BLOCK_TYPE Byte Block type where error occurred:
 1 = OB
 2 = FC
 3 = FB

PAD_0 Byte Internal fill byte for alignment purposes, will be 0
CODE_BLOCK_NUMBER UInt Block number where error occurred
ADDRESS UDInt Internal memory location of instruction which encountered

error

https://sites.google.com/site/chauchiduc

Programming instructions
6.2 Extended instructions

 S7-1200 Programmable controller
152 System Manual, 11/2009, A5E02486680-02

ErrorStruct data element Data
type

Description

MODE Byte Internal mapping for how the remaining fields will be
interpreted to be used by STEP 7 Basic

PAD_1 Byte Internal fill byte for alignment purposes; not used, will be 0
OPERAND_NUMBER UInt Internal instruction operand number
POINTER_NUMBER_
LOCATION

UInt (A) Internal instruction pointer location

SLOT_NUMBER_SCOPE UInt (B) Internal memory storage location
AREA Byte (C) Memory area referenced when the error was encountered:

 L: 16#40 – 4E, 86, 87, 8E, 8F, C0 – CE
 I: 16#81
 Q: 16#82
 M: 16#83
 DB: 16#84, 85, 8A, 8B

PAD_2 Byte Internal fill byte for alignment purposes; not used, will be 0
DB_NUMBER UInt (D) DB which was referenced when a DB error occurred, 0

otherwise
OFFSET UDInt (E) The bit offset referenced when the error occurred

(example: 12 = byte 1, bit 4)

GET_ERR_ID

GET_ERR_ID indicates that a program block execution error has occurred
and reports the ID (identifier code) of the error.

Parameter Data type Description
ID Word Error identifier values for the ErrorStruct ERROR_ID member

ERROR_ID
Hexadecimal

ERROR_ID
Decimal

Program block execution error

2503 9475 Uninitialized pointer error
2522 9506 Operand out of range read error
2523 9507 Operand out of range write error
2524 9508 Invalid area read error
2525 9509 Invalid area write error
2528 9512 Data alignment read error (incorrect bit alignment)
2529 9513 Data alignment write error (incorrect bit alignment)
2530 9520 DB write protected
253A 9530 Global DB does not Eeist
253C 9532 Wrong version or FC does not exist
253D 9533 Instruction does not exist

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.2 Extended instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 153

ERROR_ID
Hexadecimal

ERROR_ID
Decimal

Program block execution error

253E 9534 Wrong version or FB does not exist
253F 9535 Instruction does not exist
2575 9589 Program nesting depth error
2576 9590 Local data allocation error
2942 10562 Physical input point does not exist
2943 10563 Physical output point does not exist

Operation
By default, the CPU responds to a block execution error by logging an error in the
Diagnostics buffer and transitioning to STOP mode. However, if you place one or more
GET_ERROR or ERR_ID instructions within a code block, this block is now set to handle
errors within the block. In this case, the CPU does not transition to STOP and does not log
an error in the diagnostics buffer. Instead, the error information is reported in the output of
the GET_ERROR or GET_ERR_ID instruction. You can read the detailed error information
with the GET_ERROR instruction, or read just the error identifier with GET_ERR_ID
instruction. Normally the first error is the most important, with the following errors only
consequences of the first error.
The first execution of a GET_ERROR or GET_ERR_ID instruction within a block returns the
first error detected during block execution. This error could have occurred anywhere
between the start of the block and the execution of either GET_ERROR or GET_ERR_ID.
Subsequent executions of either GET_ERROR or GET_ERR_ID return the first error since
the previous execution of GET_ERROR or GET_ERR_ID. The history of errors is not saved,
and execution of either instruction will re-arm the PLC system to catch the next error.
The ErrorStruct data type used by the GET_ERROR instruction can be added in the Data
block editor and block interface editors, so your program logic can access these values.
Select ErrorStruct from the data type drop-down list to add this structure. You can create
multiple ErrorStructs by using unique names. The members of an ErrorStruct cannot be
renamed.

Error condition indicated by ENO
If EN = TRUE and GET_ERROR or GET_ERR_ID executes, then:
● ENO = TRUE indicates a code block execution error occurred and error data is present
● ENO = FALSE indicates no code block execution error occurred
You can connect error reaction program logic to ENO which activates after an error occurs. If
an error exists, then the output parameter stores the error data where your program has
access to it.
GET_ERROR and GET_ERR_ID can be used to send error information from the currently
executing block (called block) to a calling block. Place the instruction in the last network of
the called block program to report the final execution status of the called block.

https://sites.google.com/site/chauchiduc

Programming instructions
6.2 Extended instructions

 S7-1200 Programmable controller
154 System Manual, 11/2009, A5E02486680-02

6.2.5 Communications instructions

6.2.5.1 Open Ethernet Communication

Open Ethernet communication with automatic connect/disconnect (TSEND_C and TRCV_C)

 Note
The processing of the TSEND_C and TRCV_C instructions can take an undetermined
amount of time. To ensure that these instructions are processed in every scan cycle, always
call them from within the main program cycle scan, such as from a program cycle OB or from
a code block that is called from the program cycle scan. Do not call these instructions from a
hardware interrupt OB, a time-delay interrupt OB, a cyclic interrupt OB, an error interrupt OB,
or a startup OB.

For information transferring data with these instructions, see the section on data consistency
(Page 86).

TSEND_C description
TSEND_C establishes a TCP or ISO on TCP communication connection to a partner station,
sends data, and can terminate the connection. After the connection is set up and
established, it is automatically maintained and monitored by the CPU. TSEND_C combines
the functions of TCON, TDISCON and TSEND.
The minimum size of data that you can transmit with the TSEND_C instruction is a byte.

 Note
The default setting of the LEN parameter (LEN = 0) uses the DATA parameter to determine
the length of the data being transmitted. Ensure that the DATA transmitted by the TSEND_C
instruction is the same size as the as the DATA parameter of the TRCV_C instruction.

The following functions describe the operation of the TSEND_C instruction:
● To establish a connection, execute TSEND_C with CONT = 1.
● After successful establishing of the connection, TSEND_C sets the DONE parameter for

one cycle.
● To terminate the communication connection, execute TSEND_C with CONT = 0. The

connection will be aborted immediately. This also affects the receiving station. The
connection will be closed there and data inside the receive buffer could be lost.

● To send data over an established connection, execute TSEND_C with a rising edge on
REQ. After a successful send operation, TSEND_C sets the DONE parameter for one
cycle.

● To establish a connection and send data, execute TSEND_C with CONT =1 and REQ =
1. After a successful send operation, TSEND_C sets the DONE parameter for one cycle.

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.2 Extended instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 155

TRCV_C description
TRCV_C establishes a TCP or ISO on TCP communication connection to a partner CPU,
receives data, and can terminate the connection. After the connection is set up and
established, it is automatically maintained and monitored by the CPU. The TRCV_C
instruction combines the functions of the TCON, TDISCON, and TRCV instructions.
The minimum size of data that you can receive with the TRCV_C instruction is a byte. The
TRCV_C instruction does not support the transmission of Boolean data or Boolean arrays.

 Note
The default setting of the LEN parameter (LEN = 0) uses the DATA parameter to determine
the length of the data being transmitted. Ensure that the DATA transmitted by the TSEND_C
instruction is the same size as the as the DATA parameter of the TRCV_C instruction.

The following functions describe the operation of the TRCV_C instruction:
● To establish a connection, execute TRCV_C with parameter CONT = 1.
● To receive data, execute TRCV_C with parameter EN_R = 1. TRCV_C receives the data

continuously when parameters EN_R = 1 and CONT = 1.
● To terminate the connection, execute TRCV_C with parameter CONT = 0. The

connection will be aborted immediately, and data could be lost.

Receive modes
TRCV_C handles the same receive modes as the TRCV instruction. The following table
shows how data is entered in the receive area.

Protocol variant Entering the data in the receive area Parameter" connection_type"
TCP Data reception with specified length B#16#11
ISO on TCP protocol-controlled B#16#12

 Note
Due to the asynchronous processing of TSEND_C, you must keep the data in the sender
area consistent until the DONE parameter or the ERROR parameter assumes the values
TRUE.
For TSEND_C, a TRUE state at the parameter DONE means that the data was sent
successfully. It does not mean that the connection partner CPU actually read the receive
buffer.
Due to the asynchronous processing of TRCV_C, the data in the receiver area are only
consistent when parameter DONE = 1.

The following table shows the relationships between parameters BUSY, DONE and ERROR.

BUSY DONE ERROR Description
TRUE irrelevant irrelevant The job is being processed.
FALSE TRUE FALSE The job successfully completed.

https://sites.google.com/site/chauchiduc

Programming instructions
6.2 Extended instructions

 S7-1200 Programmable controller
156 System Manual, 11/2009, A5E02486680-02

BUSY DONE ERROR Description
FALSE FALSE TRUE The job was ended with an error. The cause of the error can be

found in the STATUS parameter.
FALSE FALSE FALSE A new job was not assigned.

TSEND_C parameters

Parameter Parameter

type
Data type Description

REQ INPUT Bool Control parameter REQ starts the send job with the
connection described in CONNECT on a rising edge.

CONT INPUT Bool 0: disconnect
 1: establish and hold connection

LEN INPUT Int Maximum number of bytes to be sent. (Default = 0,
which means that the DATA parameter determines the
length of the data to be sent.).

CONNECT IN_OUT TCON-
Param

Pointer to the connection description

DATA IN_OUT Variant Send area; contains address and length of data to be
sent.

COM_RST IN_OUT Bool 1: Complete restart of the function block, existing
connection will be terminated.

DONE OUTPUT Bool 0: Job not yet started or still running.
 1: Job executed without error.

BUSY OUTPUT Bool 0: Job is completed.
 1: Job is not yet completed. A new job cannot be

triggered.

ERROR OUTPUT Bool 1: Error occurred during processing. STATUS
provides detailed information on the type of error.

STATUS OUTPUT Word Error information

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.2 Extended instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 157

TRCV_C parameters

Parameter Parameter

type
Data type Description

EN_R IN Bool Control parameter enabled to receive: When EN_R = 1,
TRCV_C is ready to receive. The receive job is
processed.

CONT IN Bool Control parameter CONT:
 0: disconnect
 1: establish and hold connection

LEN IN Int Length of the receive area in bytes. (Default = 0, which
means that the DATA parameter determines the length
of the data to be sent.).

CONNECT IN_OUT TCON-
Param

Pointer to the connection description

DATA IN_OUT Variant Receive area contains start address and maximum
length of received data.

COM_RST IN_OUT Bool 1: Complete restart of the function block; existing
connection will be terminated.

DONE OUT Bool 0: Job not yet started or still running.
 1: Job executed without error.

BUSY OUT Bool 0: Job is completed.
 1: Job is not yet completed. A new job cannot be

triggered.

ERROR OUT Bool 1: Error occurred during processing. STATUS
provides detailed information on the type of error.

STATUS OUT Word Error information
RCVD_LEN OUT Int Amount of data actually received, in bytes

Parameters Error and Status

ERROR STATUS

(W#16#...)
Description

0 0000 Job executed without error
0 7000 No job processing active
0 7001 Start job processing, establishing connection, waiting for connection partner

https://sites.google.com/site/chauchiduc

Programming instructions
6.2 Extended instructions

 S7-1200 Programmable controller
158 System Manual, 11/2009, A5E02486680-02

ERROR STATUS
(W#16#...)

Description

0 7002 Data being sent or received
0 7003 Connection being terminated
0 7004 Connection established and monitored, no job processing active
1 8085 LEN parameter is greater than the largest permitted value
1 8086 The CONNECT parameter is outside the permitted range
1 8087 Maximum number of connections reached; no additional connection

possible
1 8088 LEN parameter is larger than the memory area specified in DATA; receiving

memory area is too small
1 8089 The parameter CONNECT parameter does not point to a data block.
1 8091 Maximum nesting depth exceeded
1 809A The CONNECT parameter points to a field that does not match the length of

the connection description.
1 809B The local_device_id in the connection description does not match the CPU.
1 80A1 Communications error:

 The specified connection was not yet established
 The specified connection is currently being terminated; transmission

over this connection is not possible
 The interface is being reinitialized

1 80A3 Attempt being made to terminate a nonexistent connection
1 80A4 IP address of the remote partner connection is invalid. For example, the

remote partner IP address is the same as the local partner IP address.
1 80A7 Communications error: you have called TDISCON before TCON was

complete (TDISCON must first completely terminate the connection
referenced by the ID)

1 80B2 The parameter CONNECT parameter points to a data block that was
generated with the keyword UNLINKED

1 80B3 Inconsistent parameters:
 Error in the connection description
 Local port (parameter local_tsap_id) is already present in another

connection description
 ID in the connection description different from the ID specified as

parameter

1 80B4 When using the ISO on TCP (connection_type = B#16#12) to establish a
passive connection, condition code 80B4 alerts you that the TSAP entered
did not conform to one of the following address requirements:
 For a local TSAP length of 2 and a TSAP ID value of either E0 or E1

(hexadecimal) for the first byte, the second byte must be either 00 or 01.
 For a local TSAP length of 3 or greater and a TSAP ID value of either E0

or E1 (hexadecimal) for the first byte, the second byte must be either 00
or 01 and all other bytes must be valid ASCII characters.

 For a local TSAP length of 3 or greater and the first byte of the TSAP ID
does not have a value of either E0 or E1 (hexadecimal), then all bytes of
the TSAP ID must be valid ASCII characters.

Valid ASCII characters are byte values from 20 to 7E (hexadecimal).
1 80C3 All connection resources are in use.

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.2 Extended instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 159

ERROR STATUS
(W#16#...)

Description

1 80C4 Temporary communications error:
 The connection cannot be established at this time
 The interface is receiving new parameters
 The configured connection is currently being removed by a TDISCON

1 8722 CONNECT parameter: Source area invalid: area does not exist in DB
1 873A CONNECT parameter: Access to connection description not possible (e.g.

DB not available)
1 877F CONNECT parameter: Internal error such as an invalid ANY reference

Open Ethernet communication with connect/disconnect control

 Note
The processing of the TCON, TDISCON, TSEND, and TRCV instructions can take an
undetermined amount of time. To ensure that these instructions are processed in every scan
cycle, always call them from within the main program cycle scan, such as from a program
cycle OB or from a code block that is called from the program cycle scan. Do not call these
instructions from a hardware interrupt OB, a time-delay interrupt OB, a cyclic interrupt OB,
an error interrupt OB, or a startup OB.

Ethernet communication using TCP and ISO on TCP protocols
These program instructions control the communication process:
● TCON makes a connection.
● TSEND and TRCV send and receive data.
● TDISCON breaks the connection.
The minimum size of data that you can transmit or receive with the TSEND and TRCV
instructions is a byte. The TRCV instruction does not support the transmission of Boolean
data or Boolean arrays. For information transferring data with these instructions, see the
section on data consistency (Page 86).

 Note
The default setting of the LEN parameter (LEN = 0) uses the DATA parameter to determine
the length of the data being transmitted. Ensure that the DATA transmitted by the TSEND
instruction is the same size as the as the DATA parameter of the TRCV instruction.

Both communication partners execute the TCON instruction to set up and establish the
communications connection. You use parameters to specify the active and passive
communication end point partners. After the connection is set up and established, it is
automatically maintained and monitored by the CPU.
If the connection is terminated due to a line break or due to the remote communications
partner, for example, the active partner attempts to reestablish the configured connection.
You do not have to execute TCON again.

https://sites.google.com/site/chauchiduc

Programming instructions
6.2 Extended instructions

 S7-1200 Programmable controller
160 System Manual, 11/2009, A5E02486680-02

An existing connection is terminated and the set-up connection is removed when the
TDISCON instruction is executed or when the CPU has gone into STOP mode. To set up
and reestablish the connection, you must execute TCON again.

Functional description
TCON, TDISCON, TSEND, and TRCV operate asynchronously, which means that the job
processing extends over multiple instruction executions.
For example, you start a job for setting up and establishing a connection by executing an
instruction TCON with parameter REQ = 1. Then you use additional TCON executions to
monitor the job progress and test for job completion with parameter DONE.
The following table shows the relationships between BUSY, DONE, and ERROR. Use the
table to determine the current job status.

BUSY DONE ERROR Description
TRUE irrelevant irrelevant The job is being processed.
FALSE TRUE FALSE The job successfully completed.
FALSE FALSE TRUE The job was ended with an error. The cause of the error can be

found in the STATUS parameter.
FALSE FALSE FALSE A new job was not assigned.

TCON

Parameter Parameter

type
Data type Description

REQ IN Bool Control parameter REQUEST starts the job for
establishing the connection specified by ID. The job
starts at rising edge.

ID IN CONN_OUC
(Word)

Reference to the connection to be established to the
remote partner, or between the user program and the
communication layer of the operating system. ID must
be identical to the associated parameter ID in the local
connection description.
Value range: W#16#0001 to W#16#0FFF

CONNECT IN_OUT TCON-Param Pointer to the connection description
DONE OUT Bool Status parameter DONE:

 0: Job not yet started or still running
 1: Job executed without error

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.2 Extended instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 161

Parameter Parameter
type

Data type Description

BUSY OUT Bool BUSY = 1: Job is not yet complete
BUSY = 0: Job is complete

ERROR OUT Bool Status parameter ERROR:
ERROR = 1: An error occurred in job processing.
STATUS provides detailed information on the type of
error.

STATUS OUT Word Status parameter STATUS: Error information

TDISCON

TCP and ISO on TCP: TDISCON terminates a communications connection
from the CPU to a communication partner.

Parameter Parameter

type
Data type Description

REQ IN Bool Control parameter REQUEST starts the job for
establishing the connection specified by ID. The job
starts at rising edge.

ID IN CONN_OUC
(Word)

Reference to the connection to be terminated to the
remote partner or between the user program and the
communications level of the operating system. ID must
be identical to the associated parameter ID in the local
connection description.
Value range: W#16#0001 to W#16#0FFF

DONE OUT Bool Status parameter DONE:
 0: Job not yet started or still running
 1: Job executed without error

BUSY OUT Bool BUSY = 1: Job is not yet complete
BUSY = 0: Job is complete

ERROR OUT Bool ERROR = 1: Error occurred during processing.
STATUS OUT Word Error code

https://sites.google.com/site/chauchiduc

Programming instructions
6.2 Extended instructions

 S7-1200 Programmable controller
162 System Manual, 11/2009, A5E02486680-02

TSEND

Parameter Parameter

type
Data type Description

REQ IN Bool Control parameter REQUEST starts the send job on a
rising edge.
The data is transferred from the area specified by
DATA and LEN.

ID IN CONN_OUC
(Word)

Reference to the associated connection. ID must be
identical to the associated parameter ID in the local
connection description.
Value range: W#16#0001 to W#16#0FFF

LEN IN Int Maximum number of bytes to be sent with the job
DATA IN_OUT Variant Pointer to data area to send: Sender area; contains

address and length. The address refers to:
 The process image input table
 The process image output table
 A bit memory
 A data block

DONE OUT Bool Status parameter DONE:
 0: Job not yet started or still running.
 1: Job executed without error.

BUSY OUT Bool BUSY = 1: The job is not yet complete. A new job
cannot be triggered.

 BUSY = 0: Job is complete.

ERROR OUT Bool Status parameter ERROR:
ERROR = 1: Error occurred during processing.
STATUS provides detailed information on the type of
error

STATUS OUT Word Status parameter STATUS: Error information

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.2 Extended instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 163

TRCV

Parameter Parameter

type
Data type Description

EN_R IN Bool Control parameter enabled to receive: With EN_R = 1,
TRCV is ready to receive. The receive job is being
processed.

ID IN CONN_OUC
(Word)

Reference to the associated connection. ID must be
identical to the associated parameter ID in the local
connection description.
Value range: W#16#0001 to W#16#0FFF

LEN IN Int Length of the receive area in bytes (Default = 0, which
means that the DATA parameter determines the length
of the data to be received.).

DATA IN_OUT Variant Pointer to received data: Receive area that contains
address and length. The address refers to:
 The process image input table
 The process image output table
 A bit memory
 A data block

NDR OUT Bool Status parameter NDR:
 NDR = 0: Job not yet started or still running.
 NDR = 1: Job successfully completed.

BUSY OUT Bool BUSY = 1: The job is not yet complete. A new job
cannot be triggered.

 BUSY = 0: Job is complete.

ERROR OUT Bool ERROR=1: Error occurred during processing. STATUS
provides detailed information on the type of error.

STATUS OUT Word Error information
RCVD_LEN OUT Int Amount of data actually received, in bytes

https://sites.google.com/site/chauchiduc

Programming instructions
6.2 Extended instructions

 S7-1200 Programmable controller
164 System Manual, 11/2009, A5E02486680-02

Receive area
The TRCV instruction writes the received data to a receive area that is specified by the
following two variables:
● Pointer to the start of the area
● Length of the area

Note
The default setting of the LEN parameter (LEN = 0) uses the DATA parameter to
determine the length of the data being transmitted. Ensure that the DATA transmitted by
the TSEND instruction is the same size as the as the DATA parameter of the TRCV
instruction.

The following table shows how TRCV enters the received data in the receive area.

Protocol variant Entering the data in the receive area Parameter connection type
TCP Data reception with specified length B#16#11
ISO on TCP Protocol-controlled B#16#12

As soon as all the job data has been received, TRCV transfers it to the receive area and sets
NDR to 1.

Condition codes for TCON

ERROR STATUS

(W#16#...)
Explanation

0 0000 Connection was established successfully
0 7000 No job processing active
0 7001 Start job processing, establishing connection
0 7002 Follow-on call (REQ irrelevant), connection being established
1 8086 The ID parameter is outside the permitted range.
1 8087 Maximum number of connections reached; no additional connection possible
1 809B The local_device_id in the connection description does not match the CPU.
1 80A1 Connection or port is already occupied by user
1 80A2 Local or remote port is occupied by the system
1 80A3 Attempt being made to re-establish an existing connection
1 80A4 IP address of the remote connection end point is invalid; it may match the

local IP address
1 80A7 Communications error: you executed TDISCON before TCON was complete.

TDISCON must first completely terminate the connection referenced by the
ID.

1 80B3 Inconsistent parameter assignment: Group error for the error codes
W#16#80A0 to W#16#80A2, W#16#80A4, W#16#80B4 to W#16#80B9

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.2 Extended instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 165

ERROR STATUS
(W#16#...)

Explanation

1 80B4 When using the ISO on TCP (connection_type = B#16#12) to establish a
passive connection, condition code 80B4 alerts you that the TSAP entered
did not conform to one of the following address requirements:
 For a local TSAP length of 2 and a TSAP ID value of either E0 or E1

(hexadecimal) for the first byte, the second byte must be either 00 or 01.
 For a local TSAP length of 3 or greater and a TSAP ID value of either E0

or E1 (hexadecimal) for the first byte, the second byte must be either 00
or 01 and all other bytes must be valid ASCII characters.

 For a local TSAP length of 3 or greater and the first byte of the TSAP ID
does not have a value of either E0 or E1 (hexadecimal), then all bytes of
the TSAP ID must be valid ASCII characters.

Valid ASCII characters are byte values from 20 to 7E (hexadecimal).
1 80B5 Error in parameter active_est
1 80B6 Parameter assignment error in parameter connection_type
1 80B7 Error in one of the following parameters: block_length, local_tsap_id_len,

rem_subnet_id_len, rem_staddr_len, rem_tsap_id_len, next_staddr_len
1 80B8 Parameter in the local connection description and Parameter ID are different
1 80C3 All connection resources are in use.
1 80C4 Temporary communications error:

 The connection cannot be established at this time.
 The interface is receiving new parameters.
 The configured connection is currently being removed by TDISCON.

Condition codes for TDISCON

ERROR STATUS

(W#16#...)
Explanation

0 0000 Connection was terminated successfully
0 7000 No job processing active
0 7001 Start of job processing, connection being terminated
0 7002 Follow-on call (REQ irrelevant), connection being terminated
1 8086 The ID parameter is not in the permitted address range.
1 80A3 Attempt being made to terminate a non-existent connection
1 80C4 Temporary communications error: The interface is receiving new parameters

or the connection is currently being established.

Condition codes for TSEND

ERROR STATUS

(W#16#...)
Explanation

0 0000 Send job completed without error
0 7000 No job processing active
0 7001 Start of job processing, data being sent: During this processing the operating

system accesses the data in the DATA send area.

https://sites.google.com/site/chauchiduc

Programming instructions
6.2 Extended instructions

 S7-1200 Programmable controller
166 System Manual, 11/2009, A5E02486680-02

ERROR STATUS
(W#16#...)

Explanation

0 7002 Follow-on call (REQ irrelevant), job being processed: The operating system
accesses the data in the DATA send area during this processing.

1 8085 LEN parameter is greater than the largest permitted value.
1 8086 The ID parameter is not in the permitted address range
1 8088 LEN parameter is larger than the memory area specified in DATA
1 80A1 Communications error:

 The specified connection was not yet established
 The specified connection is currently being terminated. Transmission over

this connection is not possible.
 The interface is being reinitialized.

1 80C3 Internal lack of resources: A block with this ID is already being processed in a
different priority class.

1 80C4 Temporary communications error:
 The connection to the communications partner cannot be established at

this time.
 The interface is receiving new parameters or the connection is currently

being established.

Condition codes for TRCV

ERROR STATUS

(W#16#...)
Explanation

0 0000 New data accepted: The current length of the received data is shown in
RCVD_LEN.

0 7000 Block not ready to receive
0 7001 Block is ready to receive, receive job was activated.
0 7002 Follow-on call, receive job being processed: Data is written to the receive

area during this processing For this reason, an error could result in
inconsistent data in the receive area.

1 8085 The LEN parameter is greater than the largest permitted value, or you
changed the LEN or DATA parameter since the first call.

1 8086 The ID parameter is not in the permitted address range
1 8088 Receive area is too small: The ·Value LEN is greater than the receive area

specified by DATA.
1 80A1 Communications error:

 The specified connection has not yet been established
 The specified connection is currently being terminated. A receive job over

this connection is not possible.
 The interface is receiving new parameters.

1 80C3 Internal lack of resources: A block with this ID is already being processed in a
different priority class.

1 80C4 Temporary communications error:
 The connection to the partner cannot be established at the moment.
 The interface is receiving new parameter settings or the connection is

currently being established.

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.2 Extended instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 167

6.2.5.2 Point-to-Point instructions
The Point-to-Point (PtP) chapter (Page 237) provides detailed information about the PtP
instructions and the communication modules.

6.2.6 Interrupt instructions

6.2.6.1 Attach and detach instructions

You can activate and deactivate interrupt event-driven
subprograms with the ATTACH and DETACH instructions.
 ATTACH enables interrupt OB subprogram execution for a

hardware interrupt event.
 DETACH disables interrupt OB subprogram execution for a

hardware interrupt event.

Parameter Parameter

type
Data type Description

OB_NR IN Int Organization block identifier:
Select from the available hardware interrupt OBs
that were created using the "Add new block" feature.
Double-click on the parameter field, then click on the
helper icon to see the available OBs.

EVENT IN DWord Event identifier:
Select from the available hardware interrupt events
that were enabled in PLC device configuration for
digital inputs or high-speed counters. Double-click
on the parameter field, then click on the helper icon
to see the available events.

ADD
(ATTACH only)

IN Bool ADD = 0 (default): This event replaces all previous
event attachments for this OB.
ADD = 1: This event is added to previous event
attachments for this OB.

RET_VAL OUT Int Execution condition code

https://sites.google.com/site/chauchiduc

Programming instructions
6.2 Extended instructions

 S7-1200 Programmable controller
168 System Manual, 11/2009, A5E02486680-02

Hardware interrupt events
The following hardware interrupt events are supported by the CPU:
● Rising edge events (all built-in CPU digital inputs plus any signal board digital inputs)

– A rising edge occurs when the digital input transitions from OFF to ON as a response
to a change in the signal from a field device connected to the input.

● Falling edge events (all built-in CPU digital inputs plus any signal board input)
– A falling edge occurs when the digital input transitions from ON to OFF.

● High-speed counter (HSC) current value = reference value (CV = RV) events (HSC 1
through 6)
– A CV = RV interrupt for a HSC is generated when the current count transitions from an

adjacent value to the value that exactly matches a reference value that was previously
established.

● HSC direction changed events (HSC 1 through 6)
– A direction changed event occurs when the HSC is detected to change from

increasing to decreasing, or from decreasing to increasing.
● HSC external reset events (HSC 1 through 6)

– Certain HSC modes allow the assignment of a digital input as an external reset that is
used to reset the HSC count value to zero. An external reset event occurs for such a
HSC, when this input transitions from OFF to ON.

Enabling hardware interrupt events in the device configuration
Hardware interrupts must be enabled during the device configuration. You must check the
enable-event box in the device configuration for a digital input channel or a HSC, if you want
to attach this event during configuration or run time.
Check box options within the PLC device configuration:
● Digital input

– Enable rising edge detection
– Enable falling edge detection

● High-speed counter (HSC)
– Enable this high-speed counter for use
– Generate interrupt for counter value equals reference value count
– Generate interrupt for external reset event
– Generate interrupt for direction change event

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.2 Extended instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 169

Adding new hardware interrupt OB code blocks to your program
By default, no OB is attached to an event when the event is first enabled. This is indicated by
the "HW interrupt:" device configuration "<not connected>" label. Only hardware-interrupt
OBs can be attached to a hardware interrupt event. All existing hardware-interrupt OBs
appear in the "HW interrupt:" drop-down list. If no OB is listed, then you must create an OB
of type "Hardware interrupt" as follows. Under the project tree "Program blocks" branch:
1. Double-click "Add new block", select "Organization block (OB)" and choose "Hardware

interrupt".
2. Optionally, you can rename the OB, select the programming language (LAD or FBD), and

select the block number (switch to manual and choose a different block number than that
suggested).

3. Edit the OB and add the programmed reaction that you want to execute when the event
occurs. You can call FCs and FBs from this OB, to a nesting depth of four.

OB_NR parameter
All existing hardware-interrupt OB names appear in the device configuration "HW interrupt:"
drop-down list and in the ATTACH / DETACH parameter OB_NR drop-list.

EVENT parameter
When a hardware interrupt event is enabled, a unique default event name is assigned to this
particular event. You can change this event name by editing the "Event name:" edit box, but
it must be a unique name. These event names become tag names in the "Constants" tag
table, and appear on the EVENT parameter drop-down list for the ATTACH and DETACH
instruction boxes. The value of the tag is an internal number used to identify the event.

General operation
Each hardware event can be attached to a hardware-interrupt OB which will be queued for
execution when the hardware interrupt event occurs. The OB-event attachment can occur at
configuration time or at run time.
You have the option to attach or detach an OB to an enabled event at configuration time. To
attach an OB to an event at configuration time, you must use the "HW interrupt:" drop-down
list (click on the down arrow on the right) and select an OB from the list of available
hardware-interrupt OBs. Select the appropriate OB name from this list, or select "<not
connected>" to remove the attachment.
You can also attach or detach an enabled hardware interrupt event during run time. Use the
ATTACH or DETACH program instructions during run time (multiple times if you wish) to
attach or detach an enabled interrupt event to the appropriate OB. If no OB is currently
attached (either from a "<not connected>" selection in device configuration, or as a result of
executing a DETACH instruction), the enabled hardware interrupt event is ignored.

DETACH operation
Use the DETACH instruction to detach either a particular event or all events from a particular
OB. If an EVENT is specified, then only this one event is detached from the specified
OB_NR; any other events currently attached to this OB_NR will remain attached. If no
EVENT is specified, then all events currently attached to OB_NR will be detached.

https://sites.google.com/site/chauchiduc

Programming instructions
6.2 Extended instructions

 S7-1200 Programmable controller
170 System Manual, 11/2009, A5E02486680-02

Condition codes

RET_VAL
(W#16#....)

ENO status Description

0000 1 No error
0001 0 Nothing to Detach (DETACH only)
8090 0 OB does not exist
8091 0 OB is wrong type
8093 0 Event does not exist

6.2.6.2 Start and cancel time delay interrupt instructions
You can start and cancel time delay interrupt processing with the SRT_DINT and CAN_DINT
instructions. Each time delay interrupt is a one-time event that occurs after the specified
delay time. If the time delay event is cancelled before the time delay expires, the program
interrupt does not occur.

SRT_DINT starts a time delay interrupt that executes an OB
(organization block) subprogram when the delay time specified
by parameter DTIME has elapsed.

CAN_DINT cancels a time delay interrupt that has already
started. The time delay interrupt OB is not executed in this case.

SRT_DINT parameters

Parameter Parameter

type
Data type Description

OB_NR IN Int Organization block (OB) to be started after a time-delay:
Select from the available time-delay interrupt OBs that were
created using the "Add new block" project tree feature.
Double-click on the parameter field, then click on the helper
icon to see the available OBs.

DTIME IN Time Time delay value (1 to 60000 ms)
You can create longer delay times, for example, by using a
counter inside a time delay interrupt OB.

SIGN IN Word Not used by the S7-1200; any value is accepted
RET_VAL OUT Int Execution condition code

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.2 Extended instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 171

CAN_DINT parameters

Parameter Parameter

type
Data type Description

OB_NR IN Int Time delay interrupt OB identifier. You can use an OB
number or symbolic name.

RET_VAL OUT Int Execution condition code

Operation
The SRT_DINT instruction specifies a time delay, starts the internal time delay timer, and
associates a time delay interrupt OB subprogram with the time delay timeout event. When
the specified time delay has elapsed, a program interrupt is generated that triggers the
execution of the associated time delay interrupt OB. You can cancel an in-process time
delay interrupt before the specified time delay occurs by executing the CAN_DINT
instruction. The total number of active time delay and time cyclic interrupt events must not
exceed four.

Adding time delay interrupt OB subprograms to your project
Only time delay interrupt OBs can be assigned to the SRT_DINT and CAN_DINT
instructions. No time delay interrupt OB exists in a new project. You must add time delay
interrupt OBs to your project. To create a time-delay interrupt OB, follow these steps:
1. Double-click the "Add new block" item in the "Program blocks" branch of the project tree,

select "Organization block (OB)", and choose "Time delay interrupt".
2. You have the option to rename the OB, select the programming language, or select the

block number. Switch to manual numbering if you want to assign a different block number
than the number that was assigned automatically.

3. Edit the time delay interrupt OB subprogram and create programmed reaction that you
want to execute when the time delay timeout event occurs. You can call other FC and FB
code blocks from the time delay interrupt OB, with a maximum nesting depth of four.

4. The newly assigned time delay interrupt OB names will be available when you edit the
OB_NR parameter of the SRT_DINT and CAN_DINT instructions.

Condition codes

RET_VAL
(W#16#...)

Description

0000 No error occurred
8090 Incorrect parameter OB_NR
8091 Incorrect parameter DTIME
80A0 Time delay interrupt has not started

https://sites.google.com/site/chauchiduc

Programming instructions
6.2 Extended instructions

 S7-1200 Programmable controller
172 System Manual, 11/2009, A5E02486680-02

6.2.6.3 Disable and Enable alarm interrupt instructions

Use the DIS_AIRT and EN_AIRT instructions to disable and enable alarm interrupt
processing.

DIS_AIRT delays the processing of new interrupt events. You can execute
DIS_AIRT more than once in an OB. The DIS_AIRT executions are counted
by the operating system. Each of these remains in effect until it is cancelled
again specifically by an EN_AIRT instruction, or until the current OB has
been completely processed.

Once they are enabled again, the interrupts that occurred while DIS_AIRT was in effect are
processed, or the interrupts are processed as soon as the current OB has been executed.

EN_AIRT enables the processing of interrupt events that you previously
disabled with the DIS_AIRT instruction. Each DIS_AIRT execution must be
cancelled by an EN_AIRT execution. If, for example, you have disabled
interrupts five times with five DIS_AIRT executions, you must cancel these
with five EN_AIRT executions.

The EN_AIRT executions must occur within the same OB, or any FC or FB called from the
same OB, before interrupts are enabled again for this OB.
Parameter RET_VAL indicates the number of times that interrupt processing was disabled,
which is the number of queued DIS_AIRT executions. Interrupt processing is only enabled
again when parameter RET_VAL = 0.

Parameter Parameter

type
Data type Description

RET_VAL OUT Int Number of delays = number of DIS_AIRT executions in
the queue.

6.2.7 PID control

The "PID_Compact" statement makes a PID controller with
optimizing self tuning for automatic and manual mode
available.
For information about the PID_Compact instruction, refer to
the online help of the TIA portal.

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.2 Extended instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 173

6.2.8 Motion control instructions
The motion control instructions use an associated technology data block and the dedicated
PTO (pulse train outputs) of the CPU to control the motion on an axis. For information about
the motion control instructions, refer to the online help of STEP 7 Basic.

NOTICE
The maximum pulse frequency of the pulse output generators is 100 KHz for the digital
outputs of the CPU and 20 KHz for the digital outputs of the signal board. However, STEP 7
Basic does not alert you when you configure an axis that with a maximum speed or
frequency that exceeds this hardware limitation. This could cause problems with your
application, so always ensure that you do not exceed the maximum pulse frequency of the
hardware.

MC_Power enables and
disables a motion control axis.

MC_Reset resets all motion
control errors. All motion
control errors that can be
acknowledged are
acknowledged.

MC_Home establishes the
relationship between the axis
control program and the axis
mechanical positioning system.

MC_Halt cancels all motion
processes and causes the
axis motion to stop. The
stop position is not defined.

MC_MoveJog executes jog
mode for testing and startup
purposes.

https://sites.google.com/site/chauchiduc

Programming instructions
6.2 Extended instructions

 S7-1200 Programmable controller
174 System Manual, 11/2009, A5E02486680-02

MC_MoveAbsolute starts
motion to an absolute position.
The job ends when the target
position is reached.

MC_MoveRelative starts a
positioning motion relative
to the start position.

MC_MoveVelocity causes
the axis to travel with the
specified speed.

 Note
Pulse-train outputs cannot be used by other instructions in the user program
When you configure the outputs of the CPU or signal board as pulse generators (for use with
the PWM or basic motion control instructions), the corresponding outputs addresses (Q0.0,
Q0.1, Q4.0, and Q4.1) are removed from the Q memory and cannot be used for other
purposes in your user program. If your user program writes a value to an output used as a
pulse generator, the CPU does not write that value to the physical output.

6.2.9 Pulse instruction

6.2.9.1 CTRL_PWM instruction

① Cycle time

The CTRL_PWM Pulse Width Modulation (PWM)
instruction provides a fixed cycle time output with a
variable duty cycle. The PWM output runs
continuously after being started at the specified
frequency (cycle time).
The pulse width is varied as required to effect the
desired control. ② Pulse width

Pulse width can be expressed as hundreths of the cycle time (0 – 100), as thousandths (0 –
1000), as ten thousandths (0 – 10000), or as S7 analog format. The pulse width can vary
from 0 (no pulse, always off) to full scale (no pulse, always on).
Since the PWM output can be varied from 0 to full scale, it provides a digital output that in
many ways is the same as an analog output. For example, the PWM output can be used to
control the speed of a motor from stop to full speed, or it can be used to control position of a
valve from closed to fully opened.

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.2 Extended instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 175

Two pulse generators are available for controlling high-speed pulse output functions: PWM
and Pulse train output (PTO). PTO is used by the motion control instructions. You can assign
each pulse generator to either PWM or PTO, but not both at the same time.
The two pulse generators are mapped to specific digital outputs as shown in the following
table. You can use onboard CPU outputs, or you can use the optional signal board outputs.
The output point numbers are shown in the following table (assuming the default output
configuration). If you have changed the output point numbering, then the output point
numbers will be those you assigned. Regardless, PTO1/PWM1 uses the first two digital
outputs, and PTO2/PWM2 uses the next two digital outputs, either on the CPU or on the
attached signal board. Note that PWM requires only one output, while PTO can optionally
use two outputs per channel. If an output is not required for a pulse function, it is available
for other uses.

Description Default output assignment
 Pulse Direction

Onboard CPU Q0.0 Q0.1 PTO 1
Signal board Q4.0 Q4.1

Onboard CPU Q0.0 -- PWM 1
Signal board Q4.0 --

Onboard CPU Q0.2 Q0.3 PTO 2
Signal board Q4.2 Q4.3

Onboard CPU Q0.2 -- PWM 2
Signal board Q4.2 --

Configuring a pulse channel for PWM
To prepare for PWM operation, first configure a pulse channel in the device configuration by
selecting the CPU, then Pulse Generator (PTO/PWM), and choose either PWM1 or PWM2.
Enable the pulse generator (check box). If a pulse generator is enabled, a unique default
name is assigned to this particular pulse generator. You can change this name by editing it
in the "Name:" edit box, but it must be a unique name. Names of enabled pulse generators
will become tags in the "constant" tag table, and will be available for use as the PWM
parameter of the CTRL_PWM instruction.

NOTICE
The maximum pulse frequency of the pulse output generators is 100 KHz for the digital
outputs of the CPU and 20 KHz for the digital outputs of the signal board. However, STEP 7
Basic does not alert you when you configure an axis that with a maximum speed or
frequency that exceeds this hardware limitation. This could cause problems with your
application, so always ensure that you do not exceed the maximum pulse frequency of the
hardware.

You have the option to rename the pulse generator, add a comment, and assign parameters
as follows:
● Pulse generator used as follows: PWM or PTO (choose PWM)
● Output source: onboard CPU or Signal Board
● Time base: milliseconds or microseconds

https://sites.google.com/site/chauchiduc

Programming instructions
6.2 Extended instructions

 S7-1200 Programmable controller
176 System Manual, 11/2009, A5E02486680-02

● Pulse width format:
– Hundreths (0 to 100)
– Thousandths (0 to 1000)
– Ten-thousandths (0 to 10000)
– S7 analog format (0 to 27648)

● Cycle time: Enter your cycle time value. This value can only be changed in Device
configuration.

● Initial pulse width: Enter your initial pulse width value. The pulse width value can be
changed during runtime.

Output addresses

Start address: Enter the Q word address where you want to
locate the pulse width value. The default location is QW1000 for
PWM1, and QW1002 for PWM2. The value at this location
controls the width of the pulse and is initialized to the "Initial
pulse width:" value specified above each time the CPU
transitions from STOP to RUN mode. You change this Q-word
value during run time to cause a change in the pulse width.

Parameter Parameter

type
Data
type

Initial value Description

PWM IN Word 0 PWM identifier:
Names of enabled pulse generators will
become tags in the "constant" tag table, and
will be available for use as the PWM
parameter.

ENABLE IN Bool 1=start pulse generator
0 = stop pulse generator

BUSY OUT Bool 0 Function busy
STATUS OUT Word 0 Execution condition code

Operation
A data block (DB) is used by the CTRL_PWM instruction to store parameter information.
When placing a CTRL_PWM instruction into the program editor, a DB will be assigned. The
data block parameters are not separately changed by the user, but are controlled by the
CTRL_PWM instruction.
Specify the enabled pulse generator to use, by using its tag name for the PWM parameter.
When the EN input is TRUE, the PWM_CTRL instruction starts or stops the identified PWM
based on the value at the ENABLE input. Pulse width is specified by the value in the
associated Q word output address.
Because the S7-1200 processes the request when the CTRL_PWM instruction is executed,
parameter BUSY will always report FALSE on S7-1200 CPU models.

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.3 Global library instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 177

If an error is detected, then ENO is set to FALSE, and parameter STATUS contains a
condition code.
The pulse width will be set to the initial value configured in device configuration when the
PLC first enters the RUN mode. You write values to the Q-word location specified in device
configuration ("Output addresses" / "Start address:") as needed to change the pulse width.
You use an instruction such as a move, convert, math, or PID box to write the desired pulse
width to the appropriate Q word. You must use the valid range for the Q-word value (percent,
thousandths, ten-thousandths, or S7 analog format).

Condition codes

STATUS value Description
0 No error
80A1 PWM identifier does not address a valid PWM

Digital I/O points assigned to PWM and PTO cannot be forced
The digital I/O points used by the pulse-width modulation (PWM) and pulse-train output
(PTO) devices are assigned during device configuration. When digital I/O point addresses
are assigned to these devices, the values of the assigned I/O point addresses cannot be
modified by the Watch table force function.

Pulse-train outputs cannot be used by other instructions in the user program
When you configure the outputs of the CPU or signal board as pulse generators (for use with
the PWM or basic motion control instructions), the corresponding outputs addresses (Q0.0,
Q0.1, Q4.0, and Q4.1) are removed from the Q memory and cannot be used for other
purposes in your user program. If your user program writes a value to an output used as a
pulse generator, the CPU does not write that value to the physical output.

6.3 Global library instructions

6.3.1 USS
The USS Protocol library makes controlling Siemens drives which support USS protocol. The
instructions include functions that are specifically designed for using the USS protocol to
communicate with the drive. The CM 1241 RS485 module communicates with the drives on
RS485 ports. You can control the physical drive and the read/write drive parameters with the
USS library.

6.3.1.1 Requirements for using the USS protocol
The library provides 1 FB and 3 FCs to support the USS protocol. Each CM 1241 RS485
communications module supports a maximum of 16 drives.

https://sites.google.com/site/chauchiduc

Programming instructions
6.3 Global library instructions

 S7-1200 Programmable controller
178 System Manual, 11/2009, A5E02486680-02

A single Instance Data Block contains temporary storage and buffers for all drives on the
USS network connected to each PtP communication module you install. The USS functions
for these drives share the information in this data block.

All drives (up to 16) connected to a single CM 1241 RS485 are part of the same USS
network. All drives connected to a different CM 1241 RS485 are part of a different USS
network. Because the S7-1200 supports up to three CM 1241 RS485 devices, you can have
up to three USS networks, with up to 16 drives on each network, for a total of 48 USS drives
supported.
Each USS network is managed using a unique data block (three data blocks are required for
three USS networks using three CM 1241 RS485 devices). All instructions associated with a
single USS network must share this data block. This includes all USS_DRV, USS_PORT,
USS_RPM, and USS_WPM instructions used to control all drives on a single USS network.
The USS_DRV instruction is a Function Block (FB). When you place the USS_DRV
instruction into the editor, you will be prompted by the "Call options" dialog for which DB to
assign for this FB. If this is the first USS_DRV instruction in this program for this USS
network, then you can accept the default DB assignment (or change the name if you wish),
and the new DB will be created for you. If however this is not the first USS_DRV instruction
for this channel, then you must use the drop-down list in the "Call options" dialog to select
the appropriate DB that was previously assigned for this USS network.
Instructions USS_PORT, USS_RPM, and USS_WPM are all Functions (FC's). No DB is
assigned when you place these FC's in the editor. Instead, you must assign the appropriate
DB to the "USS_DB" input of these instructions (double-click on the parameter field, then
click on the helper icon to see the available DB's).

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.3 Global library instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 179

The USS_PORT function handles actual communication between the CPU and the drives via
the PtP communication module. Each call to this function handles one communication with
one drive. Your program must call this function fast enough to prevent a communication
timeout by the drives. You may call this function in the Main or any interrupt OB.
The USS_DRV function block provides your program access to a specified drive on the USS
network. Its inputs and outputs are the status and controls for the drive. If there are 16 drives
on the network, your program must have at least 16 USS_DRV calls, one for each drive.
These blocks should be called at the rate that is required to control the functions of the drive.
You may only call the USS_DRV function block from the main OB.

CAUTION
Only call USS_DRV, USS_RPM, USS_WPM from the Main OB. The USS_PORT function
can be called from any OB, usually from a Time delay interrupt.
Failure to prevent interruption of USS_PORT may produce unexpected errors.

The USS_RPM and USS_WPM functions read and write the remote drive operating
parameters. These parameters control the internal operation of the drive. See the drive
manual for the definition of these parameters. Your program can contain as many of these
functions as necessary, but only one read or write request can be active per drive, at any
given time. You may only call the USS_RPM and USS_WPM functions from a Main OB.

Calculating the time required for communicating with the drive
Communications with the drive are asynchronous to the S7-1200 scan. The S7-1200
typically completes several scans before one drive communications transaction is
completed.
The USS_PORT interval is the time required for one drive transaction. The table below
shows the minimum USS_PORT interval for each baud rate. Calling the USS_PORT function
more frequently than the USS_PORT interval will not increase the number of transactions.
The drive timeout interval is the amount of time that might be taken for a transaction, if
communications errors caused 3 tries to complete the transaction. By default, the USS
protocol library automatically does up to 2 retries on each transaction.

Baud rate Calculated minimum USS_PORT call

Interval (milliseconds)
Drive message interval timeout per
drive (milliseconds)

1200 790 2370
2400 405 1215
4800 212.5 638
9600 116.3 349
19200 68.2 205
38400 44.1 133
57600 36.1 109
115200 28.1 85

https://sites.google.com/site/chauchiduc

Programming instructions
6.3 Global library instructions

 S7-1200 Programmable controller
180 System Manual, 11/2009, A5E02486680-02

6.3.1.2 USS_DRV instruction
The USS_DRV instruction exchanges data with the drive by creating request messages and
interpreting the drive response messages. A separate function block should be used for each
drive, but all USS functions associated with one USS network and PtP communication
module must use the same Instance Data Block. You must create the DB name when you
place the first USS_DRV instruction and you reuse that DB that was created by the initial
instruction usage.
When the initial USS_DRV execution is made, the drive indicated by the USS address
(parameter DRIVE) is initialized in the Instance DB. After this initialization, subsequent
executions of USS_PORT can then begin communication to the drive at this drive number.
Changing the Drive number requires a PLC STOP to RUN mode transition that initializes the
Instance DB. Input parameters are configured into the USS TX message buffer and outputs
are read from a "previous" valid response buffer if any exists. There is no data transmission
during USS_DRV execution. Drives are communicated with when USS_PORT is executed.
USS_DRV only configures the messages to be sent and interprets data that might have been
received from a previous request.
You can control the drive direction of rotation using either the DIR input (BOOL) or using the
sign (positive or negative) with the SPEED_SP input (REAL). The following table indicates
how these inputs work together to determine the drive direction, assuming the motor is wired
for forward rotation.

SPEED_SP DIR Drive Direction
Value > 0 0 Reverse
Value > 0 1 Forward
Value < 0 0 Forward
Value < 0 1 Reverse

LAD (default view) LAD (expanded view)

Expand the box to reveal all
the parameters by clicking
the bottom of the box.

The parameter pins that are
grayed are optional and do
not need to be assigned.

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.3 Global library instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 181

Parameter Parameter

type
Data type Description

RUN IN Bool Drive start bit: When true, this input enables the drive to
run at the preset speed.

OFF2 IN Bool Electrical stop bit: When false, this bit cause the drive to
coast to a stop with no braking.

OFF3 IN Bool Fast stop bit – When false, this bit causes a fast stop by
causing braking the drive rather than just allowing the
drive to coast to a stop.

F_ACK IN Bool Fault acknowledge bit – This bit is set to reset the fault
bit on a drive. This bit is set after the fault is cleared to
indicate to the drive it no longer needs to indicate the
previous fault.

DIR IN Bool Drive direction control – This bit is set to indicate that the
direction is forward (for positive SPEED_SP).

DRIVE IN USInt Drive address: This input is the address of the USS
drive. The valid range is drive 1 to drive 16.

PZD_LEN IN USInt Word length – This is the number of words of PZD data.
The valid values are 2, 4, 6, or 8 words. Default is 2.

SPEED_SP IN Real Speed set point – This is the speed of the drive as a
percentage of configured frequency. A positive value
specifies forward direction (when DIR is true).

CTRL3 IN UInt Control word 3 – A value written to a user-configurable
parameter on the drive. The user must configure this on
the drive. Optional parameter.

CTRL4 IN UInt Control word 4 – A value written to a user-configurable
parameter on the drive. The user must configure this on
the drive. Optional parameter.

CTRL5 IN UInt Control word 5 – A value written to a user-configurable
parameter on the drive. The user must configure this on
the drive. Optional parameter.

CTRL6 IN UInt Control word 6 – A value written to a user-configurable
parameter on the drive. The user must configure this on
the drive.

CTRL7 IN UInt Control word 7 – A value written to a user-configurable
parameter on the drive. The user must configure this on
the drive. Optional parameter.

CTRL8 IN UInt Control word 8 – A value written to a user-configurable
parameter on the drive. The user must configure this on
the drive. Optional parameter.

NDR OUT Bool New data ready – When true the bit indicates that the
outputs contain data from a new communication request.

ERROR OUT Bool Error occurred – When true, this indicates that an error
has occurred and the STATUS output is valid. All other
outputs are set to zero on an error. Communication
errors are only reported on the USS_PORT instruction
ERROR and STATUS outputs.

STATUS OUT UInt The status value of the request. It indicates the result of
the scan. This is not a status word returned from the
drive.

https://sites.google.com/site/chauchiduc

Programming instructions
6.3 Global library instructions

 S7-1200 Programmable controller
182 System Manual, 11/2009, A5E02486680-02

Parameter Parameter
type

Data type Description

RUN_EN OUT Bool Run enabled – This bit indicates whether the drive is
running.

D_DIR OUT Bool Drive direction – This bit indicates whether the drive is
running forward.

INHIBIT OUT Bool Drive inhibited – This bit indicates the state of the inhibit
bit on the drive.

FAULT OUT Bool Drive fault – This bit indicates that the drive has
registered a fault. The user must fix the problem and
then set the F_ACK bit to clear this bit when set.

SPEED OUT REAL Drive Current Speed (scaled value of drive status word
2) – The value of the speed of the drive as a percentage
of configured speed.

STATUS1 OUT UInt Drive Status Word 1 – This value contains fixed status
bits of a drive.

STATUS3 OUT UInt Drive Status Word 3 – This value contains a user-
configurable status word on the drive.

STATUS4 OUT UInt Drive Status Word 4 – This value contains a user-
configurable status word on the drive.

STATUS5 OUT UInt Drive Status Word 5 – This value contains a user-
configurable status word on the drive.

STATUS6 OUT UInt Drive Status Word 6 – This value contains a user-
configurable status word on the drive.

STATUS7 OUT UInt Drive Status Word 7 – This value contains a user-
configurable status word on the drive.

STATUS8 OUT UInt Drive Status Word 8 – This value contains a user-
configurable status word on the drive.

6.3.1.3 USS_PORT instruction
The USS_PORT instruction handles communication over the USS network. Typically there is
only one USS_PORT function per PtP communication module in the program, and each call
of this function handles a transmission to or from a single drive. Your program must execute
the USS_PORT function often enough to prevent drive timeouts. All USS functions
associated with one USS network and PtP communication module must use the same
Instance Data Block. USS_PORT is usually called from a time delay interrupt OB to prevent
drive timeouts and keep the most recent USS data updates available for USS_DRV calls.

LAD FBD

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.3 Global library instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 183

Parameter Parameter

type
Data type Description

PORT IN Port PtP communications module. Identifier:
This a constant which can be referenced within the
"Constants" tab of the default tag table.

BAUD IN DInt The Baud Rate to be used for USS communication.
USS_DB IN DInt This is a reference to the instance DB that is created and

initialized when a USS_DRV instruction is placed in your
program.

ERROR OUT Bool When true, this pin indicates that an error has occurred and
the STATUS output is valid.

STATUS OUT UInt The status value of the request. It indicates the result of the
scan or initialization. Additional information is available in
the "USS_Extended_Error" variable for some status codes.

6.3.1.4 USS_RPM instruction

LAD FBD

The USS_RPM instruction reads a
parameter from the drive. All USS
functions associated with one USS
network and PtP communication
module must use the same data
block. USS_RPM must be called
from the main OB.

Parameter Parameter

type
Data type Description

REQ IN Bool Send request: When true, it indicates that a new read
request is desired. This is ignored if the request for this
parameter is already pending.

DRIVE IN USInt Drive address: This input is the address of the USS drive.
The valid range is drive 1 to drive 16.

PARAM IN UInt Parameter number: This input designates which drive
parameter is written. The range of this parameter is 0 to
2047. See your drive manual for details on how to access
any parameters above this range.

INDEX IN UInt Parameter index: This input designates which Drive
Parameter index is to be written. A 16-bit value where the
Least Significant Byte is the actual index value with a range
of (0 to 255). The Most Significant Byte may also be used
by the drive and is drive specific. See your drive manual for
details.

USS_DB IN Variant This is a reference to the instance DB that is created and
initialized when a USS_DRV instruction is placed in your
program.

https://sites.google.com/site/chauchiduc

Programming instructions
6.3 Global library instructions

 S7-1200 Programmable controller
184 System Manual, 11/2009, A5E02486680-02

Parameter Parameter
type

Data type Description

VALUE IN Word, Int,
UInt,
DWord,
DInt, UDInt,
Real

This is the value of the parameter that was read and is valid
only when the DONE bit is true.

DONE OUT Bool Done: When TRUE indicates that the VALUE output holds
the previously requested read parameter value.
This bit is set when USS_DRV sees the read response data
from the drive.
This bit is reset when either:
 you request the response data via another USS_RPM

poll
 Or
 On the second of the next two calls to USS_DRV

ERROR OUT Bool Error occurred – When true, this indicates that an error has
occurred and the STATUS output is valid. All other outputs
are set to zero on an error. Communication errors are only
reported on the USS_PORT instruction ERROR and
STATUS outputs.

STATUS OUT UInt This is the status value of the request. It indicates the result
of the read request. Additional information is available in the
"USS_Extended_Error" variable for some status codes.

6.3.1.5 USS_WPM instruction

LAD FBD

The USS_WPM instruction modifies
a parameter in the drive. All USS
functions associated with one USS
network and PtP communication
module must use the same data
block. USS_WPM must be called
from the main OB.

 Note
EEPROM write operations
Beware of overusing the EEPROM permanent write operation. Minimize the number of
EEPROM write operations to extend the EEPROM life.

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.3 Global library instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 185

Parameter Parameter

type
Data type Description

REQ IN Bool Send request: When true, it indicates that a new write
request is desired. This is ignored if the request for this
parameter is already pending.

DRIVE IN USInt Drive address: This input is the address of the USS drive.
The valid range is drive 1 to drive 16.

PARAM IN UInt Parameter number: This input designates which drive
parameter is written. The range of this parameter is 0 to
2047. See your drive manual for details on how to access
any parameters above this range.

INDEX IN UInt Parameter index: This input designates which Drive
Parameter index is to be written. A 16-bit value where the
Least Significant Byte is the actual index value with a range
of (0 to 255). The Most Significant Byte may also be used
by the drive and is drive specific. See your drive manual for
details.

EEPROM IN Bool Store To Drive EEPROM: When true, writes to the drive
parameter will be stored in the drive EEPROM. If false, the
write is temporary and will not be retained if drive is power
cycled.

VALUE IN Word, Int,
UInt,
DWord,
DInt, UDInt,
Real

The value of the parameter that is to be written. It must be
valid on the transition of REQ.

USS_DB IN Variant This is a reference to the instance DB that is created and
initialized when a USS_DRV instruction is placed in your
program.

DONE OUT Bool Done: When TRUE indicates that the input VALUE has
been written to the drive.
This bit is set when USS_DRV sees the write response data
from the drive.
This bit is reset when either:
You request the drive's confirmation that the write is
complete via another USS_WPM poll or on the second of
the next two calls to USS_DRV.

ERROR OUT Bool Error occurred: When true, this indicates that an error has
occurred and the STATUS output is valid. All other outputs
are set to zero on an error. Communication errors are only
reported on the USS_PORT instruction ERROR and
STATUS outputs.

STATUS OUT UInt This is the status value of the request. It indicates the result
of the write request. Additional information is available in
the "USS_Extended_Error" variable for some status codes.

https://sites.google.com/site/chauchiduc

Programming instructions
6.3 Global library instructions

 S7-1200 Programmable controller
186 System Manual, 11/2009, A5E02486680-02

6.3.1.6 USS status codes
USS instruction status codes are returned at the STATUS output of the USS functions.

STATUS value
(W#16#....)

Description

0000 No error
8180 The length of the drive response did not match the characters received from the drive. The drive number

where the error occurred is returned in the "USS_Extended_Error" variable. See the extended error
description below this table.

8181 VALUE parameter was not a Word, Real or DWord data type
8182 User supplied a Word for a parameter value and received a DWord or Real from the drive in the

response
8183 User supplied a DWord or Real for a parameter value and received a Word from the drive in the

response
8184 Response telegram from drive had a bad checksum. The drive number where the error occurred is

returned in the "USS_Extended_Error" variable. See the extended error description below this table.
8185 Illegal drive address (valid drive address range: 1-16)
8186 Speed set point out of valid range (valid speed SP range: -200% to 200%)
8187 Wrong drive number responded to the request sent. The drive number where the error occurred is

returned in the "USS_Extended_Error" variable. See the extended error description below this table.
8188 Illegal PZD word length specified (valid range = 2, 4, 6 or 8 words)
8189 Illegal Baud Rate was specified
818A Parameter request channel is in use by another request for this drive
818B Drive has not responded to requests and retries. The drive number where the error occurred is returned

in the "USS_Extended_Error" variable. See the extended error description below this table.
818C Drive returned an extended error on a parameter request operation. See the extended error description

below this table.
818D Drive returned an illegal access error on a Parameter request operation. See your drive manual for

information of why parameter access may be limited
818E Drive has not been initialized: This error code is returned to USS_RPM or USS_WPM when USS_DRV

for that drive has not been called at least once. This keeps the initialization of first scan of USS_DRV
from overwriting a pending Parameter Read or Write request since it initializes the Drive as a new entry.
To fix this error, call USS_DRV for this drive number.

80Ax-80Fx Specific errors returned from PtP (Point-to-Point) communication FBs called by the USS Library: These
error code values are not modified by the USS library and are defined in the PtP instruction descriptions.

USS drive extended error codes
USS Drives support read and write access to a drive’s internal parameters. This feature
allows remote control and configuration of the drive. Drive parameter access operations can
fail due to errors like values out of range or illegal requests for a drive’s current mode. The
drive generates an error code value that is returned in the "USS_Extended_Error" variable of
the USS_DRV Instance DB. This error code value is only valid for the last execution of a
USS_RPM or USS_WPM instruction. The drive error code is put into the
"USS_Extended_Error" variable when the STATUS code value is hexadecimal 818C. The
error code value of "USS_Extended_Error" depends on the drive model. See the drive’s
manual for a description of the extended error codes for read and write parameter
operations.

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.3 Global library instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 187

6.3.2 MODBUS

6.3.2.1 MB_COMM_LOAD

LAD FBD

The MB_COMM_LOAD instruction
configures a port on the Point-to-Point
(PtP) CM 1241 RS485 or CM 1241
RS232 module for Modbus RTU
protocol communications.

Parameter Parameter

type
Data type Description

PORT IN UInt Communications port identifier:
After you install the CM module in the Device configuration, the port
identifier appears in the helper drop-list available at the PORT box
connection. This constant can also be referenced within the "Constants"
tab of the default tag table.

BAUD IN UDInt Baud Rate Selection:
300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 76800, 115200
All other values are invalid

PARITY IN UInt Parity selection:
 0 – None
 1 – Odd
 2 – Even

FLOW_CTRL IN UInt Flow control selection:
 0 – (default) No Flow Control
 1 – Hardware Flow control with RTS always ON (does not apply to

RS485 ports)
 2 - Hardware Flow control with RTS switched

RTS_ON_DLY IN UInt RTS ON Delay Selection:
 0 – (default) No delay from RTS active until the first character of the

message is transmitted
 1 to 65535 – Delay in milliseconds from RTS active until the first

character of the message is transmitted (does not apply to RS-485
ports). RTS delays shall be applied independent of the FLOW_CTRL
selection.

https://sites.google.com/site/chauchiduc

Programming instructions
6.3 Global library instructions

 S7-1200 Programmable controller
188 System Manual, 11/2009, A5E02486680-02

Parameter Parameter
type

Data type Description

RTS_OFF_DLY IN UInt RTS OFF Delay Selection:
 0 – (default) No delay from the last character transmitted until RTS

goes inactive
 1 to 65535 – Delay in milliseconds from the last character transmitted

until RTS goes inactive (does not apply to RS-485 ports). RTS delays
shall be applied independent of the FLOW_CTRL selection.

RESP_TO IN UInt Response Timeout:
Time in milliseconds allowed by MB_MASTER for the slave to respond. If
the slave does not respond in this time period, MB_MASTER will retry the
request or terminate the request with an error, if the specified number of
retries has been sent.
5 ms to 65535 ms (default value = 1000ms).

MB_DB IN Variant A reference to the Instance Data Block used by the MB_MASTER or
MB_SLAVE instructions. After MB_SLAVE or MB_MASTER is placed in
your program, the DB identifier appears in the helper drop-list available at
the MB_DB box connection.

ERROR OUT Bool Error:
 0 – No error detected
 1 – Indicates that an error was detected and the error code at

parameter STATUS is valid

STATUS OUT Word Port configuration error code

MB_COMM_LOAD is executed to configure a port for the Modbus RTU protocol. After the
port is configured, you communicate on the Modbus by executing either MB_SLAVE or
MB_MASTER instructions.
MB_COMM_LOAD should be called one time to initialize the port. MB_COMM_LOAD only
needs to be called again if one of the communication parameters must change. You can call
MB_COMM_LOAD from a startup OB and execute it one time, or use the first scan system
flag to initiate the call to execute it one time.
One instance of the MB_COMM_LOAD must be used to configure each port of each
communication module that is used for Modbus communication. You must assign a unique
MB_COMM_LOAD Instance Data Block for each port that you use. The S7-1200 CPU is
limited to 3 communication modules.
An Instance Data Block is assigned when you place the MB_MASTER or MB_SLAVE
instructions. This Instance Data Block is referenced when you specify the MB_DB parameter
on the MB_COMM_LOAD instruction.

STATUS value
(W#16#....)

Description

0000 No error
8180 Invalid port ID value
8181 Invalid baud rate value
8182 Invalid parity value
8183 Invalid flow control value
8184 Invalid response timeout value
8185 Incorrect MB_DB pointer to the instance DB for an MB_MASTER or MB_SLAVE

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.3 Global library instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 189

6.3.2.2 MB_MASTER

LAD FBD

The MB_MASTER instruction allows your
program to communicate as a Modbus
master using a port on the Point-to-Point
(PtP) CM 1241 RS485 or CM 1241
RS232 module. You can access data in
one or more Modbus slave devices.

An Instance Data Block is assigned when you place the MB_MASTER instruction in your
program. This MB_MASTER Instance Data Block name is used when you specify the
MB_DB parameter on the MB_COMM_LOAD instruction.

Parameter Parameter

type
Data type Description

REQ IN Bool Request Input:
 0 – No request
 1 – Request to transmit data to Modbus Slave(s)

MB_ADR IN USInt Modbus RTU station address: Valid address range: 0 to 247
The value of 0 is reserved for broadcasting a message to all Modbus
slaves. Modbus function codes 05, 06, 15 and 16 are the only function
codes supported for broadcast.

MODE IN USInt Mode Selection: Specifies the type of request: read, write, or diagnostic
See the following Modbus functions table for details.

DATA_ADDR IN UDInt Starting Address in the Slave: Specifies the starting address of the data
to be accessed in the Modbus slave. See the Modbus functions table
below for valid addresses.

DATA_LEN IN UInt Data Length: Specifies the number of bits or words to be accessed in
this request. See the Modbus functions table below for valid lengths.

DATA_PTR IN Variant Data Pointer: Points to the CPU DB address for the data being written
or read. The DB must be a "NOT symbolic access only" DB type. See
the DATA_PTR note below.

NDR OUT Bool New Data Ready:
 0 – Transaction not complete
 1 – Indicates that the MB_MASTER instruction has completed the

requested transaction with Modbus slave(s)

BUSY OUT Bool Busy:
 0 – No MB_MASTER transaction in progress
 1 – MB_MASTER transaction in progress

ERROR OUT Bool Error:
 0 – No error detected
 1 – Indicates that an error was detected and the error code supplied

at parameter STATUS is valid

STATUS OUT Word Execution condition code

https://sites.google.com/site/chauchiduc

Programming instructions
6.3 Global library instructions

 S7-1200 Programmable controller
190 System Manual, 11/2009, A5E02486680-02

Modbus master communication rules
● MB_COMM_LOAD must be executed to configure a port before a MB_MASTER

instruction can communicate with that port.
● If a port is to be used to initiate Modbus master requests, that port cannot be used by

MB_SLAVE . One or more instances of MB_MASTER execution can be used with that
port.

● The Modbus instructions do not use communication interrupt events to control the
communication process. Your program must poll the MB_MASTER instruction for transmit
and receive complete conditions.

● If your program operates a Modbus master and uses MB_MASTER to send a request to
a slave, then you must continue to poll (execute MB_MASTER) until the response from
the slave is returned.

● Call all MB_MASTER execution for a given port from the same OB (or OB priority level).

REQ parameter
REQ value FALSE = No request
REQ value TRUE = Request to transmit data to Modbus Slave(s).
You must supply this input through an positive edge triggered contact on the first call for
MB_MASTER execution. The edge triggered pulse will invoke the transmission request
once. All inputs are captured and held unchanged for one request and response triggered by
this input.
Internally the MB_MASTER will start a state machine to make sure that no other
MB_MASTER instruction is allowed to issue a request until this request has been completed.
In addition, if the same instance of the call to the MB_MASTER FB is executed again with
the REQ input TRUE before the completion of the request, then no subsequent
transmissions will be made. However, as soon as the request has been completed, a new
request will be issued if MB_MASTER is executed with the REQ input set to true.

DATA_ADDR and MODE parameters select the Modbus function type
DATA_ADDR (starting Modbus address in the Slave): Specifies the starting address of the
data to be accessed in the Modbus slave.
MB_MASTER uses a MODE input rather than a Function Code input. The combination of
MODE and Modbus address range determine the Function Code that is used in the actual
Modbus message. The following table shows the correspondence between MBUS_MASTER
parameter MODE, Modbus function code, and Modbus address range.

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.3 Global library instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 191

MB_MASTER Modbus functions
 Modbus address parameter

DATA_ADDR
Address type Modbus data length

parameter DATA_LEN
Modbus function

Mode 0
00001 to 09999 Output bits 1 to 2000 01H
10001 – 19999 Input bits 1 to 2000 02H
30001 - 39999 Input registers 1 to 125 04H

Read

40001 to 49999
400001 to 465536(Extended)

Holding registers 1 to 125 03H

Mode 1
00001 to 09999 Output bits 1 (single bit) 05H
40001 to 49999
400001 to 465536(Extended)

Holding registers 1 (single word) 06H

00001 to 09999 Output bits 2 to 1968 15H

Write

40001 to 49999
400001 to 465536(Extended)

Holding registers 2 to 123 16H

Mode 2
Some Modbus slaves do not support single bit or word writes with Modbus functions 05H and 06H. In these cases, Mode 2
is used to force single bit and word writes using Modbus functions 15H and 16H.

00001 to 09999 Output bits 1 to 1968 15H Write
40001 to 49999
400001 to 465536(Extended

Holding registers 1 to 123 16H

Mode 11
 Reads an event counter word from the Modbus slave that is referenced as an input to MB_ADDR
 On a Siemens S7-1200 Modbus slave, this counter is incremented every time that the slave receives a valid read or

write (non-broadcast) request from a Modbus master.
 The returned value is stored in the word location specified as the input to DATA_PTR.
 A valid DATA_LEN is not required for this mode.

Mode 80
 Checks the communication status of the Modbus slave that is referenced as an input to MB_ADDR
 The setting of the NDR output bit on the MB_MASTER instruction indicates that the addressed Modbus slave

responded with the appropriate response data.
 No data is returned to your program.
 A valid DATA_LEN is not required for this mode.

Mode 81
 Resets the event counter (as returned by Mode 11) on the Modbus slave that is referenced as an input to MB_ADDR
 The setting of the NDR output bit on the MB_MASTER instruction indicates that the addressed Modbus slave

responded with the appropriate response data.
 No data is returned to your program.
 A valid DATA_LEN is not required for this mode.

https://sites.google.com/site/chauchiduc

Programming instructions
6.3 Global library instructions

 S7-1200 Programmable controller
192 System Manual, 11/2009, A5E02486680-02

DATA_PTR parameter
The DATA_PTR parameter points to the local source or destination address (the address in
the S7-1200 CPU) of the data that is written to or read from, respectively. When you use the
MB_MASTER instruction to create a Modbus master, you must create a global data block
that provides data storage for reads and writes to Modbus slaves.

 Note
The DATA_PTR parameter must reference a global data block which was created with the
Symbolic Access Only attribute box unchecked.
You must uncheck the "Symbolic address only" box when you add a new Data block to
create a classic global DB type.

Data block structures for the DATA_PTR parameter
● These data types are valid for word reads of Modbus addresses 30001 to 39999, 40001

to 49999, and 400001 to 465536 and also for word writes to Modbus addresses 40001 to
49999 and 400001 to 465536.
– Standard array of WORD, UINT, or INT data types, as shown below.
– Named WORD, UINT, or INT structure where each element has a unique name and

16 bit data type.
– Named complex structure where each element has a unique name and a 16 or 32 bit

data type.
● For bit reads and writes of Modbus addresses 00001 to 09999 and 10001 to 19999.

– Standard array of Boolean data types.
– Named Boolean structure of uniquely named Boolean variables..

● Although not required, it is recommended that each MB_MASTER instruction have its
own separate area in a global data block. The reason for this recommendation is that
there is a greater possibility of data corruption if multiple MB_MASTER instructions are
reading and writing to the same area of a global data block.

● There is no requirement that the DATA_PTR data areas be in the same global data block.
You can create one data block with multiple areas for Modbus reads, one data block for
Modbus writes, or one data block for each slave station.

● All of the arrays in the example below are created as base 1 arrays [1 … ##]. The arrays
could have been created as base 0 arrays [0 … ###] or a mix of base 0 and base 1.

Example MB_MASTER instructions accessing DATA_PTR global data blocks
The example global data block shown below uses 4 uniquely named, 6 word arrays for
Modbus request data storage. Although the data arrays in this example are the same size,
the arrays can be of any size and are shown as the same size to simplify the examples.
Each array could also be replaced with a data structure that includes more descriptive tag
names and mixed data types. Examples of alternative data structures are provided in the
HR_DB parameter description of the MB_SLAVE instruction (Page 199).
The MB_MASTER instruction examples below show only the DATA_PTR parameter and not
the other required parameters. The purpose of the examples is to show how the
MB_MASTER instruction uses the DATA_PTR data block.

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.3 Global library instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 193

The arrows indicate how each array is associated to different MB_MASTER instructions.

The first element of any array or structure is always the first source or destination of any
Modbus read or write activity. All the scenarios below are based on the diagram above.

Scenario 1: If the first MB_MASTER instruction reads 3 words of data from Modbus
address 40001 on any valid Modbus slave, then the following occurs.
The word from address 40001 is stored in "Data".Array_1[1].
The word from address 40002 is stored in "Data".Array_1[2].
The word from address 40003 is stored in "Data".Array_1[3].

Scenario 2: If the first MB_MASTER instruction reads 4 words of data from Modbus
address 40015 on any valid Modbus slave, then the following occurs.
The word from address 40015 is stored in "Data".Array_1[1].
The word from address 40016 is stored in "Data".Array_1[2].
The word from address 40017 is stored in "Data".Array_1[3].
The word from address 40018 is stored in "Data".Array_1[4].

https://sites.google.com/site/chauchiduc

Programming instructions
6.3 Global library instructions

 S7-1200 Programmable controller
194 System Manual, 11/2009, A5E02486680-02

Scenario 3: If the second MB_MASTER instruction reads 2 words of data from Modbus
address 30033 on any valid Modbus slave, then the following occurs.
The word from address 30033 is stored in "Data".Array_2[1].
The word from address 30034 is stored in "Data".Array_2[2].

Scenario 4: If the third MB_MASTER instruction writes 4 words of data to Modbus address
40050 on any valid Modbus slave, then the following occurs.
The word from "Data".Array_3[1] is written to Modbus address 40050.
The word from "Data".Array_3[2] is written to Modbus address 40051.
The word from "Data".Array_3[3] is written to Modbus address 40052.
The word from "Data".Array_3[4] is written to Modbus address 40053.

Scenario 5: If the third MB_MASTER instruction writes 3 words of data to Modbus address
40001 on any valid Modbus slave, then the following occurs.
The word from "Data".Array_3[1] is written to Modbus address 40001.
The word from "Data".Array_3[2] is written to Modbus address 40002.
The word from "Data".Array_3[3] is written to Modbus address 40003.

Scenario 6: If the fourth MB_MASTER instruction uses a Mode 11 (retrieve valid message
count) from any valid Modbus slave, the following occurs.
The count word is stored in "Data".Array_4[1].

Example bit reads and writes using word locations as DATA_PTR input

Table 6- 1 Scenario 7: Read 4 output bits starting at Modbus address 00001

MB_MASTER input values Slave Modbus values
MB_ADDR 27 (Slave example) 00001 ON
MODE 0 (Read) 00002 ON
DATA_ADDR 00001 (Outputs) 00003 OFF
DATA_LEN 4 00004 ON

00005 ON
00006 OFF
00007 ON

DATA_PTR "Data".Array_4

00008 OFF

"Data".Array_4[1] values after Modbus request
MS (Most significant) Byte LS (Least significant) Byte
xxxx-1011 xxxx-xxxx
x indicates that data is not changed

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.3 Global library instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 195

Table 6- 2 Scenario 8: Read 12 output bits starting at Modbus address 00003

MB_MASTER input values Slave Modbus values
MB_ADDR 27 (Slave example) 00001 ON 00010 ON
MODE 0 (Read) 00002 ON 00011 OFF
DATA_ADDR 00003 (Outputs) 00003 OFF 00012 OFF
DATA_LEN 12 00004 ON 00013 ON

00005 ON 00014 OFF
00006 OFF 00015 ON
00007 ON 00016 ON
00008 ON 00017 OFF

DATA_PTR "Data".Array_4

00009 OFF

00018 ON

"Data".Array_4[1] values after Modbus request
MS Byte LS Byte
1011-0110 xxxx-0100-
x indicates that data is not changed

Table 6- 3 Scenario 9: Write 5 output bits starting at Modbus address 00001

MB_MASTER input values Slave outputs before Slave outputs after
MB_ADDR 27 (Slave example) 00001 ON OFF
MODE 1 (Write) 00002 ON ON
DATA_ADDR 00001 (Outputs) 00003 OFF ON
DATA_LEN 5 00004 ON OFF

00005 ON ON
00006 OFF Unchanged
00007 ON Unchanged
00008 ON Unchanged

DATA_PTR "Data".Array_4

00009 OFF

Unchanged

"Data".Array_4[1] values for Modbus write request
MS Byte LS Byte
xxx1-0110 xxxxx-xxxx
x indicates that data is not used in the Modbus request

https://sites.google.com/site/chauchiduc

Programming instructions
6.3 Global library instructions

 S7-1200 Programmable controller
196 System Manual, 11/2009, A5E02486680-02

Table 6- 4 Scenario 10: Read 22 output bits starting at Modbus address 00003

MB_MASTER input values Slave Modbus values
MB_ADDR 27 (Slave example) 00001 ON 00014 ON
MODE 0 (Read) 00002 ON 00015 OFF
DATA_ADDR 00003 (Outputs) 00003 OFF 00016 ON
DATA_LEN 22 00004 ON 00017 ON

00005 ON 00018 OFF
00006 OFF 00019 ON
00007 ON 00020 ON
00008 ON 00021 OFF
00009 ON 00022 ON
00010 OFF 00023 ON
00011 OFF 00024 OFF
00012 ON 00025 OFF

DATA_PTR "Data".Array_4

00013 OFF

00026 ON

"Data".Array_4[1] values after Modbus request
MS Byte LS Byte
0111-0110 0110-1010

"Data".Array_4[2] values after Modbus request
MS Byte LS Byte
xx01-1011 xxxx-xxxx
x indicates that data is not changed

Example bit reads and writes using BOOL locations as DATA_PTR input
Although Modbus reads and writes to bit address locations can be handled through the use
of word locations, DATA_PTR areas can also be configured as Boolean data types,
structures or arrays to provide a direct one to one correlation for the first bit that is read or
written by using a MB_MASTER instruction.
If you use Boolean arrays or structures, it is recommended that you make the data size a
multiple of 8 bits (on byte boundaries). For example, when you create a Boolean array of 10
bits the STEP 7 Basic software will allocate 16 bits (2 bytes) in the global Data block for the
10 bits. Inside the data block, these would be stored as byte1 [xxxx xxxx] byte2 [---- --xx]
where x indicates accessible data locations and – indicates locations that are inaccessible.
Modbus requests of up to a length of 16 bits are allowed, but the upper 6 bits would be
placed into byte 2 memory locations that are not referenced and are not accessible by your
program.
Boolean areas can be created as an array of Boolean values or as a structure of Boolean
variables. Both methods operate in an identical manner and differ only in how they are
created and accessed in your program.
The global data block editor view below shows a single array of 16 Boolean values created
with base 0. The array could also have been created as a base 1 array. The arrow shows
how this array is associated with a MB_MASTER instruction.

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.3 Global library instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 197

Scenarios 11 and 12 show the correspondence of Modbus addresses to Boolean array
addresses.

Table 6- 5 Scenario 11: Write 5 output bits starting at Modbus address 00001

MB_MASTER input values Slave outputs before DATA_PTR data Slave outputs after
MB_ADDR 27 (Slave example) 00001 ON "Data".Bool[0]=FALSE OFF
MODE 1 (Write) 00002 ON "Data".Bool[1]=TRUE ON
DATA_ADDR 00001 (Outputs) 00003 OFF "Data".Bool[2]=TRUE ON
DATA_LEN 5 00004 ON "Data".Bool[3]-FALSE OFF

00005 ON "Data".Bool[4]=FALSE OFF
00006 OFF Unchanged
00007 ON Unchanged

DATA_PTR "Data".Bool

00008 OFF Unchanged

https://sites.google.com/site/chauchiduc

Programming instructions
6.3 Global library instructions

 S7-1200 Programmable controller
198 System Manual, 11/2009, A5E02486680-02

Table 6- 6 Scenario 12: Read 15 output bits starting at Modbus address 00004

MB_MASTER input values Slave Modbus value DATA_PTR data after
MB_ADDR 27 (Slave example) 00001 ON
MODE 0 (Read) 00002 ON
DATA_ADDR 00003 (Outputs) 00003 OFF "Data".Bool[0]=FALSE
DATA_LEN 15 00004 ON "Data".Bool[1]=TRUE

00005 ON "Data".Bool[2]=TRUE
00006 OFF "Data".Bool[3]-FALSE
00007 ON Data".Bool[4]=TRUE
00008 ON Data".Bool[5]=TRUE
00009 ON Data".Bool[6]=TRUE
00010 OFF Data".Bool[7]=FALSE
00011 OFF Data".Bool[8]=FALSE
00012 ON Data".Bool[9]=TRUE
00013 OFF Data".Bool[10]=FALSE
00014 ON Data".Bool[11]=TRUE
00015 OFF Data".Bool[12]=FALSE
00016 ON Data".Bool[13]=TRUE
00017 ON Data".Bool[14]=TRUE
00018 OFF

DATA_PTR "Data".Bool

00019 ON

Condition codes

STATUS value
(W#16#....)

Description

0000 No error
80C8 The specified response timeout (refer to RCVTIME or MSGTIME) is 0.
80D1 The receiver issued a flow control request to suspend an active transmission and

never re-enabled the transmission during the specified wait time.
This error is also generated during hardware flow control when the receiver does
not assert CTS within the specified wait time.

80D2 The transmit request was aborted because no DSR signal is received from the
DCE.

80E0 The message was terminated because the receive buffer is full.
80E1 The message was terminated as a result of a parity error.
80E2 The message was terminated as a result of a framing error.
80E3 The message was terminated as a result of an overrun error.
80E4 The message was terminated as a result of the specified length exceeding the total

buffer size.
8180 Invalid port ID value
8186 Invalid Modbus station address

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.3 Global library instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 199

STATUS value
(W#16#....)

Description

8188 Invalid Mode value or write mode to read only slave address area
8189 Invalid Data Address value
818A Invalid Data Length value
818B Invalid pointer to the local data source/destination: Size not correct

818C Pointer to a type safe DB type DATA_PTR (must be a Classic DB type)
8200 Port is busy processing a transmit request

6.3.2.3 MB_SLAVE
The MB_SLAVE instruction allows your program to communicate as a Modbus slave using a
port on the Point-to-Point (PtP) CM 1241 RS485 or CM 1241 RS232 module. A Modbus
RTU master can issue a request and then your program responds via MB_SLAVE execution.
You must assign a unique Instance Data Block when you place the MB_SLAVE instruction in
your program. This MB_SLAVE Instance Data Block name is used when you specify the
MB_DB parameter on the MB_COMM_LOAD instruction.
Modbus communication function codes (1, 2, 4, 5, and 15) can read and write bits and words
directly in the PLC Input Process Image and Output process Image. The following table
shows the mapping of modbus addresses to the process image in the CPU.

MB_SLAVE Modbus functions S7-1200

Codes Function Data area Address range Data area CPU address
01 Read bits Output 1 to 8192 Output Process Image Q0.0 to Q1023.7
02 Read bits Input 10001 to 18192 Input Process Image I0.0 to I1023.7
04 Read words Input 30001 to 30512 Input Process Image IW0 to IW1022
05 Write bit Output 1 to 8192 Output Process Image Q0.0 to Q1023.7
15 Write bits Output 1 to 8192 Output Process Image Q0.0 to Q1023.7

Modbus communication function codes (3, 6, 16) use a separate and unique Modbus
holding register data block that you must create, before you can specify the MB_HOLD_REG
parameter on the MB_SLAVE instruction. The following table shows the mapping of Modbus
holding register to the MB_HOLD_REG DB address in the PLC.

MB_SLAVE Modbus functions S7-1200

Codes Function Data area Address range CPU DB data area CPU DB address
40001 to 49999 Words 1 to 9999 03 Read words Holding

Register 400001 to 465535
MB_HOLD_REG

Words 1 to 65535
40001 to 49999 Words 1 to 9999 06 Write word Holding

Register. 400001 to 465535
MB_HOLD_REG

Words 1 to 65535
40001 to 49999 Words 1 to 9999 16 Write words Holding

Register 400001 to 465535
MB_HOLD_REG

Words 1 to 65535

The following table shows the supported Modbus diagnostic functions.

https://sites.google.com/site/chauchiduc

Programming instructions
6.3 Global library instructions

 S7-1200 Programmable controller
200 System Manual, 11/2009, A5E02486680-02

S7-1200 MB_SLAVE Modbus diagnostic functions
Codes Sub-function Description

08 0000H Return query data echo test: The MB_SLAVE will echo back to a Modbus master a word of
data that is received.

08 000AH Clear communication event counter: The MB_SLAVE will clear out the communication event
counter that is used for Modbus function 11.

11 Get communication event counter: The MB_SLAVE uses an internal communication event
counter for recording the number of successful Modbus read and write requests that are sent
to the Modbus slave. The counter does not increment on any Function 8, Function 11, or
broadcast requests. It is also not incremented on any requests that result in a communication
error (for example, parity or CRC errors).

The MB_SLAVE supports broadcast write requests from any Modbus master as long as the
request is for accessing valid locations.
Regardless of the validity of a request, the MB_SLAVE gives no response to a Modbus
master as the result of a broadcast request.

LAD FBD

Parameter Parameter

type
Data type Description

MB_ADDR IN USINT Modbus RTU Address (1 to 247):
The station address of the Modbus slave.

MB_HOLD_REG IN VARIANT Pointer to the Modbus Holding Register DB. The
Holding Register DB must be a classic, global DB
See the MB_HOLD_REG note below.

NDR OUT BOOL New Data Ready:
 0 – No new data
 1 – Indicates that new data has been written by

the Modbus master

DR OUT BOOL Data Read:
 0 – No data read
 1 – Indicates that data has been read by the

Modbus master

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.3 Global library instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 201

Parameter Parameter
type

Data type Description

ERROR OUT BOOL Error:
 0 – No error detected
 1 – Indicates that an error was detected and the

error code supplied at parameter STATUS is
valid.

STATUS OUT WORD Error code

Modbus slave communication rules
● MB_COMM_LOAD must be executed to configure a port, before a MB_SLAVE instruction

can communicate with that port.
● If a port is to respond as a slave to a Modbus master, then that port cannot be used by

MB_MASTER. Only one instance of MB_SLAVE execution can be used with a given port.
● The Modbus instructions do not use communication interrupt events to control the

communication process. Your program must control the communication process by
polling the MB_SLAVE instruction for transmit and receive complete conditions.

● The MB_SLAVE must execute periodically at a rate that allows it to make a timely
response to incoming requests from a Modbus master.

● You should call MB_SLAVE every scan from a program cycle OB.

Operation
MB_SLAVE must be executed periodically to receive each request from the Modbus master
and then respond as required. The frequency of execution for MB_SLAVE is dependent
upon the response timeout period of the Modbus master. This is illustrated in the following
diagram.

The response timeout period is the amount of time a Modbus master waits for the start of a
response from a Modbus slave. This time period is not defined by the Modbus protocol, but
is a parameter of each Modbus master. The frequency of execution (time between one
execution and the next execution) of MB_SLAVE must be based on the particular
parameters of your Modbus master. At a minimum, you should execute MB_SLAVE twice
within the response timeout period of the Modbus master.

MB_HOLD_REG parameter examples
MB_HOLD_REG is a pointer to the Modbus holding register Data block. This DB is used to
hold data values that a Modbus master is allowed to access (read or write). You must create

https://sites.google.com/site/chauchiduc

Programming instructions
6.3 Global library instructions

 S7-1200 Programmable controller
202 System Manual, 11/2009, A5E02486680-02

the data block and assign the data type structure that will be read from and written to, before
it can be used with the MB_SLAVE instruction.

 Note
The Modbus Holding Register data block must reference a global data block which was
created with the Symbolic Access Only attribute box unchecked.
You must uncheck the "Symbolic address only" box when you add a new Data block to
create a classic global DB type.

The holding registers can use these DB data structures:
● Standard array of words
● Named word structure
● Named complex structure
The following program examples show how to use the MB_HOLD_REG parameter to handle
these DB data structures.

Example 1 - Standard array of words
This example holding register is an array of words. The data type assignments can be
changed to other word size types (INT and UINT).

Advantages: This type of holding register structure is very fast and simple to

create.
 The program logic to access a data element is simplified.

Disadvantages: Although you can programmatically reference each array element
by the symbolic names ("HR_DB"."Array"[1] through
"HR_DB"."Array"[10]), the names do not describe the internal
function of the data.

 The array can consist of only one data type. Type conversions may
be required in a user program with rigid type control.

This is how an array of words structure would appear in the data block editor.

The image below shows how the array would be assigned to the MB_HOLD_REG input of an
MB_SLAVE instruction.

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.3 Global library instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 203

Each element of the array can be accessed by symbolic name, as shown below. In this
example, a new value is moved into the second element of the array which corresponds to
Modbus address 40002.

Each of the words in the array, as defined in the data block, provides the MB_SLAVE
instruction with Modbus holding register addresses. In this instance, since there are only 10
elements in the array, there are only 10 available Modbus holding register addresses usable
by this MB_SLAVE instruction and accessible by a Modbus master.

The correlation of the array element names to Modbus addresses is shown below.
"HR_DB".Array[1] Modbus address 40001
" HR_DB ". Array[2] Modbus address 40002
" HR_DB ". Array[3] Modbus address 40003
... ...
" HR_DB ". Array[9] Modbus address 40009
" HR_DB ".Array [10] Modbus address 40010

Example 2 - Named word structure
This example holding register is a series of words with descriptive symbolic names.

Advantages: Each structure element has a descriptive name with a specific data

type assigned to it.

Disadvantages: It takes longer to create this type of structure than the standard
array of words.

 The elements require additional symbolic referencing when used in
a user program. Where the first element of the simple array is
referenced as "HR_DB".Array[0] the first element of this type is
referenced "HR_DB".Data.Temp_1.

This is how a named word structure would appear in the data block editor. Each element has
a unique name and can be a WORD, UINT, or INT.

https://sites.google.com/site/chauchiduc

Programming instructions
6.3 Global library instructions

 S7-1200 Programmable controller
204 System Manual, 11/2009, A5E02486680-02

The image below shows how the data structure above would be assigned to the
MB_HOLD_REG input of an MB_SLAVE instruction in your program.

Each element of the array can be accessed by its symbolic name as shown below. In this
example, a new value is moved into the second element of the array which corresponds to
Modbus address 40002.

The correlation of the data element names to Modbus addresses is shown below.
"HR_DB".Data.Temp_1 Modbus address 40001
"HR_DB".Data.Temp_2 Modbus address 40002
"HR_DB".Data.Temp_3 Modbus address 40003
"HR_DB".Data.Good_Count Modbus address 40004
"HR_DB".Data.Bad_Count Modbus address 40005
"HR_DB".Data.Rework_Count Modbus address 40006
"HR_DB".Data.Line_Stops Modbus address 40007
"HR_DB".Data.Avg_Time Modbus address 40008
"HR_DB".Data.Code_1 Modbus address 40009
"HR_DB".Data.Code_2 Modbus address 40010

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.3 Global library instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 205

Example 3 - Named complex structure
This example holding register is a series of series of mixed data types with descriptive
symbolic names.

Advantages: Each structure element has a descriptive name with a specific data

type assigned to it.
 It allows for the direct transfer of non-word based data types.

Disadvantages: It takes longer to create this type of structure than the standard
array of words.

 The Modbus master needs to be configured to accept the data that
it will be receiving from the Modbus slave. As shown in the image
below, Temp_1 is a 4 byte real value. The receiving master needs
to be able to reassemble the 2 received words back into the real
value that is expected.

 The elements require additional symbolic referencing in your
program. Where the first element of the simple array is referenced
as "HR_DB".Array[0], the first element of this type is referenced as
"HR_DB".Data.Temp_1.

This is how a named complex structure would appear in the data block editor. Each element
has a unique name with multiple sizes and data types.

The correlation of the data element names to Modbus addresses is shown below.
"HR_DB".Data.Temp_1 Modbus addresses 40001 and 40002
"HR_DB".Data.Temp_2 Modbus addresses 40003 and 40004
"HR_DB".Data.Good_Count Modbus addresses 40005 and 40006
"HR_DB".Data.Bad_Count Modbus addresses 40007 and 40008
"HR_DB".Data.Rework_Count Modbus addresses 40009 and 40010
"HR_DB".Data.Line_Stops Modbus address 400011
"HR_DB".Data.Avg_Time Modbus address 400012
"HR_DB".Data.Long_Code Modbus address 40013 and 40014
"HR_DB".Data.Code_1 Modbus address 40015
"HR_DB".Data.Code_2 Modbus address 40016

Another S7-1200 CPU operating as a Modbus master can use the MB_Master instruction
and an identical data structure to receive the block of data from the S7-1200 CPU operating
as a Modbus slave. This Modbus Master instruction will copy all 16 words of data directly

https://sites.google.com/site/chauchiduc

Programming instructions
6.3 Global library instructions

 S7-1200 Programmable controller
206 System Manual, 11/2009, A5E02486680-02

from the slave's HR_DB data block into the master's ProcessData data block, as shown
below.

A series of Modbus master Data_PTR data block locations can be used to transfer the same
or different structures from multiple Modbus slaves.

Condition codes

STATUS value
(W#16#....)

Description

80C8 The specified response timeout (refer to RCVTIME or MSGTIME) is 0
80D1 The receiver issued a flow control request to suspend an active transmission and

never re-enabled the transmission during the specified wait time.
This error is also generated during hardware flow control when the receiver does
not assert CTS within the specified wait time.

80D2 The transmit request was aborted because no DSR signal is received from the DCE
80E0 The message was terminated because the receive buffer is full
80E1 The message was terminated as a result of a parity error
80E2 The message was terminated as a result of a framing error
80E3 The message was terminated as a result of an overrun error
80E4 The message was terminated as a result of the specified length exceeding the total

buffer size
8180 Invalid port ID value
8186 Invalid Modbus station address
8187 Invalid pointer to MB_HOLD_REG DB
818C Pointer to a type safe DB type MB_HOLD_REG DB (must be a Classic DB type)

https://sites.google.com/site/chauchiduc

 Programming instructions
 6.3 Global library instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 207

STATUS value
(W#16#....)

Description

 Response code

sent to Modbus
master (B#16#..)

8380 No response CRC error
8381 01 Function code not supported
8382 No response Data length error
8383 02 Data address error
8384 03 Data value error
8385 03 Data diagnostic code value not supported (function code 08)

https://sites.google.com/site/chauchiduc

Programming instructions
6.3 Global library instructions

 S7-1200 Programmable controller
208 System Manual, 11/2009, A5E02486680-02

https://sites.google.com/site/chauchiduc

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 209

PROFINET 7

The S7-1200 CPU has an integrated PROFINET port which supports both Ethernet and
TCP/IP-based communications standards. The following application protocols are supported
by the S7-1200 CPU:
● Transport Control Protocol (TCP)
● ISO on TCP (RFC 1006)
The S7-1200 CPU can communicate with other S7-1200 CPUs, with the STEP 7 Basic
programming device, with HMI devices, and with non-Siemens devices using standard TCP
communications protocols. There are two ways to communicate using PROFINET:
● Direct connection: Use direct communication when you are using a programming device,

HMI, or another CPU connected to a single CPU.
● Network connection: Use network communications when you are connecting more than

two devices (for example, CPUs, HMIs, programming devices, and non-Siemens
devices).

Direct connection: Programming device
connected to S7-1200 CPU

Direct connection: HMI connected to S7-
1200 CPU

Direct connection: An S7-1200 CPU
connected to another S7-1200 CPU

Network connection:
More than two devices
connected together,
using a CSM1277
Ethernet switch ①

https://sites.google.com/site/chauchiduc

PROFINET
7.2 Communication with a programming device

 S7-1200 Programmable controller
210 System Manual, 11/2009, A5E02486680-02

An Ethernet switch is not required for a direct connection between a programming device or
HMI and a CPU. An Ethernet switch is required for a network with more than two CPUs or
HMI devices. The rack-mounted Siemens CSM1277 4-port Ethernet switch can be used to
connect your CPUs and HMI devices. The PROFINET port on the S7-1200 CPU does not
contain an Ethernet switching device.

Maximum number of connections for the PROFINET port
The PROFINET port on the CPU supports the following simultaneous communication
connections.
● 3 connections for HMI to CPU communication
● 1 connection for programming device (PG) to CPU communication
● 8 connections for S7-1200 program communication using the T-block instructions

(TSEND_C, TRCV_C, TCON, TDISCON, TSEN, TRCV)
● 3 connections for a passive S7-1200 CPU communicating with an active S7 CPU

– The active S7 CPU uses GET and PUT instructions (S7-300 and S7-400) or
ETHx_XFER instructions (S7-200).

– An active S7-1200 communication connection is only possible with the T-block
instructions.

Restricted TSAPs or port numbers for passive ISO and TCP communication
If you use the "TCON" instruction to set up and establish a passive communications
connection, the following port addresses are restricted and should not be used:
● ISO TSAP (passive): 01.00, 01.01, 02.00, 02.01, 03.00, 03.01
● TCP port (passive): 5001, 102, 123, 20, 21, 25, 34962, 34963, 34964, 80

7.2 Communication with a programming device
A CPU can communicate with a STEP 7 Basic programming device on a network.

Consider the following when setting up
communications between a CPU and a
programming device:
 Configuration/Setup: Hardware

configuration is required.
 No Ethernet switch is required for one-to-

one communications; an Ethernet switch
is required for more than two devices in a
network.

https://sites.google.com/site/chauchiduc

 PROFINET
 7.2 Communication with a programming device

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 211

7.2.1 Establishing the hardware communications connection
The PROFINET interfaces establish the physical connections between a programming
device and a CPU. Since Auto-Cross-Over functionality is built into the CPU, either a
standard or crossover Ethernet cable can be used for the interface. An Ethernet switch is not
required to connect a programming device directly to a CPU.
Follow the steps below to create the hardware connection between a programming device
and a CPU:
1. Install the CPU (Page 26).
2. Plug the Ethernet cable into the PROFINET port shown below.
3. Connect the Ethernet cable to the programming device.

① PROFINET port

An optional strain relief is available to strengthen the PROFINET connection.

7.2.2 Configuring the devices
If you have already created a project with a CPU, open your project in the TIA Portal.
If not, create a project and insert a CPU (Page 70) into the rack. In the project below, a CPU
is shown in the "Device View" of the TIA Portal.

https://sites.google.com/site/chauchiduc

PROFINET
7.2 Communication with a programming device

 S7-1200 Programmable controller
212 System Manual, 11/2009, A5E02486680-02

7.2.3 Assigning Internet Protocol (IP) addresses

7.2.3.1 Assigning IP addresses to programming and network devices
If your programming device is using an on-board adapter card connected to your plant LAN
(and possibly the world-wide web), the IP Address Network ID and subnet mask of your CPU
and the programming device's on-board adapter card must be exactly the same. The
Network ID is the first part of the IP address (first three octets) (for example, 211.154.184.16)
that determines what IP network you are on. The subnet mask normally has a value of
255.255.255.0; however, since your computer is on a plant LAN, the subnet mask may have
various values (for example, 255.255.254.0) in order to set up unique subnets. The subnet
mask, when combined with the device IP address in a mathematical AND operation, defines
the boundaries of an IP subnet.

 Note
In a world-wide web scenario, where your programming devices, network devices, and IP
routers will communicate with the world, unique IP addresses must be assigned to avoid
conflict with other network users. Contact your company IT department personnel, who are
familiar with your plant networks, for assignment of your IP addresses.

If your programming device is using an Ethernet-to-USB adapter card connected to an
isolated network, the IP Address Network ID and subnet mask of your CPU and the
programming device's Ethernet-to-USB adapter card must be exactly the same. The Network
ID is the first part of the IP address (first three octets) (for example, 211.154.184.16) that
determines what IP network you are on. The subnet mask normally has a value of
255.255.255.0. The subnet mask, when combined with the device IP address in a
mathematical AND operation, defines the boundaries of an IP subnet.

 Note
An Ethernet-to-USB adapter card is useful when you do not want your CPU on your
company LAN. During initial testing or commissioning tests, this arrangement is particularly
useful.

https://sites.google.com/site/chauchiduc

 PROFINET
 7.2 Communication with a programming device

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 213

Programming Device
Adapter Card

Network Type Internet Protocol (IP) Address Subnet Mask

On-board adapter
card

Connected to
your plant LAN
(and possibly
the world-wide
web)

Network ID of your CPU and the
programming device's on-board
adapter card must be exactly the
same.
The Network ID is the first part of the
IP address (first two octets) (for
example, 211.154.184.16) that
determines what IP network you are
on.)

The subnet mask of your CPU and the
on-board adapter card must be exactly
the same.
The subnet mask normally has a value of
255.255.255.0; however, since your
computer is on a plant LAN, the subnet
mask may have various values (for
example, 255.255.254.0) in order to set
up unique subnets. The subnet mask,
when combined with the device IP
address in a mathematical AND
operation, defines the boundaries of an
IP subnet.

Ethernet-to-USB
adapter card

Connected to an
isolated network

Network ID of your CPU and the
programming device's Ethernet-to-
USB adapter card must be exactly
the same.
The Network ID is the first part of the
IP address (first two octets) (for
example, 211.154.184.16) that
determines what IP network you are
on.)

The subnet mask of your CPU and the
Ethernet-to-USB adapter card must be
exactly the same.
The subnet mask normally has a value of
255.255.255.0. The subnet mask, when
combined with the device IP address in a
mathematical AND operation, defines the
boundaries of an IP subnet.

Assigning or checking the IP address of your programming device using "My Network Places" (on
your desktop)

You can assign or check your programming device's IP address with the following menu
selections:
● (Right-click) "My Network Places"
● "Properties"
● (Right-click) "Local Area Connection"
● "Properties"
In the "Local Area Connection Properties" dialog, in the "This connection uses the following
items:" field, scroll down to "Internet Protocol (TCP/IP)". Click "Internet Protocol (TCP/IP)",
and click the "Properties" button. Select "Obtain an IP address automatically (DHCP)" or
"Use the following IP address" (to enter a static IP address).

 Note
Dynamic Host Configuration Protocol (DHCP) automatically assigns an IP address to your
programming device upon power up from the DHCP server.

https://sites.google.com/site/chauchiduc

PROFINET
7.2 Communication with a programming device

 S7-1200 Programmable controller
214 System Manual, 11/2009, A5E02486680-02

Checking the IP address of your programming device using the "ipconfig" and "ipconfig /all"
commands

You can also check the IP address of your programming device, and, if applicable, the IP
address of your IP router (Gateway) with the following menu selections:
● "Start" button (on your desktop)
● "Run"
In the "Run" dialog, in the "Open" field, enter "cmd" and click the "OK" button. In the
"C:\WINDOWS\system32\cmd.exe" dialog that is displayed, enter the command "ipconfig".
An example result is shown below:

Further information can be displayed with an "ipconfig /all" command. Your programming
device's adapter card type and Ethernet (MAC) address can be found here:

Assigning an IP address to a CPU
You can use one of the following two methods to assign IP addresses to a CPU:
● Assign an IP address online
● Configure an IP address in your project

7.2.3.2 Assigning an IP address online
You can assign an IP address to a network device online. This is particularly useful in an
initial device configuration.

https://sites.google.com/site/chauchiduc

 PROFINET
 7.2 Communication with a programming device

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 215

Use the following procedure to assign an IP address online:

1. In the "Project tree," verify that
no IP address is assigned to the
CPU, with the following menu
selections:
 "Online access"
 <Adapter card for the network

in which the device is
located>

 "Update accessible devices"

2. In the "Project tree," make the
following menu selections:
 "Online access"
 <Adapter card for the network

in which the device is
located>

 "Update accessible devices"
 <device address>
 "Online & diagnostics"

https://sites.google.com/site/chauchiduc

PROFINET
7.2 Communication with a programming device

 S7-1200 Programmable controller
216 System Manual, 11/2009, A5E02486680-02

3. In the "Online & diagnostics"
dialog, make the following menu
selections:
 "Functions"
 "Assign IP address"

4. In the "IP address" field, enter
your new IP address.

5. In the "Project tree," verify that
your new IP address has been
assigned to the CPU, with the
following menu selections:
 "Online access"
 <Adapter for the network in

which the device is located>
 "Update accessible devices"

https://sites.google.com/site/chauchiduc

 PROFINET
 7.2 Communication with a programming device

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 217

7.2.3.3 Configuring an IP address in your project

Configuring the PROFINET interface
After you configure the rack with the CPU (Page 211) , you can configure parameters for the
PROFINET interface. To do so, click the green PROFINET box on the CPU to select the
PROFINET port. The "Properties" tab in the inspector window displays the PROFINET port.

① PROFINET port

Configuring the IP address
Ethernet (MAC) address: In a PROFINET network, each device is assigned a Media Access
Control address (MAC address) by the manufacturer for identification. A MAC address
consists of six groups of two hexadecimal digits, separated by hyphens (-) or colons (:), in
transmission order, (for example, 01-23-45-67-89-AB or 01:23:45:67:89:AB).
IP address: Each device must also have an Internet Protocol (IP) address. This address
allows the device to deliver data on a more complex, routed network.
Each IP address is divided into four 8-bit segments and is expressed in a dotted, decimal
format (for example, 211.154.184.16). The first part of the IP address is used for the Network
ID (What network are you on?), and the second part of the address is for the Host ID (unique
for each device on the network). An IP address of 192.168.x.y is a standard designation
recognized as part of a private network that is not routed on the Internet.
Subnet mask: A subnet is a logical grouping of connected network devices. Nodes on a
subnet tend to be located in close physical proximity to each other on a Local Area Network
(LAN). A mask (known as the subnet mask or network mask) defines the boundaries of an IP
subnet.
A subnet mask of 255.255.255.0 is generally suitable for a small local network. This means
that all IP addresses on this network should have the same first 3 octets, and the various
devices on this network are identified by the last octet (8-bit field). An example of this is to
assign a subnet mask of 255.255.255.0 and an IP addresses of 192.168.2.0 through
192.168.2.255 to the devices on a small local network.
The only connection between different subnets is via a router. If subnets are used, an IP
router must be employed.
IP router: Routers are the link between LANs. Using a router, a computer in a LAN can send
messages to any other networks, which might have other LANs behind them. If the
destination of the data is not within the LAN, the router forwards the data to another network
or group of networks where it can be delivered to its destination.
Routers rely on IP addresses to deliver and receive data packets.

https://sites.google.com/site/chauchiduc

PROFINET
7.2 Communication with a programming device

 S7-1200 Programmable controller
218 System Manual, 11/2009, A5E02486680-02

IP addresses properties:
In the Properties window,
select the "Ethernet
address" configuration
entry. The TIA Portal
displays the Ethernet
address configuration
dialog, which associates
the software project with
the IP address of the CPU
that will receive that
project.

 Note
The CPU does not have a pre-configured IP address. You must manually assign an IP
address for the CPU. If your CPU is connected to a router on a network, you must also enter
the router's IP address. All IP addresses are configured when you download the project.
Refer to "Assigning IP addresses to programming and network devices" for more
information.

The following table defines the parameters for the IP address:

Parameter Description
Subnet Name of the Subnet to which the device is connected. Click the "Add new subnet"

button to create a new subnet. "Not connected" is the default.
Two connection types are possible:
 The "Not connected" default provides a local connection.
 A subnet is required when your network has two or more devices.

IP address Assigned IP address for the CPU
Subnet mask Assigned subnet mask
Use IP router Click the checkbox to indicate the use of an IP router

IP protocol

Router address Assigned IP address for the router, if applicable

https://sites.google.com/site/chauchiduc

 PROFINET
 7.2 Communication with a programming device

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 219

7.2.4 Testing the PROFINET network
After completing the configuration, download the project to the CPU. All IP addresses are
configured when you download the project.

Assigning an IP address to a device online
The S7-1200 CPU does not have a pre-configured IP address. You must manually assign an
IP address for the CPU.
To assign an IP address to a device online, refer to "Assigning an IP address online" for this
step-by-step procedure.
To assign an IP address in your project, you must configure the IP address in the Device
configuration, save the configuration, and download it to the PLC. Refer to "Configuring an IP
address for your project" for more information.

 Note
If you have assigned IP addresses online you can change online-assigned IP addresses
using the online or offline hardware configuration method.
If you have assigned IP addresses in offline hardware configuration, you can only change
project-assigned IP addresses using the offline hardware configuration method.

https://sites.google.com/site/chauchiduc

PROFINET
7.2 Communication with a programming device

 S7-1200 Programmable controller
220 System Manual, 11/2009, A5E02486680-02

Use "Online access" to display the connected CPU's IP address as shown below.

① Second of two Ethernet networks on this programming device
② IP address of the only S7-1200 CPU on this Ethernet network

 Note
All configured networks of the programming device are displayed. You must select the
correct network to display the required S7-1200 CPU's IP address.

Using the "Extended download to device" dialog to test for connected network devices
The S7-1200 CPU "Download to device" function and its "Extended download to device"
dialog can show all accessible network devices and whether or not unique IP addresses
have been assigned to all devices. To display all accessible and available devices with their
assigned MAC and IP addresses, check the "Show all accessible devices" checkbox.

If the required network device is not in this list, communications to that device have been
interrupted for some reason. The device and network must be investigated for hardware
and/or configuration errors.

https://sites.google.com/site/chauchiduc

 PROFINET
 7.3 HMI-to-PLC communication

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 221

7.3 HMI-to-PLC communication

The CPU supports PROFINET
communications connections to HMIs. The
following requirements must be considered
when setting up communications between
CPUs and HMIs:

Configuration/Setup:
● The PROFINET port of the CPU must be configured to connect with the HMI.
● The HMI must be setup and configured.
● The HMI configuration information is part of the CPU project and can be configured and

downloaded from within the project.
● No Ethernet switch is required for one-to-one communications; an Ethernet switch is

required for more than two devices in a network.

Note
The rack-mounted Siemens CSM1277 4-port Ethernet switch can be used to connect
your CPUs and HMI devices. The PROFINET port on the CPU does not contain an
Ethernet switching device.

Supported functions:
● The HMI can read/write data to the CPU.
● Messages can be triggered, based upon information retrieved from the CPU.
● System diagnostics

Note
WinCC Basic and STEP 7 Basic are components of the TIA Portal. Refer to WinCC Basic
for more information on configuring the HMI.

https://sites.google.com/site/chauchiduc

PROFINET
7.3 HMI-to-PLC communication

 S7-1200 Programmable controller
222 System Manual, 11/2009, A5E02486680-02

Required steps in configuring communications between an HMI and a CPU

Step Task
1 Establishing the hardware communications connection

A PROFINET interface establishes the physical connection between an HMI and a CPU.
Since Auto-Cross-Over functionality is built into the CPU, you can use either a standard or
crossover Ethernet cable for the interface. An Ethernet switch is not required to connect an
HMI and a CPU.
Refer to "Communication with a programming device: Establishing the hardware
communications connection" (Page 211) for more information.

2 Configuring the devices
Refer to "Communication with a programming device: Configuring the devices" (Page 211)
for more information.

3 Configuring the logical network connections between an HMI and a CPU
Refer to "HMI to PLC communication: Configuring the logical network connections between
an HMI and a CPU" (Page 222) for more information.

4 Configuring an IP address in your project
Use the same configuration process; however, you must configure IP addresses for the HMI
and the CPU.
Refer to "Communication with a programming device: Configuring an IP address in your
project" (Page 217) for more information.

5 Testing the PROFINET network
You must download the configuration for each CPU.
Refer to "Communication with a programming device: Testing the PROFINET network
(Page 219) for more information.

7.3.1 Configuring the logical network connections between an HMI and a CPU
After you configure the rack with the CPU, you are now ready to configure your network
connections.
In the Devices and Networks portal, use the "Network view" to create the network
connections between the devices in your project. To create the Ethernet connection, select
the green (Ethernet) box on the CPU. Drag a line to the Ethernet box on the HMI device.
Release the mouse button and your Ethernet connection is joined.

https://sites.google.com/site/chauchiduc

 PROFINET
 7.4 PLC-to-PLC communication

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 223

Action Result
Select "Network view" to display the
devices to be connected.

Select the port on one device and
drag the connection to the port on
the second device.

Release the mouse button to create
the network connection.

7.4 PLC-to-PLC communication

A CPU can communicate with another CPU on a
network by using the TSEND_C and TRCV_C
instructions.
Consider the following when setting up
communications between two CPUs:

● Configuration/Setup: Hardware configuration is required.
● Supported functions: Reading/Writing data to a peer CPU
● No Ethernet switch is required for one-to-one communications; an Ethernet switch is

required for more than two devices in a network.

https://sites.google.com/site/chauchiduc

PROFINET
7.4 PLC-to-PLC communication

 S7-1200 Programmable controller
224 System Manual, 11/2009, A5E02486680-02

Required steps in configuring communications between two CPUs

Step Task
1 Establishing the hardware communications connection

A PROFINET interface establishes the physical connection between two CPUs. Since Auto-
Cross-Over functionality is built into the CPU, you can use either a standard or crossover
Ethernet cable for the interface. An Ethernet switch is not required to connect the two CPUs.
Refer to "Communication with a programming device: Establishing the hardware
communications connection" for more information.

2 Configuring the devices
You must configure two projects with a CPU in each project.
Refer to "Communication with a programming device: Configuring the devices" for more
information.

3 Configuring the logical network connections between two CPUs
Refer to "Configuring communications between two CPUs: Configuring the logical network
connections between two CPUs" (Page 224) for more information.

4 Configuring an IP address in yourproject
Use the same configuration process; however, you must configure IP addresses for two
CPUs (for example, PLC_1 and PLC_2).
Refer to "Communication with a programming device: Configuring an IP address in your
project" for more information.

5 Configuring transmit (send) and receive parameters
You must configure TSEND_C and TRCV_C instructions in both CPUs to enable
communications between them.
Refer to "Configuring communications between two CPUs: Configuring transmit (send) and
receive parameters" (Page 225) for more information.

6 Testing the PROFINET network
You must download the configuration for each CPU.
Refer to "Configuring communications between a programming device and a CPU: Testing
the PROFINET network" for more information.

7.4.1 Configuring the logical network connections between two CPUs
After you configure the rack with the CPU, you are now ready to configure your network
connections.
In the Devices and Networks portal, use the "Network view" to create the network
connections between the devices in your project. To create the PROFINET connection,
select the green (PROFINET) box on the first PLC. Drag a line to the PROFINET box on the
second PLC. Release the mouse button and your PROFINET connection is joined.

https://sites.google.com/site/chauchiduc

 PROFINET
 7.4 PLC-to-PLC communication

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 225

Action Result
Select "Network view" to display the
devices to be connected.

Select the port on one device and
drag the connection to the port on
the second device.

Release the mouse button to create
the network connection.

7.4.2 Configuring transmit (send) and receive parameters
Transmission block (T-block) communications are used to establish connections between
two CPUs. Before the CPUs can engage in PROFINET communications, you must configure
parameters for transmitting (or sending) messages and receiving messages. These
parameters dictate how communications operate when messages are being transmitted to or
received from a target device.

7.4.2.1 Configuring the TSEND_C instruction transmit (send) parameters

TSEND_C instruction
The TSEND_C instruction (Page 154) creates a communications connection to a partner
station. The connection is set up, established, and automatically monitored until it is
commanded to disconnect by the instruction. The TSEND_C instruction combines the
functions of the TCON, TDISCON and TSEND instructions.

https://sites.google.com/site/chauchiduc

PROFINET
7.4 PLC-to-PLC communication

 S7-1200 Programmable controller
226 System Manual, 11/2009, A5E02486680-02

From the Device configuration in STEP 7 Basic, you can configure how a TSEND_C
instruction transmits data. To begin, you insert the instruction into the program from the
"Communications" folder in the "Extended Instructions". The instruction is displayed, along
with the Call options dialog where you assign a DB for storing the parameters of the
TSEND_C instruction.

You can assign tag memory locations to the inputs and outputs, as shown in the following
figure.

Configuring General parameters
You specify the communication parameters in the Properties configuration dialog of the
TSEND_C instruction. This dialog appears near the bottom of the page whenever you have
selected any part of the TSEND_C instruction.

https://sites.google.com/site/chauchiduc

 PROFINET
 7.4 PLC-to-PLC communication

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 227

Configuring Connection parameters
Every CPU has an integrated PROFINET port, which supports standard PROFINET
communications. The supported Ethernet protocols are described in the following two
connection types:

Protocol Protocol Name Usage
RFC
1006

ISO on TCP Message fragmentation and re-assembly

TCP Transport Controool Protocol Transport of frames

ISO on TCP (RFC 1006)
ISO on TCP is a mechanism that enables ISO applications to be ported to the TCP/IP
network. This protocol has the following features:
● An efficient communications protocol closely tied to the hardware
● Suitable for medium-sized to large data amounts (up to 8192 bytes)
● In contrast to TCP, the messages feature an end-of-data identification and are message-

oriented.
● Routing-capable; can be used in WAN
● Dynamic data lengths are possible.
● Programming effort is required for data management due to the SEND / RECEIVE

programming interface.
UsingTransport Service Access Points (TSAPs), TCP protocol allows multiple connections to
a single IP address (up to 64K connections). With RFC 1006, TSAPs uniquely identify these
communication end point connections to an IP address.
In the "Address Details" section of the Connection Parameters dialog, you define the TSAPs
to be used. The TSAP of a connection in the CPU is entered in the "Local TSAP" field. The
TSAP assigned for the connection in your partner CPU is entered under the "Partner TSAP"
field.

https://sites.google.com/site/chauchiduc

PROFINET
7.4 PLC-to-PLC communication

 S7-1200 Programmable controller
228 System Manual, 11/2009, A5E02486680-02

Parameter Definition
General
End point: Partner Name assigned to the partner (receiving) CPU
Interface Name assigned to the interfaces
Subnet Name assigned to the subnets
Address Assigned IP Addresses
Connection type Type of Ethernet protocol
Connection ID ID number
Connection data Local and Partner CPU data storage location
Active connection setup Radio button to select Local or Partner CPU as the active connection
Address details
TSAP1 (ASCII) Local and Partner CPU TSAPs in ASCII format
TSAP ID Local and Partner CPU TSAPs in hexadecimal format

1 When configuring a connection with an S7-1200 CPU for ISO on TCP, use only ASCII characters
in the TSAP extension for the passive communication partners.

Transport Control Protocol (TCP)
TCP is a standard protocol described by RFC 793: Transmission Control Protocol. The
primary purpose of TCP is to provide reliable, secure connection service between pairs of
processes. This protocol has the following features:
● An efficient communications protocol since it is closely tied to the hardware
● Suitable for medium-sized to large data amounts (up to 8192 bytes)
● Provides considerably more facilities for applications, notably:

– Error recovery
– Flow control
– Reliability

● A connection-oriented protocol
● Can be used very flexibly with third-party systems which exclusively support TCP
● Routing-capable
● Only static data lengths are applicable.
● Messages are acknowledged.
● Applications are addressed using port numbers.
● Most of the user application protocols, such as TELNET and FTP, use TCP.
● Programming effort is required for data management due to the SEND / RECEIVE

programming interface.

https://sites.google.com/site/chauchiduc

 PROFINET
 7.4 PLC-to-PLC communication

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 229

Parameter Definition
General
End point: Partner Name assigned to the partner (receiving) CPU
Interface Name assigned to the interfaces
Subnet Name assigned to the subnets
Address Assigned IP Addresses
Connection type Type of Ethernet protocol
Connection ID ID number
Connection data Local and Partner CPU data storage location
Active connection setup Radio button to select Local or Partner CPU as the active connection
Address details
Port (decimal) Partner CPU Port in decimal format

7.4.2.2 Configuring the TRCV_C instruction receive parameters

TRCV_C instruction
The TRCV_C instruction (Page 154) creates a communications connection to a partner
station. The connection is set up, established, and automatically monitored until it is
commanded to disconnect by the instruction. The TRCV_C instruction combines the
functions of the TCON, TDISCON, and TRCV instructions.
From the CPU configuration in STEP 7 Basic, you can configure how a TRCV_C instruction
receives data. To begin, insert the instruction into the program from "Communications" folder
in the "Extended Instructions". The instruction is displayed, along with the Call options dialog
where you assign a DB for storing the parameters of the TRCV_C instruction.

https://sites.google.com/site/chauchiduc

PROFINET
7.4 PLC-to-PLC communication

 S7-1200 Programmable controller
230 System Manual, 11/2009, A5E02486680-02

You can assign tag memory locations to the inputs and outputs, as shown as in the following
figure.

Configuring the General parameters
You specify the communication parameters in the Properties configuration dialog of the
TRCV_C instruction. This dialog appears near the bottom of the page whenever you have
selected any part of the TRCV_C instruction.

https://sites.google.com/site/chauchiduc

 PROFINET
 7.4 PLC-to-PLC communication

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 231

Configuring the Connection parameters
Every CPU has an integrated PROFINET port, which supports standard PROFINET
communications. The supported Ethernet protocols are described in the following two
connection types:

Protocol Protocol Name Usage
RFC 1006 ISO on TCP Message fragmentation and re-assembly
TCP Transport Control Protocol Transport of frames

ISO on TCP (RFC 1006)
ISO on TCP is a mechanism that enables ISO applications to be ported to the TCP/IP
network. This protocol has the following features:
● An efficient communications protocol closely tied to the hardware
● Suitable for medium-sized to large data amounts (up to 8192 bytes)
● In contrast to TCP, the messages feature an end-of-data identification and are message-

oriented.
● Routing-capable; can be used in WAN
● Dynamic data lengths are possible.
● Programming effort is required for data management due to the SEND / RECEIVE

programming interface.
Using Transport Service Access Points (TSAPs), TCP protocol allows multiple connections
to a single IP address (up to 64K connections). With RFC 1006, TSAPs uniquely identify
these communication end point connections to an IP address.
In the "Address Details" section of the Connection Parameters dialog, you define the TSAPs
to be used. The TSAP of a connection in the CPU is entered in the "Local TSAP" field. The
TSAP assigned for the connection in your partner CPU is entered under the "Partner TSAP"
field.

https://sites.google.com/site/chauchiduc

PROFINET
7.4 PLC-to-PLC communication

 S7-1200 Programmable controller
232 System Manual, 11/2009, A5E02486680-02

Parameter Definition
General
End point: Partner Name assigned to the partner (receiving) CPU
Interface Name assigned to the interfaces
Subnet Name assigned to the subnets
Address Assigned IP Addresses
Connection type Type of Ethernet protocol
Connection ID ID number
Connection data Local and Partner CPU data storage location
Active connection setup Radio button to select Local or Partner CPU as the active connection
Address details
TSAP1 (ASCII) Local and Partner CPU TSAPs in ASCII format
TSAP ID Local and Partner CPU TSAPs in hexadecimal format

1 When configuring a connection with an S7-1200 CPU for ISO on TCP, use only ASCII characters
in the TSAP extension for the passive communication partners.

Transport Control Protocol (TCP)
TCP is a standard protocol described by RFC 793: Transmission Control Protocol. The
primary purpose of TCP is to provide reliable, secure connection service between pairs of
processes. This protocol has the following features:
● An efficient communications protocol since it is closely tied to the hardware
● Suitable for medium-sized to large data amounts (up to 8192 bytes)
● Provides considerably more facilities for applications, notably:

– Error recovery
– Flow control
– Reliability

● A connection-oriented protocol
● Can be used very flexibly with third-party systems which exclusively support TCP
● Routing-capable
● Only static data lengths are applicable.
● Messages are acknowledged.
● Applications are addressed using port numbers.
● Most of the user application protocols, such as TELNET and FTP, use TCP.
● Programming effort is required for data management due to the SEND / RECEIVE

programming interface.

https://sites.google.com/site/chauchiduc

 PROFINET
 7.5 Reference Information

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 233

Parameter Definition
General
End point: Partner Name assigned to the partner (receiving) CPU
Interface Name assigned to the interfaces
Subnet Name assigned to the subnets
Address Assigned IP Addresses
Connection type Type of Ethernet protocol
Connection ID ID number
Connection data Local and Partner CPU data storage location
Active connection setup Radio button to select Local or Partner CPU as the active connection
Address details
Port (decimal) Local CPU Port in decimal format

7.5 Reference Information

7.5.1 Locating the Ethernet (MAC) address on the CPU
In PROFINET networking, a Media Access Control address (MAC address) is an identifier
assigned to adapter cards by the manufacturer for identification. A MAC address usually
encodes the manufacturer's registered identification number.
The standard (IEEE 802.3) format for printing MAC addresses in human-friendly form is six
groups of two hexadecimal digits, separated by hyphens (-) or colons (:), in transmission
order, (for example, 01-23-45-67-89-ab or 01:23:45:67:89:ab).

 Note
Each CPU is loaded at the factory with a permanent, unique MAC address. You cannot
change the MAC address of a CPU.

The MAC address is printed on the front, lower-left corner of the CPU. Note that you have to
lift the lower TB doors to see the MAC address information.

https://sites.google.com/site/chauchiduc

PROFINET
7.5 Reference Information

 S7-1200 Programmable controller
234 System Manual, 11/2009, A5E02486680-02

① MAC address

Initially, the CPU has no IP address, only a factory-installed MAC address. PROFINET
communications requires that all devices be assigned a unique IP address.

Use the CPU "Download to
device" function and the
"Extended download to device"
dialog to show all accessible
network devices and ensure that
unique IP addresses have been
assigned to all devices. This
dialog displays all accessible
and available devices with their
assigned MAC and IP
addresses. MAC addresses are
all-important in identifying
devices that are missing the
required unique IP address.

7.5.2 Configuring Network Time Protocol synchronization
The Network Time Protocol (NTP) is widely used to synchronize the clocks of computer
systems to Internet time servers. It provides accuracies typically less than a millisecond on
LANs and up to a few milliseconds on WANs. Typical NTP configurations utilize multiple
redundant servers and diverse network paths in order to achieve high accuracy and
reliability.
The NTP subnet operates with a hierarchy of levels, where each level is assigned a number
called the stratum. Stratum 1 (primary) servers at the lowest level are directly synchronized
to national time services. Stratum 2 (secondary) servers at the next higher level are
synchronized to stratum 1 servers and so on.

https://sites.google.com/site/chauchiduc

 PROFINET
 7.5 Reference Information

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 235

Time synchronization parameters
In the Properties window, select the "Time synchronization" configuration entry. The TIA
Portal displays the Time synchronization configuration dialog:

 Note
All IP addresses are configured when you download the project.

The following table defines the parameters for time synchronization:

Parameter Definition
Enable time-of-day
synchronization using Network
Time Protocol (NTP) servers

Click the checkbox to enable time-of-day synchronization using
NTP servers.

Server 1 Assigned IP Address for network time server 1
Server 2 Assigned IP Address for network time server 2
Server 3 Assigned IP Address for network time server 3
Server 4 Assigned IP Address for network time server 4
Time synchronization interval Interval value (sec)

https://sites.google.com/site/chauchiduc

PROFINET
7.5 Reference Information

 S7-1200 Programmable controller
236 System Manual, 11/2009, A5E02486680-02

https://sites.google.com/site/chauchiduc

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 237

Point-to-Point (PtP) communications 8

The CPU supports the Point-to-Point protocol (PtP) for character-based serial
communication, in which the user application completely defines and implements the
protocol of choice. PtP provides maximum freedom and flexibility, but requires extensive
implementation in the user program.

PtP enables a wide variety of possibilities:
 The ability to send information directly to an

external device such as a printer
 The ability to receive information from other

devices such as barcode readers, RFID
readers, third-party camera or vision
systems, and many other types of devices

 The ability to exchange information, sending
and receiving data, with other devices such
as GPS devices, third-party camera or
vision systems, radio modems, and many
more

PtP communication is serial communication that uses standard UARTs to support a variety
of baud rates and parity options. The RS232 or RS485 communication module (CM)
provides the electrial interface for performing the PtP communications.
STEP 7 Basic provides libraries of instructions that you can use in programming your
application. These libraries provide PtP communication functions for the following protocols:
● USS drive protocol
● Modbus RTU Master Protocol
● Modbus RTU Slave Protocol

8.2 Using the RS232 and RS485 communication modules
Two communication modules (CMs) provide the interface for PtP communications: CM 1241
RS485 (Page 317) and CM 1241 RS232 (Page 318). You can connect up to three CMs (of
any type). Install the CM to the left of the CPU or another CM. Refer to the "Installation"
chapter (Page 29) for detailed instructions on module installation and removal.
The RS232 and RS485 communication modules have the following characteristics:
● Isolated port
● Supports Point-to-Point protocols
● Configured and programmed through extended instructions and library functions

https://sites.google.com/site/chauchiduc

Point-to-Point (PtP) communications
8.3 Configuring the communication ports

 S7-1200 Programmable controller
238 System Manual, 11/2009, A5E02486680-02

● Displays transmit and receive activity by means of LEDs
● Displays a diagnostic LED
● Powered by the CPU. No external power connection is needed.
Refer to the Technical Specifications for Communication Modules (Page 317).

8.3 Configuring the communication ports
The communication modules can be configured by two methods:
● Use the device configuration in STEP 7 Basic to configure the port parameters (baud and

parity), the send parameters and the receive parameters. The device configuration
settings are stored permanently in the CPU. These settings are applied after a power
cycle and a RUN to STOP transition.

● Use the PORT_CFG, SEND_CFG and RCV_CFG instructions to set the parameters. The
port settings set by the instructions are valid while the CPU is in RUN mode. The port
settings revert to the device configuration settings after a STOP transition or power cycle.

After configuring the hardware devices (Page 69), you configure parameters for the
communication interfaces by selecting one of the CMs in your rack.

The "Properties" tab of the inspector window displays
the parameters of the selected CM. Select "Port
configuration" to edit the following parameters:
 Baud rate
 Parity
 Number of stop bits
 Flow control (RS232 only)
 Wait time
Except for flow control, the port configuration
parameters are the same regardless of whether you
are configuring an RS232 or an RS485
communication module. The parameter values may
differ.

The port can also be configured (or the existing configuration can be changed) from the user
program with the PORT_CFG (Page 250) instruction.

 Note
Parameter values set from the PORT_CFG instruction in the user program override port
configuration settings set from the STEP 7 Basic. Note that the S7-1200 does not retain
parameters set from the PORT_CFG instruction in the event of power down.

https://sites.google.com/site/chauchiduc

 Point-to-Point (PtP) communications
 8.4 Managing flow control

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 239

Baud rate: The default value for the baud rate is 9.6 kbits per second. Valid choices are:
300 baud 2.4 kbits 19.2 kbits 76.8 kbits
600 baud 4.8 kbits 28.4 kbits 115.2 kbits
1.2 kbits 9.6 kbits 57.6 kbits

Parity: The default value for parity is no parity. Valid choices are:
● No parity
● Even
● Odd
● Mark (parity bit always set to 1)
● Space (parity bit always set to 0)
Number of stop bits: The number of stop bits can be either one or two. The default is one.
Flow control: For the RS232 communication module, you can select either hardware or
software flow control, as described in the section "Managing flow control (Page 239)". If you
select hardware flow control, you can select whether the RTS signal is always on, or RTS is
switched. If you select software flow control, you can define the ASCII characters for the
XON and XOFF characters.
The RS485 communication module does not support flow control.
Wait time: The wait time specifies the time that the communication module waits to receive
CTS after asserting RTS, or for receiving an XON after receiving an XOFF, depending on the
type of flow control. If the wait time expires before the communication module receives an
expected CTS or XON, the communication module aborts the transmit operation and returns
an error to the user program. You specify the wait time in milliseconds. The range is 0 to
65535 milliseconds.

8.4 Managing flow control
Flow control refers to a mechanism for balancing the sending and receiving of data
transmissions so that no data is lost. Flow control ensures that a transmitting device is not
sending more information than a receiving device can handle. Flow control can be
accomplished through either hardware or software. The RS232 CM supports both hardware
and software flow control. The RS485 CM does not support flow control. You specify the
type of flow control either when you configure the port (Page 238) or with the PORT_CFG
instruction.
Hardware flow control works through the Request-to-send (RTS) and Clear-to-send (CTS)
communication signals. With the RS232 CM, the RTS signal is output from pin 7 and the
CTS signal is received through pin 8. The CM 1241 is a DTE (Data Terminal Equipment)
device which asserts RTS as an output and monitors CTS as an input.

Hardware flow control: RTS switched
If you enable RTS switched hardware flow control for an RS232 CM, the module sets the
RTS signal active to send data. It monitors the CTS signal to determine whether the
receiving device can accept data. When the CTS signal is active, the module can transmit
data as long as the CTS signal remains active. If the CTS signal goes inactive, then the
transmission must stop.

https://sites.google.com/site/chauchiduc

Point-to-Point (PtP) communications
8.4 Managing flow control

 S7-1200 Programmable controller
240 System Manual, 11/2009, A5E02486680-02

Transmission resumes when the CTS signal becomes active. If the CTS signal does not
become active within the configured wait time, the module aborts the transmission and
returns an error to the user program. You specify the wait time in the port configuration
(Page 238).
The RTS switched flow control is useful for devices that require a signal that the transmit is
active. An example would be a radio modem that uses RTS as a "Key" signal to energize the
radio transmitter. The RTS switched flow control will not function with standard telephone
modems. Use the RTS always on selection for telephone modems.

Hardware flow control: RTS always on
In RTS always on node, the CM 1241 sets RTS active by default. A device such as a
telephone modem monitors the RTS signal from the CM and utilizes this signal as a clear-to-
send. The modem only transmits to the CM when RTS is active, that is, when the telephone
modem sees an active CTS. If RTS is inactive, the telephone module does not transmit to
the CM.
To allow the modem to send data to the CM at any time, configure "RTS always on"
hardware flow control. The CM thus sets the RTS signal active all the time. The CM will not
set RTS inactive even if the module cannot accept characters. The transmitting device must
ensure that it does not overrun the receive buffer of the CM.

Data Terminal Block Ready (DTR) and Data Set Ready (DSR) signal utilization
The CM sets DTR active for either type of hardware flow control. The module transmits only
when the DSR signal becomes active. The state of DSR is only evaluated at the start of the
send operation. If DSR becomes inactive after transmission has started, the transmission will
not be paused.

Software flow control
Software flow control uses special characters in the messages to provide flow control. These
characters are ASCII characters that represent XON and XOFF.
XOFF indicates that a transmission must stop. XON indicates that a transmission can
resume.
When the transmitting device receives an XOFF character from the receiving device, it stops
transmitting. Transmitting resumes when the transmitting device receives an XON character.
If it does not receive an XON character within the wait time that is specified in the port
configuration (Page 238) , the CM aborts the transmission and returns an error to the user
program.
Software flow control requires full-duplex communication, as the receiving partner must be
able to send XOFF to the transmitting partner while a transmission is in progress. Software
flow control is only possible with messages that contain only ASCII characters. Binary
protocols cannot utilize sofware flow control.

https://sites.google.com/site/chauchiduc

 Point-to-Point (PtP) communications
 8.5 Configuring the transmit (send) and receive parameters

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 241

8.5 Configuring the transmit (send) and receive parameters
Before the PLC can engage in PtP communications, you must configure parameters for
transmitting (or sending) messages and receiving messages. These parameters dictate how
communications operate when messages are being transmitted to or received from a target
device.

Configuring the transmit (send) parameters

During the configuration of the CM,
you configure how a
communication interface transmits
data by specifying the "Transmit
message configuration" property
for the selected CM.

You can also dynamically configure or change the transmit message parameters from the
user program by using the SEND_CFG (Page 251) instruction.

 Note
Parameter values set from the SEND_CFG instruction in the user program override the port
configuration settings. Note that the CPU does not retain parameters set from the
SEND_CFG instruction in the event of power down.

Parameter Definition
RTS On delay Specifies the amount of time to wait after activating RTS before

transmission is initiated. The range is 0 to 65535 ms, with a default value of
0. This parameter is valid only when the port configuration (Page 238)
specifies hardware flow control. CTS is evaluated after the RTS On delay
time has expired.
This parameter is applicable for RS232 modules only.

RTS Off delay Specifies the amount of time to wait before de-activating RTS after
completion of transmission. The range is 0 to 65535 ms, with a default
value of 0. This parameter is valid only when the port configuration
(Page 238) specifies hardware flow control.
This parameter is applicable for RS232 modules only.

Send break at message
start
Number of bit times in a
break

Specifies that upon the start of each message, a break will be sent after the
RTS On delay (if configured) has expired and CTS is active.
You specify how many bit times constitute a break where the line is held in
a spacing condition. The default is 12 and the maximum is 65535, up to a
limit of eight seconds.

Send idle line after a
break
Idle line after a break

Specifies that an idle line will be sent after a break at message start. The
"Idle line after a break" parameter specifies how many bit times constitute
an idle line where the line is held in a marking condition. The default is 12
and the maximum is 65535, up to a limit of eight seconds.

https://sites.google.com/site/chauchiduc

Point-to-Point (PtP) communications
8.5 Configuring the transmit (send) and receive parameters

 S7-1200 Programmable controller
242 System Manual, 11/2009, A5E02486680-02

Configuring the Receive parameters

From the device configuration, you
configure how a communication
interface receives data, and how it
recognizes both the start of and
the end of a message. Specify
these parameters in the Receive
message configuration for the
selected CM.

You can also dynamically configure or change the receive message parameters from the
user program by using the RCV_CFG (Page 253) instruction.

 Note
Parameter values set from the RCV_CFG instruction in the user program override the port
configuration settings. Note that the CPU does not retain parameters set from the RCV_CFG
instruction in the event of power down.

For more information, see the RCV_CFG instruction.

Message start parameters
You can determine how the communication module recognizes the start of a message. The
start characters and characters comprising the message go into the receive buffer until a
configured end condition is met.
Multiple start conditions can be specified. All of the start conditions must be met before the
message is considered started. For example, if you configure an idle line time and a specific
start character, the CM will first look for the idle line time requirement to be met and then the
CM will look for the specified start character. If some other character is received (not the
specified start character), the CM will restart the start of message search by again looking for
an idle line time.
The order of checking start conditions is:
● Idle line
● Line break
● Characters or character sequences
While checking for multiple start conditions, if one of the conditions is not met, the CM will
restart the checking with the first required condition.

https://sites.google.com/site/chauchiduc

 Point-to-Point (PtP) communications
 8.5 Configuring the transmit (send) and receive parameters

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 243

Parameter Definition
Start Character
character

The Start Character condition specifies that successfully receiving a
particular character will begin a message. This character will be the first
character within a message. Any character that is received before this
specific character will be discarded.

Start on Any Character The Any Character condition specifies any successfully received character
will begin the start of a message. This character will be the first character
within a message.

Line Break The Line Break conditions specifies that a message receive operation
should start after a break character is received.

Idle Line The Idle Line condition specifies that a message reception should start once
the receive line has been idle or quiet for the number of specified bit times.
Once this condition occurs, the start of a message will begin.

Special condition:
Recognize message
start with single

Specifies that a particular character indicates the start of a message. The
default is STX.

Special condition:
Recognize message
start with a character
sequence

Specifies that a particular character sequence indicates the start of a
message. For each sequence, you can specify up to five characters. For
each character position, you specify either a specific hex character, or that
the character is ignored in sequence matching.
Incoming sequences will be evaluated against the configured start
conditions until a start condition has been satisfied. Once the start sequence
has been satisfied, evaluation of end conditions begins.
You can configure up to five specific character sequences, which you can
enable or disable as needed. The start condition is satisfied when any one
of the configured character sequences occurs.

Sample configuration

With this configuration, the start condition is satisfied when either pattern
occurs:
 When a five-character sequence is received where the first character is

0x6A and the fifth character is 0x1C. The characters at positions 2, 3,
and 4 can be any character with this configuration. After the fifth
character is received, evaluation of end conditions begins.

 When two consecutive 0x6A characters are received, preceded by any
character. In this case, evaluation of end conditions begins after the
second 0x6A is received (3 characters). The character preceding the first
0x6A is included in the start condition.

Example sequences that would satisfy this start condition:
 <any character> 6A 6A
 6A 12 14 18 1C
 6A 44 A5 D2 1C

https://sites.google.com/site/chauchiduc

Point-to-Point (PtP) communications
8.5 Configuring the transmit (send) and receive parameters

 S7-1200 Programmable controller
244 System Manual, 11/2009, A5E02486680-02

Message end parameters
You can also configure how the communication interface recognizes the end of a message.
You can configure multiple message end conditions. If any one of the configured conditions
occurs, the message ends.
Multiple end conditions can be specified at the same time. The message will end when any
one of the end conditions has been satisfied. For example, you could specify an end
condition with an end of message timeout of 300 milliseconds, an inter-character timeout of
40 bit times, and a maximum length of 50 bytes. The message will end if the message takes
longer than 300 milliseconds to receive, or if the gap between any two characters exceeds
40 bit times, or if 50 bytes are received.

Parameter Definition
Recognize message
end by message
timeout

The message end occurs when the configured amount of time to wait for
message end has expired. The message timeout period begins when the
first character is received according to the message start criteria. The
default is 200 ms and the range is 0 to 65535 ms.

Recognize message
end by response
timeout

The message end occurs when the configured amount of time to wait for a
response expires before a valid start sequence is received. The response
timeout period begins when a transmission ends. The default response
timeout is 200 ms and the range is 0 to 65535 ms. You must configure
another end condition to indicate the actual end of a message.

Recognize message
end by inter-character
gap

The message end occurs when the maximum configured timeout between
consecutive characters of a message has expired. The default value for the
inter-character gap is 12 bit times and the maximum number is 65535 bit
times, up to a maximum of eight seconds.

Recognize message
end by max length

The message end occurs when the configured maximum number of
characters has been received. The default is 0 bytes and the maximum is
1024 bytes.

Read message length
from message

The message itself specifies the length of the message. The message end
occurs when a message of the specified length has been received. The
method for specifying and interpreting the message length is described
below.

Recognize message
end with a character

The message end occurs when a specified character is received.

Recognize message
end with a character
sequence

The message end occurs when a specified character sequence is received.
You can specify a sequence of up to five characters. For each character
position, you specify either a specific hex character, or that the character is
ignored in sequence matching.
Leading characters that are ignored characters are not part of the end
condition. Trailing characters that are ignored characters are part of the
end condition.

https://sites.google.com/site/chauchiduc

 Point-to-Point (PtP) communications
 8.5 Configuring the transmit (send) and receive parameters

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 245

Parameter Definition
Sample configuration

In this case, the end condition is satisfied when two consecutive 0x7A
characters are received, followed by any two characters. The character
preceding the 0x7A 0x7A pattern is not part of the end character sequence.
Two characters following the 0x7A 0x7A pattern are required to terminate
the end character sequence. The values at character positions 4 and 5 are
irrelevant, but they must be received to satisfy the end condition.

Specification of message length within the message
When you select the special condition where the message length is included in the message,
you must provide three parameters that define information about the message length.
The actual message structure varies according to the protocol in use. The three parameters
are as follows:
● n: the character position (1-based) within the message that starts the length specifier
● Length size: The number of bytes (one, two, or four) of the length specifier
● Length m: the number of characters following the length specifier that are not included in

the length count

These fields appear in the Receive
message configuration of the device
properties.

Example 1: Consider a message structured according to the following protocol:

Characters 3 to 14 counted by the length STX Len
(n) ADR PKE INDEX PWD STW HSW BCC

1 2 3 4 5 6 7 8 9 10 11 12 13 14
STX 0x0C xx xxxx xxxx xxxx xxxx xxxx xx

Configure the receive message length parameters for this message as follows:
● n = 2 (The message length starts with byte 2.)
● Length size = 1 (The message length is defined in one byte.)
● Length m = 0 (There are no additional characters following the length specifier that are

not counted in the length count. Twelve characters follow the length specifier.)
In this example, the characters from 3 to 14 inclusive are the characters counted by Len (n).

https://sites.google.com/site/chauchiduc

Point-to-Point (PtP) communications
8.6 Programming the PtP communications

 S7-1200 Programmable controller
246 System Manual, 11/2009, A5E02486680-02

Example 2: Consider another message structured according to the following protocol:

Characters 5 to 10 counted by length SD1 Len
(n)

Len
(n)

SD2
DA SA FA Data unit=3 bytes

FCS ED

1 2 3 4 5 6 7 8 9 10 11 12
xx 0x06 0x06 xx xx xx xx xx xx xx xx xx

Configure the receive message length parameters for this message as follows:
● n = 3 (The message length starts at byte 3.)
● Length size = 1 (The message length is defined in one byte.)
● Length m = 3 (There are three characters following the length specifier that are not

counted in the length. In the protocol of this example, the characters SD2, FCS, and ED
are not counted in the length count. The other six characters are counted in the length
count; therefore the total number of characters following the length specifier is nine.)

In this example, the characters from 5 to 10 inclusive are the characters counted by Len (n).

8.6 Programming the PtP communications
STEP 7 Basic provides extended instructions that enable the user program to perform Point-
to-Point communications with a protocol designed and specified in the user program. These
instructions can be considered in two categories:
● Configuration instructions
● Communication instructions

Configuration instructions

Before your user program can engage in PtP communication, you must configure the
communication interface port and the parameters for sending data and receiving data.
You can perform the port configuration and message configuration for
each communication module through the device configuration or
through these instructions in your user program:

 PORT_CFG
 SEND_CFG
 RCV_CFG

Communication instructions
The PtP communication instructions enable the user program to send messages to and
receive messages from the communication modules. For information transferring data with
these instructions, see the section on data consistency (Page 86).
All of the PtP functions operate asynchronously. The user program can use a polling
architecture to determine the status of transmissions and receptions. SEND_PTP and
RCV_PTP can execute concurrently. The communication modules buffer the transmit and
receive messages as necessary up to a maximum buffer size of 1024 bytes.

https://sites.google.com/site/chauchiduc

 Point-to-Point (PtP) communications
 8.6 Programming the PtP communications

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 247

The communication modules send messages to and receive messages
from the actual point-to-point devices. The message protocol is in a
buffer that is either received from or sent to a specific communication
port.

 SEND_PTP
 RCV_PTP

Additional instructions provide the capability to reset the receive buffer,
and to get and set specific RS232 signals.

 RCV_RST
 SGN_GET
 SGN_SET

8.6.1 Polling architecture
The S7-1200 point-to-point instructions must be called cyclically/periodically to check for
received messages. Polling the send will tell the user program when the transmit has
completed.

Polling architecture: master
The typical sequence for a master is as follows:
1. A SEND_PTP instruction initiates a transmission to the communication module.
2. The SEND_PTP instruction is executed on subsequent scans to poll for the transmit

complete status.
3. When the SEND_PTP instruction indicates that the transmission is complete, the user

code can prepare to receive the response.
4. The RCV_PTP instruction is executed repeatedly to check for a response. When the CM

has collected a response message, the RCV_PTP instruction will copy the response to
the CPU and indicate that new data has been received.

5. The user program can process the response.
6. Go to step 1 and repeat the cycle.

Polling architecture: slave
The typical sequence for a slave is as follows:
1. The user program should execute the RCV_PTP instruction every scan.
2. When the CM has received a request, the RCV_PTP instruction will indicate that new

data is ready and the request will be copied into the CPU.
3. The user program should service the request and generate a response.
4. Use a SEND_PTP instruction to send the response back to the master.
5. Repeatedly execute SEND_PTP to be sure the transmit occurs.
6. Go to step 1 and repeat the cycle.
The slave must be responsible for calling RCV_PTP frequently enough to receive a
transmission from the master before the master times out while waiting for a response. To
accomplish this task, the user program can call RCV_PTP from a cyclic OB, where the cycle
time is sufficient to receive a transmission from the master before the timeout period expires.

https://sites.google.com/site/chauchiduc

Point-to-Point (PtP) communications
8.7 Point-to-Point instructions

 S7-1200 Programmable controller
248 System Manual, 11/2009, A5E02486680-02

If you set the cycle time for the OB to provide for two executions within the timeout period of
the master, the user program should receive transmissions without missing any.

8.7 Point-to-Point instructions

8.7.1 Common parameters for Point-to-Point instructions

Communication module LED behaviors
There are three LED indicators on the Communication module (CM):
● Diagnostic LED: This LED flashes red until it is addressed by the CPU. After the CPU

powers up, it will check for modules and address the CM module. The Diagnostic LED will
begin to flash green. This means that the CPU has addressed the CM, but has not yet
provided configuration to the CM. The configuration is downloaded to the module when
the program is downloaded to the CPU. After a download to the CPU, the Diagnostic LED
on the communication module should be a steady green.

● Transmit LED: This LED is located above the receive LED. The transmit LED illuminates
when data is being transmitted out the communication port.

● Receive LED: This LED illuminates when data is being received by the communication
port.

Bit time resolution
Several parameters are specified in a number of bit times at the configured baud rate.
Specifying the parameter in bit times allows the parameter to be independent of baud rate.
All parameters that are in units of bit times can be specified to a maximum number of 65535.
However, the maximum of amount of time that can be measured by a S7-1200 is 8 seconds.

REQ input parameter
Many of the Point-to-Point (PtP) instructions use a REQ input that initiates the operation on a
low to high transition. The REQ input must be high (TRUE) for one execution of an
instruction, but the REQ input can remain TRUE for as long as desired. The instruction will
not initiate another operation until it is called with the REQ input FALSE so that the
instruction can reset the history state of the REQ input. This is required so that the
instruction can detect the low to high transition to initiate the next operation.
When you place a PtP instruction, you are prompted to identify the instance DB. Use a
unique DB for each type of PtP instruction. That is, all SEND_PTP instructions for a given
port should have the same instance DB, but SEND_PTP and RCV_PTP must have different
instance DBs. This ensures that inputs such as the REQ are properly handled by each
instruction.

https://sites.google.com/site/chauchiduc

 Point-to-Point (PtP) communications
 8.7 Point-to-Point instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 249

PORT input parameter
Select from the drop down menu (associated with the PORT input) the port identifier for the
CM that you want this instance of the instruction to operate. This number is also found as the
"hardware identifier" in the configuration information for the CM.

NDR, DONE, ERROR, and STATUS output parameters
● The output DONE indicates that the requested operation has completed without error.

This output will be set for one scan.
● The output NDR (New Data Ready) indicates that the requested action has completed

without error and new data has been received. This output will be set for one scan.
● The output ERROR indicates that the requested action has completed with an error. This

output will be set for one scan.
● The output STATUS is used to report errors or intermediate status results.

– If the DONE or NDR bit is set, then STATUS will be set to 0 or to an informational
code.

– If the ERROR bit is set, then STATUS will be set to an error code.
– If none of the above bits are set, then the instruction returns status results that

describe the current state of the function, such as a busy status.

Common condition codes

STATUS
(W#16#....)

Description

0000 No error
8x3A Illegal pointer in parameter x
8070 All internal instance memory in use
8080 Port number is illegal
8081 Timeout, module error, or other internal error
8082 Parameterization failed because parameterization is in progress in background
8083 Buffer overflow:

The CM returned a received message with a length greater than the length
parameter allowed.

8090 Wrong message length, wrong submodule, or illegal message
8091 Wrong version in parameterization message
8092 Wrong record length in parameterization message

https://sites.google.com/site/chauchiduc

Point-to-Point (PtP) communications
8.7 Point-to-Point instructions

 S7-1200 Programmable controller
250 System Manual, 11/2009, A5E02486680-02

8.7.2 PORT_CFG instruction

PORT_CFG (Port Configuration) allows you to change port
parameters such as baud rate from your program.
You can set up the initial static configuration of the port in the
device configuration properties, or just use the default values.
You can execute the PORT_CFG instruction in your program to
change the configuration. The PORT_CFG configuration
changes are not permanently stored in the CPU. The
parameters configured in the device configuration are restored
when the CPU transitions from RUN to STOP mode and after a
power cycle.
See Configuring the communication ports (Page 238) and
Managing flow control (Page 239) for more information.

Parameter Parameter

type
Data type Description

REQ IN Bool Activate the configuration change on rising edge of this
input.

PORT IN PORT Communication port identifier:
This logical address is a constant which can be
referenced within the "Constants" tab of the default tag
table.

PROTOCOL IN UInt 0 - Point-to-Point communication protocol
1..n - future definition for specific protocols

BAUD IN UInt Port baud rate:
1 - 300 baud
2 - 600 baud
3 - 1200 baud
4 - 2400 baud
5 - 4800 baud
6 - 9600 baud
7 - 19200 baud
8 - 38400 baud
9 - 57600 baud
10 - 76800 baud
11 - 115200 baud

PARITY IN UInt Port parity:
1 - No parity
2 - Even parity
3 - Odd parity
4 - Mark parity
5 - Space parity

DATABITS IN UInt Bits per character:
1 - 8 data bits
2 - 7 data bits

STOPBITS IN UInt Stop bits:
1 - 1 stop bit
2 - 2 stop bits

https://sites.google.com/site/chauchiduc

 Point-to-Point (PtP) communications
 8.7 Point-to-Point instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 251

Parameter Parameter
type

Data type Description

FLOWCTRL IN UInt Flow control:
1 - No flow control
2 - XON/XOFF
3 - Hardware RTS always ON
4 - Hardware RTS switched

XONCHAR IN Char Specify the character that is used as the XON character.
This is typically a DC1 character (11H). This parameter is
only evaluated if flow control is enabled.

XOFFCHAR IN Char Specify the character that is used as the XOFF character.
This is typically a DC3 character (13H). This parameter is
only evaluated if flow control is enabled.

XWAITIME IN UInt Specify how long to wait for a XON character after
receiving a XOFF character, or how long to wait for the
CTS signal after enabling RTC (0 to 65535 ms). This
parameter is only evaluated if flow control is enabled.

DONE OUT Bool TRUE for one scan, after the last request was completed
with no error

ERROR OUT Bool TRUE for one scan, after the last request was completed
with an error

STATUS OUT Word Execution condition code

STATUS
(W#16#....)

Description

80A0 Specific protocol does not exist.
80A1 Specific baud rate does not exist.
80A2 Specific parity option does not exist.
80A3 Specific number of data bits does not exist.
80A4 Specific number of stop bits does not exist.
80A5 Specific type of flow control does not exist.
80A6 Wait time is 0 and flow control enabled
80A7 XON and XOFF are illegal values

8.7.3 SEND_CFG instruction

SEND_CFG (Send Configuration) allows the dynamic
configuration of serial transmission parameters for a Point-to-
Point communication port. Any queued messages within a
communication module (CM) will be discarded once
SEND_CFG is executed.

https://sites.google.com/site/chauchiduc

Point-to-Point (PtP) communications
8.7 Point-to-Point instructions

 S7-1200 Programmable controller
252 System Manual, 11/2009, A5E02486680-02

You can set up the initial static configuration of the port in the device configuration
properties, or just use the default values. You can execute the SEND_CFG instruction in
your program to change the configuration. The SEND_CFG configuration changes are not
permanently stored in the PLC. The parameters configured in the device configuration are
restored when the CPU transitions from RUN to STOP mode and after a power cycle. See
Configuring the transmit (send) and receive parameters (Page 241).

Parameter Parameter

type
Data type Description

REQ IN Bool Activate the configuration change on the rising edge of
this input.

PORT IN PORT Communication port identifier:
This logical address is a constant which can be
referenced within the "Constants" tab of the default tag
table.

RTSONDLY IN UInt Number of milliseconds to wait after enabling RTS
before any Tx data transmission occurs. This
parameter is only valid when hardware flow control is
enabled. 0 - 65535 ms. 0 will disable the feature.

RTSOFFDLY IN UInt Number of milliseconds to wait after the Tx data
transmission occurs before RTS is disabled: This
parameter is only valid when hardware flow control is
enabled. 0 - 65535 ms. 0 will disable the feature.

BREAK IN UInt This parameter specifies that a break will be sent upon
the start of each message for the specified number of
bit times. The maximum is 65535 bit times. 0 will
disable the feature. 8 second maximum

IDLELINE IN UInt This parameter specifies that the line will remain idle
for the specified number of bit times before the start of
each message. The maximum is 65535 bit times. 0 will
disable the feature. 8 second maximum

DONE OUT Bool TRUE for one scan, after the last request was
completed with no error

ERROR OUT Bool TRUE for one scan, after the last request was
completed with an error

STATUS OUT Word Execution condition code

STATUS
(W#16#....)

Description

80B0 Transmit interrupt configuration is not allowed
80B1 Break time is greater than the allowed value (2500 bit times)
80B2 Idle time is greater than the allowed value (2500 bit times)

https://sites.google.com/site/chauchiduc

 Point-to-Point (PtP) communications
 8.7 Point-to-Point instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 253

8.7.4 RCV_CFG instruction

RCV_CFG (Receive Configuration) performs dynamic
configuration of serial receiver parameters for a Point-to-Point
communication port. This instruction configures the conditions
that signal the start and end of a received message. Any
queued messages within a CM will be discarded when
RCV_CFG is executed.

You can set up the initial static configuration of the CM port in the device configuration
properties, or just use the default values. You can execute the RCV_CFG instruction in your
program to change the configuration. The RCV_CFG configuration changes are not
permanently stored in the PLC. The parameters configured in the device configuration are
restored when the CPU transitions from RUN to STOP mode and after a power cycle. See
Configuring the Receive parameters (Page 241) for more information.

Parameter Parameter

type
Data type Description

REQ IN Bool Activate the configuration change on the rising
edge of this input.

PORT IN PORT Communication port identifier:
This logical address is a constant which can be
referenced within the "Constants" tab of the
default tag table.

CONDITIONS IN CONDITIONS The Conditions data structure specifies the
starting and ending message conditions. These
are described below.

DONE OUT Bool TRUE for one scan, after the last request was
completed with no error

ERROR OUT Bool TRUE for one scan, after the last request was
completed with an error

STATUS OUT Word Execution condition code

Start conditions for the RCV_PTP instruction
The RCV_PTP instruction uses the configuration specified by the RCV_CFG instruction to
determine the beginning and ending of point-to-point communication messages. The start of
a message is determined by the start conditions. The start of a message can be determined
by one or a combination of start conditions. If more than one start condition is specified, all
the conditions must be satisfied before the message is started. Possible start conditions:
● Start Character specifies that successfully receiving a particular character will begin a

message. This character will be the first character within a message. Any character that is
received before this specific character will be discarded.

● Any Character specifies that any successfully received character will begin the start of a
message. This character will be the first character within a message.

● Line Break specifies that a message receive operation should start after a break
character is received.

https://sites.google.com/site/chauchiduc

Point-to-Point (PtP) communications
8.7 Point-to-Point instructions

 S7-1200 Programmable controller
254 System Manual, 11/2009, A5E02486680-02

● Idle Line specifies that a message reception should start once the receive line has been
idle or quiet for the number of specified bit times. Once this condition occurs, the start of
a message will begin.

① Characters
② Restarts the idle line timer
③ Idle line is detected and message receive is started

● Variable Sequences: Start conditions can be constructed that are based upon a variable
number of character sequences (up to a maximum of 4) consisting of a varying number of
characters (up to a maximum of 5). Each character position within each sequence may
be selected as a specific character, or selected as a wild-card character, meaning any
character will qualify. This start condition can be used when different sequences of
characters indicate the start of a message.
Consider the following received hexadecimal coded message: "68 10 aa 68 bb 10 aa 16"
and the configured start sequences shown in the table below. Start sequences begin to
be evaluated when the first 68H character is successfully received. Upon successfully
receiving the fourth character (the second 68H), then start condition 1 is satisfied. Once
the start conditions are satisfied, the evaluation of the end conditions begins.
The start sequence processing can be terminated due to various parity, framing, or inter-
character timing errors. These errors result in no received message, because the start
condition was not satisfied.

Start condition First

Character
First Character
+1

First Character
+2

First Character
+3

First Character
+4

1 68H xx xx 68H xx
2 10H aaH xx xx xx
3 dcH aaH xx xx xx
4 e5H xx xx xx xx

https://sites.google.com/site/chauchiduc

 Point-to-Point (PtP) communications
 8.7 Point-to-Point instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 255

End conditions for the RCV_PTP instruction
The end of a message is determined by the specification of end conditions. The end of a
message is determined by the first occurrence of one or more configured end conditions.
Possible message end conditions:
● Response Timeout specifies that a character of the response should be successfully

received within the time specified by RCVTIME. The timer begins as soon as the
transmission completes successfully and the module begins the receive operation. If a
character is not received within the RCVTIME period, then an error is returned to the
corresponding RCV_PTP instruction. The response timeout does not define a specific
end condition. It only specifies that a character should be successfully received within the
specified time. A distinct end condition must be used to define the end condition for the
response messages.

① Transmitted characters
② Received characters
③ The first character must be successfully received by this time

● Message Timeout specifies that a message should be received within the time specified
by MSGTIME. The timer begins as soon as the specified start condition has been
satisfied.

① Received characters
② Start Message condition satisfied: message timer starts
③ Message timer expires and terminates the message

https://sites.google.com/site/chauchiduc

Point-to-Point (PtP) communications
8.7 Point-to-Point instructions

 S7-1200 Programmable controller
256 System Manual, 11/2009, A5E02486680-02

● Intercharacter Gap is the time measured from the end of one character (the last stop bit)
until the end of the next character. If the time between any two characters exceeds the
number of configured bit times, the message will be terminated.

① Received characters
② Restarts the intercharacter timer
③ The intercharacter timer expires and terminates the message with errors

● Maximum Length: The receive operation will stop once the specified number of
characters have been received. This condition can be used to prevent a message buffer
overrun error.
When this end condition is combined with timeout end conditions and the timeout
condition occurs, any valid received characters are provided even if the maximum length
is not reached. This allows support for varying length protocols when only the maximum
length is known.

● Combination Condition of "N + Length Size + Length M". This end condition can be used
to process a varying sized message that contains a length field.
– N specifies the position (number of characters into the message) where the length

field begins. (1 based)
– Length Size specifies the size of the length field. Valid values are 1, 2, or 4 bytes.
– Length M specifies the number of ending characters (following the length field) that

are not included within the length of the message. This value can be used to specify
the length of a checksum field whose size is not included in the length field.

– As an example, consider a message format that consists of a start character, an
address character, a one-byte length field, message data, checksum characters, and
an end character. The entries identified with "Len" correspond with the N parameter.
The value of N would be 3, specifying that the length byte is positioned 3 bytes into
the message. The value of Length Size would be 1, specifying that the value for the
length of the message is contained in 1 byte. The checksum and end char fields
correspond with the "Length M" parameter. The value of "Length M" would be 3,
specifying the number of bytes of the checksum and character fields.

Start char

(1)

Address

(2)

Len
(N)
(3)

Message

... (x)

Checksum and End char
Length M

x+1 x+2 x+3

xx xx xx xx xx xx xx xx

● Variable Characters: This end condition can be used to end receiving based upon
different character sequences. The sequences can consist of a varying number of
characters (up to a maximum of 5). Each character position within each sequence can be
selected as a specific character, or selected as a wild-card character, meaning any
character will satisfy the condition. Any leading characters that are configured to be

https://sites.google.com/site/chauchiduc

 Point-to-Point (PtP) communications
 8.7 Point-to-Point instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 257

ignored are not required to be part of the message. Any trailing characters that are
ignored are required to be part of the message.

Parameter CONDITIONS data type structure part 1 (start conditions)

Parameter Parameter

type
Data type Description

STARTCOND IN UInt Specify the start condition:
 01H - Start Char
 02H - Any Char
 04H - Line Break
 08H - Idle Line
 10H - Sequence 1
 20H - Sequence 2
 40H - Sequence 3
 80H - Sequence 4

IDLETIME IN UInt The number of bit times required for idle line timeout.
Only used with an idle line condition. 0 to 65535

STARTCHAR IN Byte The start character used with the start character
condition.

STRSEQ1CTL IN Byte Sequence 1 ignore/compare control for each character:
These are the enabling bits for each character in start
sequence
 01H - Character 1
 02H - Character 2
 04H - Character 3
 08H - Character 4
 10H - Character 5
Disabling the bit associated with a character means
any character will match, in this sequence position.

STRSEQ1 IN Char[5] Sequence 1 start characters (5 characters)
STRSEQ2CTL IN Byte Sequence 2 ignore/compare control for each character
STRSEQ2 IN Char[5] Sequence 2 start characters (5 characters)
STRSEQ3CTL IN Byte Sequence 3 ignore/compare control for each character
STRSEQ3 IN Char[5] Sequence 3 start characters (5 characters)
STRSEQ4CTL IN Byte Sequence 4 ignore/compare control for each character
STRSEQ4 IN Char[5] Sequence 4 start characters (5 characters)

https://sites.google.com/site/chauchiduc

Point-to-Point (PtP) communications
8.7 Point-to-Point instructions

 S7-1200 Programmable controller
258 System Manual, 11/2009, A5E02486680-02

Parameter CONDITIONS data type structure part 2 (end conditions)

Parameter Parameter

type
Data type Description

ENDCOND IN UInt This parameter specifies message end condition:
 01H - Response time
 02H - Message time
 04H - Inter-character gap
 08H - Maximum length
 10H - N + LEN + M
 20H - Sequence

MAXLEN IN UInt Maximum message length: Only used when the
maximum length end condition is selected. 0 to 1023
bytes

N IN UInt Byte position within the message of the length field.
Only used with the N + LEN + M end condition. 1 to
1023 bytes

LENGTHSIZE IN UInt Size of the byte field (1, 2, or 4 bytes). Only used with
the N + LEN + M end condition.

LENGTHM IN UInt Specify the number of characters following the length
field that are not included in the value of the length
field. This is only used with the N + LEN + M end
condition. 0 to 255 bytes

RCVTIME IN UInt Specify how long to wait for the first character to be
received. The receive operation will be terminated with
an error if a character is not successfully received
within the specified time. This is only used with the
response time condition. 0 to 65535 bit time, 8 second
maximum
This parameter is not really evaluated as an end
condition since it only evaluates start conditions. A
distinct end condition must be selected.

MSGTIME IN UInt Specify how long to wait for the entire message to be
completely received once the first character has been
received. This parameter is only used when the
message timeout condition is selected. 0 - 65535
milliseconds

CHARGAP IN UInt Specify the number of bit times between characters. If
the number of bit times between characters exceeds
the specified value, then the end condition will be
satisfied. This is only used with the inter-character gap
condition. 0 to 65535 milliseconds

ENDSEQ1CTL IN Byte Sequence 1 ignore/compare control for each character:
These are the enabling bits for each character for the
end sequence. Character 1 is bit 0, character 2 is bit 1,
…, character 5 is bit 4. Disabling the bit associated with
a character means any character will match, in this
sequence position.

ENDSEQ1 IN Char[5] Sequence 1 start characters (5 characters)

https://sites.google.com/site/chauchiduc

 Point-to-Point (PtP) communications
 8.7 Point-to-Point instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 259

Condition codes

STATUS
(W#16#....)

Description

80C0 Illegal start condition selected
80C1 Illegal end condition selected, no end condition selected
80C2 Receive interrupt enabled and this is not possible
80C3 Max length end condition is enabled and max length is 0 or > 1024
80C4 Calculated length is enabled and N is >= 1023
80C5 Calculated length is enabled and length is not 1, 2 or 4
80C6 Calculated length is enabled and M value is > 255
80C7 Calculated length is enabled and calculated length is > 1024
80C8 Response timeout is enabled and response timeout is zero
80C9 Inter-character gap timeout is enabled and it is zero or > 2500
80CA Idle line timeout is enabled and it is zero or > 2500
80CB End sequence is enabled but all chars are "don't care"
80CC Start sequence (any one of 4) is enabled but all chars are "don't care"

8.7.5 SEND_PTP instruction

SEND_PTP (Send Point-to-Point data) initiates the transmission
of the data. SEND_PTP transfers the specified buffer to the CM.
The CPU program continues while the CM sends the data at the
specified baud rate. Only one send operation can be pending at
a given time. The CM returns an error if a second SEND_PTP is
executed while the CM is already transmitting a message.

Parameter Parameter

type
Data type Description

REQ IN Bool Activates the requested transmission on the rising edge
of this transmission enable input. This initiates transfer of
the contents of the buffer to the Point-to-Point
communication module (CM).

PORT IN PORT Communication port identifier: This logical address is a
constant which can be referenced within the "Constants"
tab of the default tag table.

BUFFER IN Variant This parameter points to the starting location of the
transmit buffer.
Boolean data or Boolean arrays are not supported.

LENGTH IN UInt Transmitted frame length from bytes
When transmitting a complex structure, always use a
length of 0.

https://sites.google.com/site/chauchiduc

Point-to-Point (PtP) communications
8.7 Point-to-Point instructions

 S7-1200 Programmable controller
260 System Manual, 11/2009, A5E02486680-02

Parameter Parameter
type

Data type Description

PTRCL IN Bool This parameter selects the buffer as normal point-to-point
or specific Siemens-provided protocols that are
implemented within the attached CM.
FALSE = user program controlled point-to-point
operations. (only valid option)

DONE OUT Bool TRUE for one scan, after the last request was completed
with no error

ERROR OUT Bool TRUE for one scan, after the last request was completed
with an error

STATUS OUT Word Execution condition code

While a transmit operation is in progress, the DONE and ERROR outputs are FALSE. When
a transmit operation is complete, either the DONE or the ERROR output will be set TRUE for
one scan cycle to show the status of the transmit operation. While DONE or ERROR is
TRUE, the STATUS output is valid.
The instruction returns a status of 16#7001 if the communication module (CM) accepts the
transmit data. Subsequent SEND_PTP executions return a 16#7002 if the CM is still busy
transmitting. When the transmit operation is complete, the CM will return the status of the
transmit operation, 16#0000, if no errors occurred. Subsequent executions of SEND_PTP
with REQ low return a status of 16#7000 (not busy).
Relationship of the output values to REQ:
This assumes that the instruction is called periodically to check for the status of the
transmission process. In the diagram below, it is assumed that the instruction is called every
scan (represented by the STATUS values).

The following diagram shows how the DONE and STATUS parameters are valid for only one
scan if the REQ line is pulsed (for one scan) to initiate the transmit operation.

https://sites.google.com/site/chauchiduc

 Point-to-Point (PtP) communications
 8.7 Point-to-Point instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 261

The following diagram shows the relationship of DONE, ERROR and STATUS parameters
when there is an error.

STATUS
(W#16#....)

Description

80D0 New request while transmitter active
80D1 Transmit aborted because of no CTS within wait time
80D2 Transmit aborted because of no DSR from the DCE device
80D3 Transmit aborted because of queue overflow (transmit more than 1024 bytes)
7000 Not busy
7001 Busy when accepting request (first call)
7002 Busy on a poll (nth call)

Interaction of the LENGTH and DATA parameters for PTP_SEND
The minimum size of data that can be transmitted by the PTP_SEND instruction is a byte.
The DATA parameter determines the size of the data to be transmitted. You cannot use
BOOL or arrays of BOOL for the DATA parameter.

LENGTH parameter DATA parameter Description
LENGTH = 0 Not used The complete data is sent as defined at the DATA parameter. You do not

need to specify the number of transmitted bytes when LENGTH = 0.
Elementary data type The LENGTH value must contain the byte count of this data type.

Otherwise, nothing is transferred and the error 8088H is returned.
Structure The LENGTH value may contain a byte count less than the complete

byte length of the structure. In this case, only the first LENGTH bytes are
transferred.

Array The LENGTH value may contain a byte count that is less than the
complete byte length of the array. In this case, only array elements which
fit completely in LENGTH bytes are transferred.
The LENGTH value must be a multiple of the data element byte count.
Otherwise, STATUS = 8088H, ERROR = 1, and no transmit occurs.

LENGTH > 0

String The complete memory layout of the string format is transferred. The
LENGTH value must include bytes for maximum length, actual length,
and the string characters.
For the STRING data type, all lengths and characters have a byte size.
If a string is used as actual parameter at the DATA parameter, the
LENGTH value must also include two bytes for the two length fields.

https://sites.google.com/site/chauchiduc

Point-to-Point (PtP) communications
8.7 Point-to-Point instructions

 S7-1200 Programmable controller
262 System Manual, 11/2009, A5E02486680-02

8.7.6 RCV_PTP instruction

RCV_PTP (Receive Point-to-Point) checks for messages that
have been received in the CM. If a message is available, it will
be transferred from the CM to the CPU. An error returns the
appropriate STATUS value.

The STATUS value is valid when either NDR or ERROR is TRUE. The STATUS value
provides the reason for termination of the receive operation in the CM. This will typically be a
positive value, indicating that the receive operation was successful and that the receive
process terminated normally. If the STATUS value is negative (the Most Significant Bit of the
hexadecimal value is set), that indicates the receive operation was terminated for an error
condition such as parity, framing, or overrun errors.
Each Point-to-Point CM module can buffer up to a maximum of 1K bytes. This could be one
large message or several smaller messages.

Parameter Parameter

type
Data type Description

EN_R IN Bool When this input is TRUE, check the CM module for
received messages. If a message was successfully
received, it will be transferred from the module to the CPU.
When EN_R is FALSE, the CM is checked for received
messages and the STATUS output is set, but the message
is not transferred to the CPU.

PORT IN PORT Communication port identifier:
This logical address is a constant that can be referenced
within the "Constants" tab of the default tag table.

BUFFER IN Variant This parameter points to the starting location of the receive
buffer. This buffer should be large enough to receive the
maximum length message.
Boolean data or Boolean arrays are not supported.

NDR OUT Bool TRUE for one scan, when new data is ready and operation
is complete with no errors.

ERROR OUT Bool TRUE for one scan, after the operation was completed with
an error

STATUS OUT Word Execution condition code
LENGTH OUT UInt Length of the returned message (in bytes)

STATUS
(W#16#...)

Description

0000 No buffer present
80E0 Message terminated because the receive buffer is full
80E1 Message terminated due to parity error
80E2 Message terminated due to framing error
80E3 Message terminated due to overrun error

https://sites.google.com/site/chauchiduc

 Point-to-Point (PtP) communications
 8.7 Point-to-Point instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 263

STATUS
(W#16#...)

Description

80E4 Message terminated because calculated length exceeds buffer size
0094 Message terminated due to received maximum character length
0095 Message terminated because of message timeout
0096 Message terminated because of inter-character timeout
0097 Message terminated because of response timeout
0098 Message terminated because the "N+LEN+M" length condition was satisfied
0099 Message terminated because of end sequence was satisfied

8.7.7 RCV_RST instruction

RCV_RST (Receiver Reset) clears the receive buffers in the
CM.

Parameter Parameter

type
Data type Description

REQ IN Bool Activates the receiver reset on the rising edge of this enable
input

PORT IN PORT Communication port identifier:
The port must be specified using the module’s logical
address.

DONE OUT Bool When TRUE for one scan, indicates that the last request was
completed without errors.

ERROR OUT Bool When TRUE, shows that the last request was completed with
errors. Also, when this output is TRUE, the STATUS output
will contain related error codes.

STATUS OUT Word Error code

https://sites.google.com/site/chauchiduc

Point-to-Point (PtP) communications
8.7 Point-to-Point instructions

 S7-1200 Programmable controller
264 System Manual, 11/2009, A5E02486680-02

8.7.8 SGN_GET instruction

SGN_GET (Get RS232 Signals) reads the current states of
RS232 communication signals. This function is only valid for the
RS232 CM (communication module).

Parameter Parameter

type
Data type Description

REQ IN Bool Get RS232 signal state values on the rising edge of this input
PORT IN PORT Communication port identifier:

This logical address is a constant which can be referenced
within the "Constants" tab of the default tag table.

NDR OUT Bool TRUE for one scan, when new data is ready and the
operation is complete with no errors

ERROR OUT Bool TRUE for one scan, after the operation was completed with an
error

STATUS OUT Word Execution condition code
DTR OUT Bool Data terminal ready, module ready (output)
DSR OUT Bool Data set ready, communication partner ready (input)
RTS OUT Bool Request to send, module ready to send (output)
CTS OUT Bool Clear to send, communication partner can receive data (input)
DCD OUT Bool Data carrier detect, receive signal level (always false, not

supported)
RING OUT Bool Ring indicator, indication of incoming call (always false, not

supported)

STATUS
(W#16#....)

Description

80F0 CM is RS485 module and no signals are available
80F1 Signals cannot be set because of Hardware flow control
80F2 Cannot set DSR because module is DTE
80F3 Cannot set DTR because module is DCE

https://sites.google.com/site/chauchiduc

 Point-to-Point (PtP) communications
 8.7 Point-to-Point instructions

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 265

8.7.9 SGN_SET instruction

SGN_SET (Set RS232 Signals) sets the states of RS232
communication signals. This function is only valid for the RS232
CM (communication module).

Parameter Parameter

type
Data type Description

REQ IN Bool Start the set RS232 signals operation, on the rising edge of
this input

PORT IN PORT Communication port identifier:
This logical address is a constant that can be referenced
within the "Constants" tab of the default tag table.

SIGNAL IN Byte Selects which signal to set: (multiple allowed)
 01H = Set RTS
 02H = Set DTR
 04H = Set DSR

RTS IN Bool Request to send, module ready to send value to set (true or
false)

DTR IN Bool Data terminal ready, module ready to send value to set
(true or false)

DSR IN Bool Data set ready (only applies to DCE type interfaces) (not
used)

DONE OUT Bool TRUE for one scan, after the last request was completed
with no error

ERROR OUT Bool TRUE for one scan, after the last request was completed
with an error

STATUS OUT Word Execution condition code

STATUS
(W#16#....)

Description

80F0 CM is RS485 module and no signals are settable
80F1 Signals cannot be set because of Hardware flow control
80F2 Cannot set DSR because module is DTE
80F3 Cannot set DTR because module is DCE

https://sites.google.com/site/chauchiduc

Point-to-Point (PtP) communications
8.8 Errors

 S7-1200 Programmable controller
266 System Manual, 11/2009, A5E02486680-02

8.8 Errors

Return values of PtP instructions
Each PtP instruction has three outputs that provide the completion status:

Parameter Data type Default Description
DONE Boolean FALSE TRUE for one scan indicates that the last request

completed without errors.
ERROR Boolean FALSE TRUE indicates that the last request completed with

errors, with the applicable error code in STATUS.
STATUS Word 0 Two bytes that contain the error class and error

number, if applicable. STATUS retains its value for the
duration of the execution of the function.

Common error classes and errors

Class description Error classes Description
Port configuration 80Ax Used to define common port configuration errors
Transmit configuration 80Bx Used to define common transmit configuration

errors
Receive configuration 80Cx Used to define common receive configuration

errors
Transmission runtime 80Dx Used to define common transmission runtime

errors
Reception runtime 80Ex Used to define common reception runtime errors
Signal handling 80Fx Used to define common errors associated with all

signal handling

Port configuration errors

Event / error ID Description

0x80A0 The specific protocol does not exist
0x80A1 The specific baud rate does not exist
0x80A2 The specific parity does not exist
0x80A3 The specific number of data bits does not exist
0x80A4 The specific number of stop bits does not exist
0x80A5 The specific type of flow control does not exist

https://sites.google.com/site/chauchiduc

 Point-to-Point (PtP) communications
 8.8 Errors

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 267

Transmit configuration errors

Event / error ID Description

0x80B0 The specific protocol does not exist
0x80B1 The specific baud rate does not exist
0x80B2 The specific parity does not exist
0x80B3 The specific number of data bits does not exist
0x80B4 The specific number of stop bits does not exist
0x80B5 The specific type of flow control does not exist

Receive configuration errors

Event / error ID Description

0x80C0 Start condition error
0x80C1 End condition error
0x80C3 Maximum length error
0x80C4 N value error (refer to N+LEN+M)
0x80C5 Length size error (refer to MAXLEN or N+LEN+M)
0x80C6 M value error (refer to N+LEN+M)
0x80C7 N-Length-M value error (refer to N+LEN+M)
0x80C8 Response timeout error, no message was received during the specified

receive period. (refer to RCVTIME or MSGTIME)
0x80C9 Inter-character timeout error (refer to CHARGAP)
0x80CA Idle line timeout error (refer to Idle Line)
0x80CB A specified end sequence is configured with all "don't care" characters
0x80CC A specified start sequence is configured with all "don't care" characters

Signal errors

Event / error ID Description

0x80F0 The communication module is an RS485 module and no signals are available
0x80F1 The communication module is an RS232 module, but no signals are settable

because H/W flow control is enabled
0x80F2 The DSR signal can not be set since the module is a DTE device

Transmission runtime errors

Event / error ID Description

Buffer Limit The total available transmit buffer of the CP has been exceeded
0x80D0 A new request was received while the transmitter was active

https://sites.google.com/site/chauchiduc

Point-to-Point (PtP) communications
8.8 Errors

 S7-1200 Programmable controller
268 System Manual, 11/2009, A5E02486680-02

Event / error ID Description
0x80D1 The receiver issued a flow control request to suspend an active transmission

and never re-enabled the transmission during the specified wait time
This error is also generated during hardware flow control when the receiver
does not assert CTS within the specified wait time

0x80D2 The transmit request was aborted because no DSR signal is received from the
DCE

0x80D3 The total available transmit buffer of the CP has been exceeded
0x7000 The transmit function is not busy
0x7001 The transmit function is busy with the first call
0x7002 The transmit function is busy with subsequent calls (polls after the first call)

Reception runtime return values

Event / error ID Description

0x80E0 The message was terminated because the receive buffer is full
0x80E1 The message was terminated as a result of a parity error
0x80E2 The message was terminated as a result of a framing error
0x80E3 The message was terminated as a result of an overrun error
0x80E4 The message was terminated as a result of the specified length exceeding the

total buffer size
0x0094 The message was terminated because the maximum character length was

received (MAXLEN)
0x0095 The message was terminated because the complete message was not

received in the specified time (MSGTIME)
0x0096 The message was terminated because the next character was not received in

the within the duration of the inter-character time (CHARGAP)
0x0097 The message was terminated because the first character was not received in

the specified time (RCVTIME)
0x0098 The message was terminated because the "n+len+m" length condition has

been satisfied (N+LEN+M)
0x0099 The message was terminated because the end sequence has been satisfied

(ENDSEQ)

Miscellaneous parameter errors

Event / error ID Description

0x8n3A An illegal pointer was provided on parameter n
0x8070 All internal instance memory is in use
0x8080 The port number is invalid
0x8082 Parameterization failed because parameterization is already in progress in the

background
0x8083 Buffer overflow. CM returned more data than allowed.
0x8085 LEN parameter has the value of 0 or is greater than the largest value allowed
0x8088 LEN parameter is larger than the memory area specified in DATA

https://sites.google.com/site/chauchiduc

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 269

Online and diagnostic tools 9
9.1 Status LEDs

The CPU and the I/O modules use LEDs to provide information about either the operational
status of the module or the I/O. The CPU provides the following status indicators:
● STOP/RUN

– Solid orange indicates STOP mode
– Solid green indicates RUN mode
– Flashing (alternating green and orange) indicates that the CPU is starting up

● ERROR
– Flashing red indicates an error, such as an internal error in the CPU, a error with the

memory card, or a configuration error (mismatched modules)
– Solid red indicates defective hardware

● MAINT (Maintenance) flashes whenever you insert a memory card. The CPU then
changes to STOP mode. After the CPU has changed to STOP mode, perform one of the
following functions to initiate the evaluation of the memory card:
– Change the CPU to RUN mode
– Perform a memory reset (MRES)
– Power-cycle the CPU

Description STOP/RUN Orange / Green ERROR Red MAINT Orange
Power is off Off Off Off
Startup, self-test,
firmware update

Flashing
(alternating orange and green)

- Off

Stop mode On
(orange)

- -

Run mode On
(orange)

- -

Remove the
memory card

On
(orange)

- Flashing

Error On
(either orange or green)

Flashing -

Maintenance
requested

On
(either orange or green)

- On

Defective
hardware

On
(orange)

On Off

LED test or
defective CPU
firmware

Flashing
(alternating orange and green)

Flashing Flashing

https://sites.google.com/site/chauchiduc

Online and diagnostic tools
9.2 Going online and connecting to a CPU

 S7-1200 Programmable controller
270 System Manual, 11/2009, A5E02486680-02

The CPU also provides two LEDs that indicate the status of the PROFINET communications.
Open the bottom terminal block cover to view the PROFINET LEDs.
● Link (green) turns on to indicate a successful connection
● Rx/Tx (yellow) turns on to indicate transmission activity
The CPU and each digital signal module (SM) provide an I/O Channel LED for each of the
digital inputs and outputs. The I/O Channel (green) turns on or off to indicate the state of the
individual input or output.
In addition, each digital SM provides a DIAG LED that indicates the status of the module:
● Green indicates that the module is operational
● Red indicates that the module is defective or non-operational
Each analog SM provides an I/O Channel LED for each of the analog inputs and outputs.
● Green indicates that the channel has been configured and is active
● Red indicates an error condition of the individual analog input or output
In addition, each analog SM provides a DIAG LED that indicates the status of the module:
● Green indicates that the module is operational
● Red indicates that the module is defective or non-operational
The SM detects the presence or absence of power to the module (field-side power, if
required).

Description DIAG

(Red / Green)
I/O Channel

(Red / Green)
Field-side power is off Flashing red Flashing red
Not configured or updated in progress Flashing green Off
Module configured with no errors On (green) On (green)
Error condition Flashing red -
I/O error (with diagnostics enabled) - Flashing red
I/O error (with diagnostics disabled) - On (green)

9.2 Going online and connecting to a CPU

An online connection between the programming device and a target system is required for
loading programs and project engineering data to the target system as well as for activities
such as the following:
 Testing user programs
 Displaying and changing the operating mode of the CPU
 Displaying and setting the date and time of day of the

CPU
 Displaying the module information
 Comparing online and offline blocks
 Diagnosing hardware

https://sites.google.com/site/chauchiduc

 Online and diagnostic tools
 9.3 Setting the IP address and time of day

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 271

You can then access the data on the target system in the online or diagnostics view using
the "Online tools" task card.

The current online status of a
device is indicated by an icon to
the right next to the device in the
project navigation.
The orange color indicates an
online connection.
Select "Accessible Nodes" to
find a CPU on the network.

Click "Go online" to connect to a CPU on the network.

9.3 Setting the IP address and time of day

You can set the IP address and time of day
in the online CPU.
After connecting to an online CPU from the
"Online & diagnostics" area, you can
display or change the IP address.
Refer to the section on the IP address
(Page 76) for more information.
You can also display or set the time and
date parameters of the online CPU.

https://sites.google.com/site/chauchiduc

Online and diagnostic tools
9.4 CPU operator panel for the online CPU

 S7-1200 Programmable controller
272 System Manual, 11/2009, A5E02486680-02

9.4 CPU operator panel for the online CPU

The "CPU operator panel" task card displays the operating mode
(STOP or RUN) of the online CPU: The panel also shows whether
the CPU has an error or if values are being forced. Use the CPU
operating panel to change the operating mode of an online CPU.

9.5 Monitoring the cycle time and memory usage

You can monitor the cycle
time and memory usage of
an online CPU.
After connecting to the
online CPU, you can view
the following
measurements:
 Cycle time
 Memory usage

9.6 Displaying diagnostic events in the CPU
Use the diagnostics buffer to review the recent activity in the CPU. The diagnostics buffer
contains the following entries:
● Diagnostic events
● Changes in the CPU operating mode (transitions to STOP or RUN mode)

https://sites.google.com/site/chauchiduc

 Online and diagnostic tools
 9.7 Watch tables for monitoring the user program

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 273

The first entry contains the latest
event. Each entry in the diagnostic
buffer contains the date and time the
event was logged, and a description.
The maximum number of entries is
dependent on the CPU. A maximum of
50 entries is supported.
Only the 10 most recent events in the
diagnostic buffer are stored
permanently. Resetting the CPU to the
factory settings resets the diagnostic
buffer by deleting the entries.

9.7 Watch tables for monitoring the user program
A watch table allows you to perform monitoring and control functions on data points as the
CPU executes your program. These data points can be process image (I or Q), physical
(I_:P or Q_:P), M, or DB depending on the monitor or control function.
The Monitoring function does not change the program sequence. It presents you with
information about the program sequence and the data of the program in the CPU.
Control functions enable the user to control the sequence and the data of the program.
Caution must be exercised when using control functions. These functions can seriously
influence the execution of the user/system program. The three control functions are Modify,
Force and Enable Outputs in STOP.
With the watch table, you can perform the following online functions:
● Monitoring the status of the tags
● Modifying values for the individual tags
● Forcing a tag to a specific value
You select when to monitor or modify the tag:
● Beginning of scan cycle: Reads or writes the value at the beginning of the scan cycle
● End of scan cycle: Reads or writes the value at the end of the scan cycle
● Switch to stop

https://sites.google.com/site/chauchiduc

Online and diagnostic tools
9.7 Watch tables for monitoring the user program

 S7-1200 Programmable controller
274 System Manual, 11/2009, A5E02486680-02

To create a watch table:
1. Double-click "Add new watch table" to open a new

watch table.
2. Enter the tag name to add a tag to the watch table.
The following options are available for monitoring tags:
 Monitor all: This command starts the monitoring of

the visible tags in the active watch table.
 Monitor now: This command starts the monitoring of

the visible tags in the active watch table. The watch
table monitors the tags immediately and once only.

The following options are available for modifying tags:
● "Modify to 0" sets the value of a selected address to "0".
● "Modify to 1" sets the value of a selected address to "1".
● "Modify now" immediately changes the value for the selected addresses for one scan

cycle.
● "Modify with trigger" changes the values for the selected addresses.

This function does not provide feedback to indicate that the selected addresses were
actually modified. If feedback of the change is required, use the "Modify now" function.

● "Enable peripheral outputs" disables the command output disable and is available only
when the CPU is in STOP mode.

To monitor the tags, you must have an online connection to the CPU.

The various functions can be selected using the buttons at the top of the watch table.
Enter the tag name to monitor and select a display format from the dropdown selection. With
an online connection to the CPU, clicking the "Monitor" button displays the actual value of
the data point in the "Monitor value" field.

https://sites.google.com/site/chauchiduc

 Online and diagnostic tools
 9.7 Watch tables for monitoring the user program

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 275

Using a trigger when monitoring or modifying PLC tags
Triggering determines at what point in the scan cycle the selected address will be monitored
or modified.

Trigger Type Description
Permanent Continuously collects the data

Permanent: Continuously collects the data at the start of the scan cycle, after
the CPU reads the inputs

At scan cycle start

Once: Collects the data at the start of the scan cycle, after the CPU reads the
inputs
Permanent: Continuously collects the data at the end of the scan cycle, before
the CPU writes the outputs

At scan cycle end

Once: Collects the data once at the end of the scan cycle, before the CPU
writes the outputs
Permanent: Continuously collects data when the CPU transitions to STOP At transition to

STOP Once: Collects the data once after the CPU transitions to STOP

For modifying a PLC tag at a given trigger, select either the start or the end of cycle.
● Modifying an output: The best trigger event for modifying an output is at the end of the

scan cycle, immediately before the CPU writes the outputs.
Monitor the value of the outputs at the beginning of the scan cycle to determine what
value is written to the physical outputs. Also, monitor the outputs before the CPU writes
the values to the physical outputs in order to check program logic and to compare to the
actual I/O behavior.

● Modifying an input: The best trigger event for modifying an input is at the start of the
cycle, immediately after the CPU reads the inputs and before the user program uses the
input values.
If you are modifying inputs the start of the scan cycle, you should also monitor the value
of the inputs at the end of the scan cycle to ensure that the value of the input at the end
the scan cycle has not changed from the start of the scan cycle. If there is a difference in
the values, your user program may be writing to an input in error.

To diagnose why the CPU might have gone to STOP, use the "Transition to STOP" trigger to
capture the last process values.

https://sites.google.com/site/chauchiduc

Online and diagnostic tools
9.7 Watch tables for monitoring the user program

 S7-1200 Programmable controller
276 System Manual, 11/2009, A5E02486680-02

Enabling outputs in STOP mode
The watch table allows you to write to the outputs when the CPU is in STOP mode. This
functionality allows you to check the wiring of the outputs and verify that the wire connected
to an output pin initiates a high or low signal to the terminal of the process device to which it
is connected.

WARNING
Even though the CPU is in STOP mode, enabling a physical output can activate the
process point to which it is connected.

You can change the state of the outputs in STOP mode when the outputs are enabled. If the
outputs are disabled, you cannot modify the outputs in STOP mode.
● To enable the modification of the outputs in STOP, select the "Enable peripheral outputs"

option of the "Modify" command of the "Online" menu, or by right-clicking the row of the
Watch table.

● Setting the CPU to RUN mode disables "Enable peripheral outputs" option.
● If any inputs or outputs are forced, the CPU is not allowed to enable outputs while in

STOP mode. The force function must first be cancelled.

Forcing values in the CPU
The CPU allows you to force input and output point(s) by specifying the physical input or
output address (I_:P or Q_:P) in the watch table and starting force.
In the program, reads of physical inputs are overwritten by the forced value. The program
uses the forced value in processing. When the program writes a physical output, the output
value is overwritten by the force value. The forced value appears at the physical output and
is used by the process.
When an input or output is forced in the watch table, the force actions become part of the
user program. Even though the programming software has been closed, the force selections
remain active in the operating CPU program until they are cleared by going online with the
programming software and stopping the force function. Programs with forced points loaded
on another CPU from a memory card will continue to force the points selected in the
program.
If the CPU is executing the user program from a write-protected memory card, you cannot
initiate or change the forcing of I/O from a watch table because you cannot override the
values in the write-protected user program. Any attempt to force the write-protected values
generates an error. If you use a memory card to transfer a user program, any forced
elements on that memory card will be transferred to the CPU.

 Note
Digital I/O points assigned to HSC, PWM, and PTO cannot be forced
The digital I/O points used by the high-speed counter (HSC), pulse-width modulation (PWM),
and pulse-train output (PTO) devices are assigned during device configuration. When digital
I/O point addresses are assigned to these devices, the values of the assigned I/O point
addresses cannot be modified by the force function of the watch table.

https://sites.google.com/site/chauchiduc

 Online and diagnostic tools
 9.7 Watch tables for monitoring the user program

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 277

Startup RUN

A The clearing of the I memory area is not
affected by the Force function.

① While writing Q memory to the physical
outputs, the CPU applies the force value as
the outputs are updated.

B The initialization of the outputs values is
not affected by the Force function.

② When reading the physical inputs, the CPU
applies the force values just prior to copying
the inputs into I memory.

C During the execution of the startup OBs,
the CPU applies the force value when
the user program accesses the physical
input.

③ During the execution of the user program
(program cycle OBs), the CPU applies the
force value when the user program accesses
the physical input or writes the physical
output.

D The storing of interrupt events into the
queue is not affected.

④ Handling of communication requests and self-
test diagnostics are not affected by the Force
function.

E The enabling of the writing to the
outputs is not affected.

⑤ The processing of interrupts during any part of
the scan cycle is not affected.

https://sites.google.com/site/chauchiduc

Online and diagnostic tools
9.7 Watch tables for monitoring the user program

 S7-1200 Programmable controller
278 System Manual, 11/2009, A5E02486680-02

https://sites.google.com/site/chauchiduc

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 279

Technical specifications A
A.1 General Technical Specifications

Standards compliance
The S7-1200 automation system complies with the following standards and test
specifications. The test criteria for the S7-1200 automation system are based on these
standards and test specifications.

CE approval

The S7-1200 Automation System satisfies requirements and safety related
objectives according to the EC directives listed below, and conforms to the
harmonized European standards (EN) for the programmable controllers
listed in the Official Journals of the European Community.

● EC Directive 2006/95/EC (Low Voltage Directive) "Electrical Equipment Designed for Use
within Certain Voltage Limits"
– EN 61131-2:2007 Programmable controllers - Equipment requirements and tests

● EC Directive 2004/108/EC (EMC Directive) "Electromagnetic Compatibility"
– Emission standard

EN 61000-6-4:2007: Industrial Environment
– Immunity standard

EN 61000-6-2:2005: Industrial Environment
● EC Directive 94/9/EC (ATEX) "Equipment and Protective Systems Intended for Use in

Potentially Explosive Atmosphere
– EN 60079-15:2005: Type of Protection 'n'

The CE Declaration of Conformity is held on file available to competent authorities at:
Siemens AG
IA AS RD ST PLC Amberg
Werner-von-Siemens-Str. 50
D92224 Amberg
Germany

https://sites.google.com/site/chauchiduc

Technical specifications
A.1 General Technical Specifications

 S7-1200 Programmable controller
280 System Manual, 11/2009, A5E02486680-02

cULus approval

Underwriters Laboratories Inc. complying with
 Underwriters Laboratories, Inc.: UL 508 Listed (Industrial Control

Equipment)
 Canadian Standards Association: CSA C22.2 Number 142

(Process Control Equipment)

NOTICE
The SIMATIC S7-1200 series meets the CSA standard.
The cULus logo indicates that the S7-1200 has been examined and certified by
Underwriters Laboratories (UL) to standards UL 508 and CSA 22.2 No. 142.

FM approval

Factory Mutual Research (FM):
Approval Standard Class Number 3600 and 3611
Approved for use in:
Class I, Division 2, Gas Group A, B, C, D, Temperature Class T4A Ta =
40° C
Class I, Zone 2, IIC, Temperature Class T4 Ta = 40° C

ATEX approval

EN 60079-0:2006: Explosive Atmospheres - General Requirements
EN 60079-15:2005: Electrical Apparatus for potentially explosive
atmospheres;
Type of protection 'n'
II 3 G Ex nA II T4

The following special conditions for safe use of the S7-1200 must be followed:
● Install modules in a suitable enclosure providing a minimum degree of protection of IP54

according to EN 60529 and take into account the environmental conditions under which
the equipment will be used.

● When the temperature under rated conditions exceeds 70° C at the cable entry point, or
80° C at the branching point of the conductors, the temperature specification of the
selected cable should be in compliance with the actual measured temperature.

● Provisions should be made to prevent the rated voltage from being exceeded by transient
disturbances of more than 40%.

https://sites.google.com/site/chauchiduc

 Technical specifications
 A.1 General Technical Specifications

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 281

C-Tick approval

The S7-1200 automation system satisfies requirements of standards to AS/NZS
2064 (Class A)

Maritime approval
The S7-1200 products are periodically submitted for special agency approvals related to
specific markets and applications. Consult your local Siemens representative if you need
additional information related to the latest listing of exact approvals by part number.
Classification societies:
● ABS (American Bureau of Shipping)
● BV (Bureau Veritas)
● DNV (Det Norske Veritas)
● GL (Germanischer Lloyd)
● LRS (Lloyds Register of Shipping)
● Class NK (Nippon Kaiji Kyokai)

Industrial environments
The S7-1200 automation system is designed for use in industrial environments.

Application Field Noise Emission Requirements Noise Immunity Requirements
Industrial EN 61000-6-4:2007 EN 61000-6-2:2005

Electromagnetic compatibility
Electromagnetic Compatibility (EMC) is the ability of an electrical device to operate as
intended in an electromagnetic environment and to operate without emitting levels of
electromagnetic interference (EMI) that may disturb other electrical devices in the vicinity.

Electromagnetic Compatibility - Immunity per EN 61000-6-2
EN 61000-4-2
Electrostatic discharge

8 kV air discharge to all surfaces
6 kV contact discharge to exposed conductive surfaces

EN 61000-4-3
Radiated electromagnetic field

80 to 1000 MHz, 10 V/m, 80% AM at 1 kHz
1-4 to 2.0 GHz, 3 V/m, 80% AM a 1 kHz
2.0 to 2.7 GHz, 1 V/m, 80% AM at 1 kHz

EN 61000-4-4
Fast transient bursts

2 kV, 5 kHz with coupling network to AC and DC system power
2 kV, 5 kHz with coupling clamp to I/O

EN 6100-4-5
Surge immunity

AC systems - 2 kV common mode, 1kV differential mode
DC systems - 2 kV common mode, 1kV differential mode
For DC systems (I/O signals, DC power systems) external protection is
required.

https://sites.google.com/site/chauchiduc

Technical specifications
A.1 General Technical Specifications

 S7-1200 Programmable controller
282 System Manual, 11/2009, A5E02486680-02

Electromagnetic Compatibility - Immunity per EN 61000-6-2
EN 61000-4-6
Conducted disturbances

150 kHz to 80 MHz, 10 V RMS, 80% AM at 1kHz

EN 61000-4-11
Voltage dips

AC systems
0% for 1 cycle, 40% for 12 cycles and 70% for 30 cycles at 60 Hz

Electromagnetic Compatibility - Conducted and Radiated Emissions per EN 61000-6-4
Conducted Emissions
EN 55011, Class A, Group 1
 0.15 MHz to 0.5 MHz
 0.5 MHz to 5 MHz
 5 MHz to 30 MHz

<79dB (μV) quasi-peak; <66 dB (μV) average
<73dB (μV) quasi-peak; <60 dB (μV) average
<73dB (μV) quasi-peak; <60 dB (μV) average

Radiated Emissions
EN 55011, Class A, Group 1
 30 MHz to 230 MHz
 230 MHz to 1 GHz

<40dB (μV/m) quasi-peak; measured at 10m
<47dB (μV/m) quasi-peak; measured at 10m

Environmental conditions

Environmental Conditions - Transport and Storage
EN 60068-2-2, Test Bb, Dry heat and
EN 60068-2-1, Test Ab, Cold

-40° C to +70° C

EN 60068-2-30, Test Db, Damp heat 25° C to 55° C, 95% humidity
EN 60068-2-14, Test Na, temperature shock -40° C to +70° C, dwell time 3 hours, 2 cycles
EN 60068-2-32, Free fall 0.3 m, 5 times, product packaging
Atmospheric pressure 1080 to 660h Pa (corresponding to an altitude of -1000 to 3500m)

Environmental Conditions - Operating
Ambient temperature range
(Inlet Air 25 mm below unit)

0° C to 55° C horizontal mounting
0° C to 45° C vertical mounting
95% non-condensing humidity

Atmospheric pressure 1080 to 795 hPa (Corresponding to an altitude of -1000 to 2000m)
Concentration of contaminants S02: < 0.5 ppm; H2S: < 0.1 ppm; RH < 60% non-condensing
EN 60068-2-14, Test Nb, temperature change 5° C to 55° C, 3° C/minute
EN 60068-2-27 Mechanical shock 15 G, 11 ms pulse, 6 shocks in each of 3 axis
EN 60068-2-6 Sinusoidal vibration DIN rail mount: 3.5 mm from 5-9 Hz, 1G from 9 - 150 Hz

Panel Mount: 7.0 mm from 5-9 Hz, 2G from 9 to 150 Hz
10 sweeps each axis, 1 octave per minute

High Potential Isolation Test
24 V/5 V nominal circuits
115/230 V circuits to ground
115/230 V circuits to 115/230 V circuits
115 V/230V circuits to 24 V/5 V circuits

520 VDC (type test of optical isolation boundaries)
1,500 VAC routine test/1950 VDC type test
1,500 VAC routine test/1950 VDC type test
1,500 VAC routine test/3250 VDC type test

https://sites.google.com/site/chauchiduc

 Technical specifications
 A.1 General Technical Specifications

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 283

Protection Class
● Protection Class II according to EN 61131-2 (Protective conductor not required)

Degree of protection
● IP20 Mechanical Protection, EN 60529
● Protects against finger contact with high voltage as tested by standard probe. External

protection required for dust, dirt, water and foreign objects of < 12.5mm in diameter.

Rated voltages

Rated Voltage Tolerance
24 VDC 20.4 VDC to 28.8 VDC
120/230 VAC 85 VAC to 264 VAC, 47 to 63 Hz

NOTICE
When a mechanical contact turns on output power to the S7-1200 CPU, or any digital
signal module, it sends a "1" signal to the digital outputs for approximately 50
microseconds. You must plan for this, especially if you are using devices which respond to
short duration pulses.

Relay electrical service life

The typical performance data supplied by relay vendors is shown below. Actual
performance may vary depending upon your specific application. An external protection
circuit that is adapted to the load will enhance the service life of the contacts.

① Service life (x 103 operations)
② 250 VAC resistive load,

30 VDC resistive load
③ 250 VAC inductive load (p.f=0.4)

30 VDC inductive load (L/R=7ms)

④ Rated Operating Current (A)

https://sites.google.com/site/chauchiduc

Technical specifications
A.2 CPUs

 S7-1200 Programmable controller
284 System Manual, 11/2009, A5E02486680-02

A.2 CPUs

A.2.1 CPU 1211C Specifications

Technical Specifications
Model CPU 1211C

AC/DC/Relay
CPU 1211C
DC/DC/Relay

CPU 1211C
DC/DC/DC

Order number (MLFB) 6ES7 211-1BD30-0XB0 6ES7 211-1HD30-0XB0 6ES7 211-1AD30-0XB0
General
Dimensions W x H x D (mm) 90 x 100 x 75
Weight 420 grams 380 grams 370 grams
Power dissipation 10 W 8 W
Current available (CM bus) 750 mA max. (5 VDC)
Current available (24 VDC) 300 mA max. (sensor power)
Digital input current consumption
(24VDC)

4 mA/input used

CPU Features
User memory 25 Kbytes Work memory / 1 Mbytes Load memory / 2 Kbytes Retentive memory
On-board digital I/O 6 inputs/4 outputs
On-board analog I/O 2 inputs
Process image size 1024 bytes of inputs (I) /1024 bytes of outputs (Q)
Bit memory (M) 4096 bytes
Signal modules expansion none
Signal board expansion 1 SB max.
Communication module expansion 3 CMs max.
High-speed counters 3 total

Single phase: 3 at 100 kHz
Quadrature phase: 3 at 80 kHz

Pulse outputs 2
Pulse catch inputs 6
Time delay / cyclic interrupts 4 total with 1 ms resolution
Edge interrupts 6 rising and 6 falling (10 and 10 with optional signal board)
Memory card SIMATIC Memory Card (optional)
Real time clock accuracy +/- 60 seconds/month
Real time clock retention time 10 days typ./6 days min. at 40°C (maintenance-free Super Capacitor)
Performance
Boolean execution speed 0.1 μs/instruction
Move Word execution speed 12 μs/instruction
Real Math execution speed 18 μs/instruction
Communication
Number of ports 1
Type Ethernet

https://sites.google.com/site/chauchiduc

 Technical specifications
 A.2 CPUs

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 285

Technical Specifications
Model CPU 1211C

AC/DC/Relay
CPU 1211C
DC/DC/Relay

CPU 1211C
DC/DC/DC

Connections 3 for HMI
 1 for programming device
 8 for Ethernet instructions in the user program
 3 for CPU-to-CPU

Data rates 10/100 Mb/s
Isolation (external signal to PLC
logic)

Transformer isolated, 1500 VDC

Cable type CAT5e shielded
Power supply
Voltage range 85 to 264 VAC 20.4 to 28.8 VDC
Line frequency 47 to 63 Hz --
Input current
CPU only at max. load

CPU with all expansion accessories
at max. load

60 mA at 120 VAC
30 mA at 240 VAC
180 mA at 120 VAC
90 mA at 240 VAC

300 mA at 24 VDC

900 mA at 24 VDC

Inrush current (max.) 20 A at 264 VAC 12 A at 28.8 VDC
Isolation (input power to logic) 1500 VAC Not isolated
Ground leakage, AC line to functional
earth

0.5 mA max. -

Hold up time (loss of power) 20 ms at 120 VAC
80 ms at 240 VAC

10 ms at 24 VDC

Internal fuse, not user replaceable 3 A, 250 V, slow blow
Sensor power
Voltage range 20.4 to 28.8 VDC L+ minus 4 VDC min.
Output current rating (max.) 300 mA (short circuit protected)
Maximum ripple noise (<10 MHz) < 1 V peak to peak Same as input line
Isolation (CPU logic to sensor power) Not isolated
Digital inputs
Number of inputs 6
Type Sink/Source (IEC Type 1 sink)
Rated voltage 24 VDC at 4 mA, nominal
Continuous permissible voltage 30 VDC, max.
Surge voltage 35 VDC for 0.5 sec.
Logic 1 signal (min.) 15 VDC at 2.5 mA
Logic 0 signal (max.) 5 VDC at 1 mA
Isolation (field side to logic) 500 VAC for 1 minute
Isolation groups 1
Filter times 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, and 12.8 ms (selectable in groups of 4)
HSC clock input rates (max.)
(Logic 1 Level = 15 to 26 VDC)

Single phase: 100 KHz
Quadrature phase: 80 KHz

Number of inputs on simultaneously 6

https://sites.google.com/site/chauchiduc

Technical specifications
A.2 CPUs

 S7-1200 Programmable controller
286 System Manual, 11/2009, A5E02486680-02

Technical Specifications
Model CPU 1211C

AC/DC/Relay
CPU 1211C
DC/DC/Relay

CPU 1211C
DC/DC/DC

Cable length (meters) 500 shielded, 300 unshielded, 50 shielded for HSC inputs
Analog inputs
Number of inputs 2
Type Voltage (single-ended)
Range 0 to 10 V
Full-scale range (data word) 0 to 27648 (refer to Analog input representation for voltage (Page 306))
Overshoot range (data word) 27,649 to 32,511 (refer to Analog input representation for voltage (Page 306))
Overflow (data word) 32,512 to 32767 (refer to Analog input representation for voltage (Page 306))
Resolution 10 bits
Maximum withstand voltage 35 VDC
Smoothing None, Weak, Medium, or Strong (refer to Analog input response times (Page 306)

for step response times)
Noise rejection 10, 50, or 60 Hz (refer to Analog input response times (Page 306) for sample

rates)
Impedance ≥100 KΩ
Isolation (field side to logic) None
Accuracy (25°C / 0 to 55°C) 3.0% / 3.5% of full-scale
Common mode rejection 40 dB, DC to 60 Hz
Operational signal range Signal plus common mode voltage must be less than +12 V and greater than -12 V
Cable length (meters) 100 m, shielded twisted pair
Digital outputs
Number of outputs 4
Type Relay, dry contact Solid state - MOSFET
Voltage range 5 to 30 VDC or 5 to 250 VAC 20.4 to 28.8 VDC
Logic 1 signal at max. current -- 20 VDC min.
Logic 0 signal with 10 KΩ load -- 0.1 VDC max.
Current (max.) 2.0 A 0.5 A
Lamp load 30 W DC / 200 W AC 5 W
ON state resistance 0.2 Ω max. when new 0.6 Ω max.
Leakage current per point -- 10 μA max.
Surge current 7 A with contacts closed 8 A for 100 ms max.
Overload protection No
Isolation (field side to logic) 1500 VAC for 1 minute (coil to contact)

None (coil to logic)
500 VAC for 1 minute

Isolation resistance 100 MΩ min. when new --
Isolation between open contacts 750 VAC for 1 minute --
Isolation groups 1 1
Inductive clamp voltage -- L+ minus 48 VDC, 1 W

dissipation
Switching delay (Qa.0 to Qa.3) 10 ms max. 1.0 μs max., off to on

3.0 μs max., on to off

https://sites.google.com/site/chauchiduc

 Technical specifications
 A.2 CPUs

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 287

Technical Specifications
Model CPU 1211C

AC/DC/Relay
CPU 1211C
DC/DC/Relay

CPU 1211C
DC/DC/DC

Pulse Train Output rate
(Qa.0 and Qa.2)

Not recommended 100 KHz max.,
2 Hz min.

Lifetime mechanical (no load) 10,000,000 open/close cycles --
Lifetime contacts at rated load 100,000 open/close cycles --
Behavior on RUN to STOP Last value or substitute value (default value 0)
Number of Outputs On
simultaneously

4

Cable length (meters) 500 shielded, 150 unshielded

Wiring Diagrams

① 24 VDC Sensor Power Out

Figure A-1 CPU 1211C AC/DC/Relay (6ES7 211-1BD30-0XB0)

https://sites.google.com/site/chauchiduc

Technical specifications
A.2 CPUs

 S7-1200 Programmable controller
288 System Manual, 11/2009, A5E02486680-02

① 24 VDC Sensor Power Out

Figure A-2 CPU 1211C DC/DC/Relay (6ES7 211-1HD30-0XB0)

① 24 VDC Sensor Power Out

Figure A-3 CPU 1211C DC/DC/DC (6ES7 211-1AD30-0XB0)

https://sites.google.com/site/chauchiduc

 Technical specifications
 A.2 CPUs

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 289

A.2.2 CPU 1212C Specifications

Technical Specifications
Model CPU 1212C

AC/DC/Relay
CPU 1212C
DC/DC/Relay

CPU 1212C
DC/DC/DC

Order number (MLFB) 6ES7 212-1BD30-0XB0 6ES7 212-1HD30-0XB0 6ES7 212-1AD30-0XB0
General
Dimensions W x H x D (mm) 90 x 100 x 75
Weight 425 grams 385 grams 370 grams
Power dissipation 11 W 9 W
Current available (SM and CM bus) 1000 mA max. (5 VDC)
Current available (24 VDC) 300 mA max. (sensor power)
Digital input current consumption (24
VDC)

4 mA/input used

CPU Features
User memory 25 Kbytes Work memory / 1 Mbytes Load memory/ 2 Kbytes Retentive memory
On-board digital I/O 8 inputs/6 outputs
On-board analog I/O 2 inputs
Process image size 1024 bytes of inputs (I)/1024 bytes of outputs (Q)
Bit memory (M) 4096 bytes
Signal modules expansion 2 SMs max.
Signal board expansion 1 SB max.
Communication module expansion 3 CMs max.
High-speed counters 4 total

Single phase: 3 at 100 kHz and 1 at 30 kHz clock rate
Quadrature phase: 3 at 80 kHz and 1 at 20 kHz clock rate

Pulse outputs 2
Pulse catch inputs 8
Time delay / cyclic interrupts 4 total with 1 ms resolution
Edge interrupts 8 rising and 8 falling (12 and 12 with optional signal board)
Memory card SIMATIC Memory Card (optional)
Real time clock accuracy +/- 60 seconds/month
Real time clock retention time 10 days typ./6 days min. at 40°C (maintenance-free Super Capacitor)
Performance
Boolean execution speed 0.1 μs/instruction
Move Word execution speed 12 μs/instruction
Real Math execution speed 18 μs/instruction
Communication
Number of ports 1
Type Ethernet
Connections 3 for HMI

 1 for programming device
 8 for Ethernet instructions in the user program
 3 for CPU-to-CPU

https://sites.google.com/site/chauchiduc

Technical specifications
A.2 CPUs

 S7-1200 Programmable controller
290 System Manual, 11/2009, A5E02486680-02

Technical Specifications
Model CPU 1212C

AC/DC/Relay
CPU 1212C
DC/DC/Relay

CPU 1212C
DC/DC/DC

Data rates 10/100 Mb/s
Isolation (external signal to PLC
logic)

Transformer isolated, 1500 VDC

Cable type CAT5e shielded
Power supply
Voltage range 85 to 264 VAC 20.4 to 28.8 VDC
Line frequency 47 to 63 Hz --
Input current
CPU only at max. load
CPU with all expansion accessories
at max. load

80 mA at 120 VAC
40 mA at 240 VAC
240 mA at 120 VAC
120 mA at 240 VAC

400 mA at 24 VDC

1200 mA at 24 VDC

Inrush current (max.) 20 A at 264 VAC 12 A at 28.8 VDC
Isolation (input power to logic) 1500 VAC Not isolated
Ground leakage, AC line to functional
earth

0.5 mA max. -

Hold up time (loss of power) 20 ms at 120 VAC
80 ms at 240 VAC

10 ms at 24 VDC

Internal fuse, not user replaceable 3 A, 250 V, slow blow
Sensor power
Voltage range 20.4 to 28.8 VDC L+ minus 4 VDC min.
Output current rating (max.) 300 mA (short circuit protected)
Maximum ripple noise (<10 MHz) < 1 V peak to peak Same as input line
Isolation (CPU logic to sensor power) Not isolated
Digital inputs
Number of inputs 8
Type Sink/Source (IEC Type 1 sink)
Rated voltage 24 VDC at 4 mA, nominal
Continuous permissible voltage 30 VDC, max.
Surge voltage 35 VDC for 0.5 sec.
Logic 1 signal (min.) 15 VDC at 2.5 mA
Logic 0 signal (max.) 5 VDC at 1 mA
Isolation (field side to logic) 500 VAC for 1 minute
Isolation groups 1
Filter times 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, and 12.8 ms (selectable in groups of 4)
HSC clock input rates (max.)
(Logic 1 Level = 15 to 26 VDC)

Single phase: 100 KHz (Ia.0 to Ia.5) and 30 KHz (Ia.6 to Ia.7)
Quadrature phase: 80 KHz (Ia.0 to Ia.5) and 20 KHz (Ia.6 to Ia.7)

Number of inputs on simultaneously 8
Cable length (meters) 500 shielded, 300 unshielded, 50 shielded for HSC inputs
Analog inputs
Number of inputs 2
Type Voltage (single-ended)
Range 0 to 10 V

https://sites.google.com/site/chauchiduc

 Technical specifications
 A.2 CPUs

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 291

Technical Specifications
Model CPU 1212C

AC/DC/Relay
CPU 1212C
DC/DC/Relay

CPU 1212C
DC/DC/DC

Full-scale range (data word) 0 to 27648 (Refer to Analog input representation for voltage (Page 306))
Overshoot range (data word) 27,649 to 32,511 (Refer to Analog input representation for voltage (Page 306))
Overflow (data word) 32,512 to 32767 (Refer to Analog input representation for voltage (Page 306))
Resolution 10 bits
Maximum withstand voltage 35 VDC
Smoothing None, Weak, Medium, or Strong (refer to Analog input response times (Page 306)

for step response times)
Noise rejection 10, 50, or 60 Hz (refer to Analog input response times (Page 306) for sample rates)
Impedance ≥100 KΩ
Isolation (field side to logic) None
Accuracy (25°C / 0 to 55°C) 3.0% / 3.5% of full-scale
Common mode rejection 40 dB, DC to 60 Hz
Operational signal range Signal plus common mode voltage must be less than +12 V and greater than -12 V
Cable length (meters) 100 twisted and shielded
Digital outputs
Number of outputs 6
Type Relay, dry contact Solid state - MOSFET
Voltage range 5 to 30 VDC or 5 to 250 VAC 20.4 to 28.8 VDC
Logic 1 signal at max. current -- 20 VDC min.
Logic 0 signal with 10 KΩ load -- 0.1 VDC max.
Current (max.) 2.0 A 0.5 A
Lamp load 30 W DC / 200 W AC 5 W
ON state resistance 0.2 Ω max. when new 0.6 Ω max.
Leakage current per point -- 10 μA max.
Surge current 7 A with contacts closed 8 A for 100 ms max.
Overload protection No
Isolation (field side to logic) 1500 VAC for 1 minute (coil to contact)

None (coil to logic)
500 VAC for 1 minute

Isolation resistance 100 MΩ min. when new --
Isolation between open contacts 750 VAC for 1 minute --
Isolation groups 2 1
Inductive clamp voltage -- L+ minus 48 VDC, 1 W

dissipation
Switching delay (Qa.0 to Qa.3) 10 ms max. 1.0 μs max., off to on

3.0 μs max., on to off
Switching delay (Qa.4 to Qa.5) 10 ms max. 50 μs max., off to on

200 μs max., on to off
Pulse Train Output rate
(Qa.0 and Qa.2)

Not recommended 100 KHz max.,
2 Hz min.

Lifetime mechanical (no load) 10,000,000 open/close cycles --
Lifetime contacts at rated load 100,000 open/close cycles --
Behavior on RUN to STOP Last value or substitute value (default value 0)

https://sites.google.com/site/chauchiduc

Technical specifications
A.2 CPUs

 S7-1200 Programmable controller
292 System Manual, 11/2009, A5E02486680-02

Technical Specifications
Model CPU 1212C

AC/DC/Relay
CPU 1212C
DC/DC/Relay

CPU 1212C
DC/DC/DC

Number of Outputs On
simultaneously

6

Cable length (meters) 500 shielded, 150 unshielded

Wiring Diagrams

① 24 VDC Sensor Power Out

Figure A-4 CPU 1212C AC/DC Relay (6ES7 212-1BD30-0XB0)

https://sites.google.com/site/chauchiduc

 Technical specifications
 A.2 CPUs

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 293

① 24 VDC Sensor Power Out

Figure A-5 CPU 1212C DC/DC/Relay (6ES7 212-1HD30-0XB0)

① 24 VDC Sensor Power Out

Figure A-6 CPU 1212C DC/DC/DC (6ES7 212-1AD30-0XB0)

https://sites.google.com/site/chauchiduc

Technical specifications
A.2 CPUs

 S7-1200 Programmable controller
294 System Manual, 11/2009, A5E02486680-02

A.2.3 CPU 1214C Specifications

Technical Specifications
Model CPU 1214C

AC/DC/Relay
CPU 1214C
DC/DC/Relay

CPU 1214C
DC/DC/DC

Order number (MLFB) 6ES7 214-1BE30-0XB0 6ES7 214-1HE30-0XB0 6ES7 214-1AE30-0XB0
General
Dimensions W x H x D (mm) 110 x 100 x 75
Weight 475 grams 435 grams 415 grams
Power dissipation 14 W 12 W
Current available (SM and CM bus) 1600 mA max. (5 VDC)
Current available (24 VDC) 400 mA max. (sensor power)
Digital input current consumption
(24VDC)

4 mA/input used

CPU Features
User memory 50 Kbytes Work memory / 2 Mbytes Load memory/ 2 Kbytes Retentive memory
On-board digital I/O 14 inputs/10 outputs
On-board analog I/O 2 inputs
Process image size 1024 bytes of inputs (I)/1024 bytes of outputs (Q)
Bit memory (M) 8192 bytes
Signal modules expansion 8 SMs max.
Signal board expansion 1 SB max.
Communication module expansion 3 CMs max.
High-speed counters 6 total

Single phase: 3 at 100 kHz and 3 at 30 kHz clock rate
Quadrature phase: 3 at 80 kHz and 3 at 20 kHz clock rate

Pulse outputs 2
Pulse catch inputs 14
Time delay / cyclic interrupts 4 total with 1 ms resolution
Edge interrupts 12 rising and 12 falling (14 and 14 with optional signal board)
Memory card SIMATIC Memory Card (optional)
Real time clock accuracy +/- 60 seconds/month
Real time clock retention time 10 days typ./6 days min. at 40°C (maintenance-free Super Capacitor)
Performance
Boolean execution speed 0.1 μs/instruction
Move Word execution speed 12 μs/instruction
Real Math execution speed 18 μs/instruction
Communication
Number of ports 1
Type Ethernet
Connections 3 for HMI

 1 for programming device
 8 for Ethernet instructions in the user program
 3 for CPU-to-CPU

https://sites.google.com/site/chauchiduc

 Technical specifications
 A.2 CPUs

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 295

Technical Specifications
Model CPU 1214C

AC/DC/Relay
CPU 1214C
DC/DC/Relay

CPU 1214C
DC/DC/DC

Data rates 10/100 Mb/s
Isolation (external signal to PLC
logic)

Transformer isolated, 1500 VDC

Cable type CAT5e shielded
Power supply
Voltage range 85 to 264 VAC 20.4 to 28.8 VDC
Line frequency 47 to 63 Hz --
Input current
CPU only at max. load

CPU with all expansion accessories
at max. load

100 mA at 120 VAC
50 mA at 240 VAC
300 mA at 120 VAC
150 mA at 240 VAC

500 mA at 24 VDC

1500 mA at 24 VDC

Inrush current (max.) 20 A at 264 VAC 12 A at 28.8 VDC
Isolation (input power to logic) 1500 VAC Not isolated
Ground leakage, AC line to functional
earth

0.5 mA max. -

Hold up time (loss of power) 20 ms at 120 VAC
80 ms at 240 VAC

10 ms at 24 VDC

Internal fuse, not user replaceable 3 A, 250 V, slow blow
Sensor power
Voltage range 20.4 to 28.8 VDC L+ minus 4 VDC min.
Output current rating (max.) 400 mA (short circuit protected)
Maximum ripple noise (<10 MHz) < 1 V peak to peak Same as input line
Isolation (CPU logic to sensor power) Not isolated
Digital inputs
Number of inputs 14
Type Sink/Source (IEC Type 1 sink)
Rated voltage 24 VDC at 4 mA, nominal
Continuous permissible voltage 30 VDC, max.
Surge voltage 35 VDC for 0.5 sec.
Logic 1 signal (min.) 15 VDC at 2.5 mA
Logic 0 signal (max.) 5 VDC at 1 mA
Isolation (field side to logic) 500 VAC for 1 minute
Isolation groups 1
Filter times 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, and 12.8 ms (selectable in groups of 4)
HSC clock input rates (max.)
(Logic 1 Level = 15 to 26 VDC)

Single phase: 100 KHz (Ia.0 to Ia.5) and 30 KHz (Ia.6 to Ib.5)
Quadrature phase: 80 KHz (Ia.0 to Ia.5) and 20 KHz (Ia.6 to Ib.5)

Number of inputs on simultaneously 14
Cable length (meters) 500 shielded, 300 unshielded, 50 shielded for HSC inputs
Analog inputs
Number of inputs 2
Type Voltage (single-ended)

https://sites.google.com/site/chauchiduc

Technical specifications
A.2 CPUs

 S7-1200 Programmable controller
296 System Manual, 11/2009, A5E02486680-02

Technical Specifications
Model CPU 1214C

AC/DC/Relay
CPU 1214C
DC/DC/Relay

CPU 1214C
DC/DC/DC

Range 0 to 10 V
Full-scale range (data word) 0 to 27648 (Refer to Analog input representation for voltage (Page 306))
Overshoot range (data word) 27,649 to 32,511 (Refer to Analog input representation for voltage (Page 306))
Overflow (data word) 32,512 to 32767 (Refer to Analog input representation for voltage (Page 306))
Resolution 10 bits
Maximum withstand voltage 35 VDC
Smoothing None, Weak, Medium, or Strong (refer to Analog input response time (Page 306)

for step response times)
Noise rejection 10, 50, or 60 Hz (refer to Analog input response time (Page 306) for sample rates)
Impedance ≥100 KΩ
Isolation (field side to logic) None
Accuracy (25°C / 0 to 55°C) 3.0% / 3.5% of full-scale
Common mode rejection 40 dB, DC to 60 Hz
Operational signal range Signal plus common mode voltage must be less than +12 V and greater than -12 V
Cable length (meters) 100 twisted and shielded
Digital outputs
Number of outputs 10
Type Relay, dry contact Solid state - MOSFET
Voltage range 5 to 30 VDC or 5 to 250 VAC 20.4 to 28.8 VDC
Logic 1 signal at max. current -- 20 VDC min.
Logic 0 signal with 10 KΩ load -- 0.1 VDC max.
Current (max.) 2.0 A 0.5 A
Lamp load 30 W DC / 200 W AC 5 W
ON state resistance 0.2 Ω max. when new 0.6 Ω max.
Leakage current per point -- 10 μA max.
Surge current 7 A with contacts closed 8 A for 100 ms max.
Overload protection No
Isolation (field side to logic) 1500 VAC for 1 minute (coil to contact)

None (coil to logic)
500 VAC for 1 minute

Isolation resistance 100 MΩ min. when new --
Isolation between open contacts 750 VAC for 1 minute --
Isolation groups 2 1
Inductive clamp voltage -- L+ minus 48 VDC, 1 W

dissipation
Switching delay (Qa.0 to Qa.3) 10 ms max. 1.0 μs max., off to on

3.0 μs max., on to off
Switching delay (Qa.4 to Qb.1) 10 ms max. 50 μs max., off to on

200 μs max., on to off
Pulse Train Output rate
(Qa.0 and Qa.2)

Not recommended 100 KHz max.,
2 Hz min.

Lifetime mechanical (no load) 10,000,000 open/close cycles --
Lifetime contacts at rated load 100,000 open/close cycles --

https://sites.google.com/site/chauchiduc

 Technical specifications
 A.2 CPUs

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 297

Technical Specifications
Model CPU 1214C

AC/DC/Relay
CPU 1214C
DC/DC/Relay

CPU 1214C
DC/DC/DC

Behavior on RUN to STOP Last value or substitute value (default value 0)
Number of Outputs On
simultaneously

10

Cable length (meters) 500 shielded, 150 unshielded

Wiring Diagrams

① 24 VDC Sensor Power Out

Figure A-7 CPU 1214C AC/DC/Relay (6ES7 214-1BE30-0XB0)

https://sites.google.com/site/chauchiduc

Technical specifications
A.2 CPUs

 S7-1200 Programmable controller
298 System Manual, 11/2009, A5E02486680-02

① 24 VDC Sensor Power Out

Figure A-8 CPU 1214C DC/DC/Relay (6ES7 214-1HE30-0XB0)

① 24 VDC Sensor Power Out

Figure A-9 CPU 1214C DC/DC/DC (6ES7 214-1AE30-0XB0)

https://sites.google.com/site/chauchiduc

 Technical specifications
 A.3 Digital signal modules (SMs)

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 299

A.3 Digital signal modules (SMs)

A.3.1 SM 1221 Digital Input Specifications

Technical Specifications
Model SM 1221 DI 8x24VDC SM 1221 DI 16x24VDC
Order number (MLFB) 6ES7 221-1BF30-0XB0 6ES7 221-1BH30-0XB0
General
Dimensions W x H x D (mm) 45 x 100 x 75
Weight 170 grams 210 grams
Power dissipation 1.5 W 2.5 W
Current consumption (SM Bus) 105 mA 130 mA
Current consumption (24 VDC) 4 mA / input used 4 mA / input used
Digital inputs
Number of inputs 8 16
Type Sink/Source (IEC Type 1 sink)
Rated voltage 24 VDC at 4 mA, nominal
Continuous permissible voltage 30 VDC, max.
Surge voltage 35 VDC for 0.5 sec.
Logic 1 signal (min.) 15 VDC at 2.5 mA
Logic 0 signal (max.) 5 VDC at 1 mA
Isolation (field side to logic) 500 VAC for 1 minute
Isolation groups 2 4
Filter times 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, and 12.8 ms (selectable in groups of 4)
Number of inputs on simultaneously 8 16
Cable length (meters) 500 shielded, 300 unshielded

https://sites.google.com/site/chauchiduc

Technical specifications
A.3 Digital signal modules (SMs)

 S7-1200 Programmable controller
300 System Manual, 11/2009, A5E02486680-02

Wiring diagrams

SM 1221 DI 8 x 24 VDC SM 1221 DI 16 x 24 VDC

6ES7 221-1BF30-0XB0

6ES7 221-1BH30-0XB0

https://sites.google.com/site/chauchiduc

 Technical specifications
 A.3 Digital signal modules (SMs)

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 301

A.3.2 SM 1222 Digital Output Specifications

Technical Specifications
Model SM 1222

DQ 8xRelay
SM1222
DQ 16xRelay

SM1222
DQ 8x24VDC

SM1222
DQ 16x24VDC

Order number (MLFB) 6ES7 222-1HF30-
0XB0

6ES7 222-1HH30-
0XB0

6ES7 222-1BF30-
0XB0

6ES7 222-1BH30-
0XB0

General
Dimensions W x H x D (mm) 45 x 100 x 75
Weight 190 grams 260 grams 180 grams 220 grams
Power dissipation 4.5 W 8.5 W 1.5 W 2.5 W
Current consumption (SM Bus) 120 mA 135 mA 120 mA 140 mA
Current consumption (24 VDC) 11 mA / Relay coil used --
Digital Outputs
Number of outputs 8 16 8 16
Type Relay, dry contact Solid state - MOSFET
Voltage range 5 to 30 VDC or 5 to 250 VAC 20.4 to 28.8 VDC
Logic 1 signal at max. current -- 20 VDC min.
Logic 0 signal with 10K Ω load -- 0.1 VDC max.
Current (max.) 2.0 A 0.5 A
Lamp load 30 W DC/200 W AC 5W
On state contact resistance 0.2 Ω max. when new 0.6 Ω max.
Leakage current per point -- 10 μA max.
Surge current 7 A with contacts closed 8 A for 100 ms max.
Overload protection No
Isolation (field side to logic) 1500 VAC for 1 minute (coil to contact)

None (coil to logic)
500 VAC for 1 minute

Isolation resistance 100 MΩ min. when new --
Isolation between open contacts 750 VAC for 1 minute --
Isolation groups 2 4 1 1
Current per common (max.) 10 A 4 A 8 A
Inductive clamp voltage -- L+ minus 48 V, 1 W dissipation
Switching delay 10 ms max. 50 μs max. off to on

200 μs max. on to off
Lifetime mechanical (no load) 10,000,000 open/close cycles --
Lifetime contacts at rated load 100,000 open/close cycles --
Behavior on RUN to STOP Last value or substitute value (default value 0)
Number of outputs on simultaneously 8 16 8 16
Cable length (meters) 500 shielded, 150 unshielded

https://sites.google.com/site/chauchiduc

Technical specifications
A.3 Digital signal modules (SMs)

 S7-1200 Programmable controller
302 System Manual, 11/2009, A5E02486680-02

Wiring Diagrams

SM 1222 DQ 8 x Relay SM 1222 DQ 8 x 24 VDC

6ES7 222-1HF30-0XB0

6ES7 222-1BF30-0XB0

SM 1222 DQ 16 x Relay SM 1222 DQ 16 x 24 VDC

6ES7 222-1HH30-0XB0

6ES7 222-1BH30-0XB0

https://sites.google.com/site/chauchiduc

 Technical specifications
 A.3 Digital signal modules (SMs)

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 303

A.3.3 SM 1223 Digital Input/Output Specifications

Technical Specifications
Model SM 1223 DI 8x24

VDC, DQ 8xRelay
SM 1223 DI 16x24
VDC, DQ
16xRelay

SM 1223 DI 8x24
VDC, DQ 8x24
VDC

SM 1223 DI 16x24
VDC, DQ16x24
VDC

Order number (MLFB) 6ES7 223-1PH30-
0XB0

6ES7 223-1PL30-
0XB0

6ES7 223-1BH30-
0XB0

6ES7 223-1BL30-
0XB0

Dimensions W x H x D (mm) 45 x 100 x 75 70 x 100 x 75 45 x 100 x 75 70 x 100 x 75
Weight 230 grams 350 grams 210 grams 310 grams
Power dissipation 5.5 W 10 W 2.5 W 4.5 W
Current consumption (SM Bus) 145 mA 180 mA 145 mA 185 mA
Current consumption (24 VDC) 4 mA / Input used

11 mA / Relay coil used
4 mA / Input used

Digital Inputs
Number of inputs 8 16 8 16
Type Sink/Source (IEC Type 1 sink)
Rated voltage 24 VDC at 4 mA, nominal
Continuous permissible voltage 30 VDC max.
Surge voltage 35 VDC for 0.5 sec.
Logic 1 signal (min.) 15 VDC at 2.5 mA
Logic 0 signal (max.) 5 VDC at 1 mA
Isolation (field side to logic) 500 VAC for 1 minute
Isolation groups 2 2 2 2
Filter times 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, and 12.8 ms, selectable in groups of 4
Number of inputs on simultaneously 8 16 8 16
Cable length (meters) 500 shielded, 300 unshielded
Digital Outputs
Number of outputs 8 16 8 16
Type Relay, dry contact Solid state - MOSFET
Voltage range 5 to 30 VDC or 5 to 250 VAC 20.4 to 28.8 VDC
Logic 1 signal at max. current -- 20 VDC, min.
Logic 0 signal with 10 KΩ load -- 0.1 VDC, max.
Current (max.) 2.0 A 0.5 A
Lamp load 30 W DC / 200 W AC 5 W
ON state contact resistance 0.2 Ω max. when new 0.6 Ω max.
Leakage current per point -- 10 μA max.
Surge current 7 A with contacts closed 8 A for 100 ms max.
Overload protection No
Isolation (field side to logic) 1500 VAC for 1 minute (coil to contact)

None (coil to logic)
500 VAC for 1 minute

Isolation resistance 100 MΩ min. when new --
Isolation between open contacts 750 VAC for 1 minute --

https://sites.google.com/site/chauchiduc

Technical specifications
A.3 Digital signal modules (SMs)

 S7-1200 Programmable controller
304 System Manual, 11/2009, A5E02486680-02

Technical Specifications
Model SM 1223 DI 8x24

VDC, DQ 8xRelay
SM 1223 DI 16x24
VDC, DQ
16xRelay

SM 1223 DI 8x24
VDC, DQ 8x24
VDC

SM 1223 DI 16x24
VDC, DQ16x24
VDC

Isolation groups 2 4 1 1
Current per common 10A 8 A 4 A 8 A
Inductive clamp voltage -- L+ minus 48 V, 1 W dissipation
Switching delay 10 ms max. 50 μs max. off to on

200 μs max. on to off
Lifetime mechanical (no load) 10,000,000 open/close cycles --
Lifetime contacts at rated load 100,000 open/close cycles --
Behavior on RUN to STOP Last value or substitute value (default value 0)
Number of outputs on simultaneously 8 16 8 16
Cable length (meters) 500 shielded, 150 unshielded

Wiring diagrams

SM 1223 DI 8 x 24 VDC, DQ 8 x Relay SM1223 DI 16 x 24 VDC, DQ 16 x Relay

6ES7 223-1PH30-0XB0

6ES7 223-1PL30-0XB0

https://sites.google.com/site/chauchiduc

 Technical specifications
 A.3 Digital signal modules (SMs)

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 305

SM 1223 DI 8 x 24 VDC, DQ 8 x 24 VDC SM 1223 DI 16 x 24 VDC, DQ 16 x 24 VDC

6ES7 223-1BH30-0XB0

6ES7 223-1BL30-0XB0

https://sites.google.com/site/chauchiduc

Technical specifications
A.4 Analog signal modules (SMs)

 S7-1200 Programmable controller
306 System Manual, 11/2009, A5E02486680-02

A.4 Analog signal modules (SMs)

A.4.1 SM 1231, SM 1232, SM 1234 Analog Specifications

Technical Specifications
Model SM 1231 AI 4x13bit SM 1231 AI 8x13bit SM 1234 AI 4x13bit

AQ 2x14bit
Order number (MLFB) 6ES7 231-4HD30-0XB0 6ES7 231-4HF30-0XB0 6ES7 234-4HE30-0XB0
General
Dimensions W x H x D (mm) 45 x 100 x 75 45 x 100 x 75 45 x 100 x 75
Weight 180 grams 180 grams 220 grams
Power dissipation 1.5 W 1.5 W 2.0 W
Current consumption (SM Bus) 80 mA 90 mA 80 mA
Current consumption (24 VDC) 45 mA 45 mA 60 mA (no load)
Analog Inputs
Number of inputs 4 8 4
Type Voltage or Current (differential): Selectable in groups of 2
Range ±10 V, ±5 V, ±2.5 V, or 0 to 20 mA
Full scale range (data word) -27,648 to 27,648
Overshoot/undershoot range
(data word)

Voltage: 32,511 to 27,649 / -27,649 to -32,512
Current: 32,511 to 27,649 / 0 to -4864
(Refer to Analog input representation for voltage, Analog input representation for
current (Page 306))

Overflow/underflow (data word) Voltage: 32,767 to 32,512 / -32,513 to -32,768
Current: 32,767 to 32,512 / -4865 to -32,768
(Refer to Analog input representation for voltage, Analog input representation for
current (Page 306))

Resolution 12 bits + sign bit
Maximum withstand voltage/current ±35 V / ±40 mA
Smoothing None, weak, medium, or strong (refer to Analog input response times (Page 306)

for step response times)
Noise rejection 400, 60, 50, or 10 Hz (refer to Analog input response times (Page 306) for sample

rates)
Impedance ≥ 9 MΩ (voltage) / 250 Ω (current)
Isolation (field side to logic) None
Accuracy (25°C / 0 to 55°C) ±0.1% / ±0.2% of full scale
Analog to digital conversion time 625 μs (400 Hz rejection)
Common mode rejection 40 dB, DC to 60 Hz
Operational signal range Signal plus common mode voltage must be less than +12 V and greater than -12 V
Cable length (meters) 100 meters, twisted and shielded

https://sites.google.com/site/chauchiduc

 Technical specifications
 A.4 Analog signal modules (SMs)

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 307

Technical Specifications
Model SM 1231 AI 4x13bit SM 1231 AI 8x13bit SM 1234 AI 4x13bit

AQ 2x14bit
Diagnostics
Overflow/underflow Yes1 Yes1 Yes1
Short to ground (voltage mode only) Not applicable Not applicable Yes on outputs
Wire break (current mode only) Not applicable Not applicable Yes on outputs
24 VDC low voltage Yes Yes Yes

1 If a voltage greater than +30 VDC or less than -15 VDC is applied to the input, the resulting value will be unknown and
the corresponding overflow or underflow may not be active.

Technical Specifications
Model SM 1232 AQ 2x14bit SM 1232 AQ 4x14bit SM 1234 AI 4x13bit

AQ 2x14bit
Order number (MLFB) 6ES7 232-4HB30-0XB0 6ES7 232-4HD30-0XB0 6ES7 234-4HE30-0XB0
General
Dimensions W x H x D (mm) 45 x 100 x 75 45 x 100 x 75 45 x 100 x 75
Weight 180 grams 180 grams 220 grams
Power dissipation 1.5 W 1.5 W 2.0 W
Current consumption (SM Bus) 80 mA 80 mA 80 mA
Current consumption (24 VDC) 45 mA (no load) 45 mA (no load) 60 mA (no load)
Analog Outputs
Number of outputs 2 4 2
Type Voltage or current
Range ±10 V or 0 to 20 mA
Resolution Voltage: 14 bits ; Current: 13 bits
Full scale range (data word) Voltage: -27,648 to 27,648 ; Current: 0 to 27,648

(Refer to Analog output representation for voltage and Analog output
representation for current) (Page 306)

Accuracy (25°C / 0 to 55°C) ±0.3% / ±0.6% of full scale
Settling time (95% of new value) Voltage: 300 μS (R), 750 μS (1 uF) ; Current: 600 μS (1 mH), 2 ms (10 mH)
Load impedance Voltage: ≥ 1000 Ω ; Current: ≤ 600 Ω
Behavior on RUN to STOP Last value or substitute value (default value 0)
Isolation (field side to logic) none
Cable length (meters) 100 meters twisted and shielded
Diagnostics
Overflow/underflow Yes Yes Yes1
Short to ground (voltage mode only) Yes Yes Yes on outputs
Wire break (current mode only) Yes Yes Yes on outputs
24 VDC low voltage Yes Yes Yes

1 If a voltage greater than +30 VDC or less than -15 VDC is applied to the input, the resulting value will be unknown and
the corresponding overflow or underflow may not be active.

https://sites.google.com/site/chauchiduc

Technical specifications
A.4 Analog signal modules (SMs)

 S7-1200 Programmable controller
308 System Manual, 11/2009, A5E02486680-02

Analog input response time

SM Analog Modules Step Response (ms)
0V to 10V measured at 95%

Rejection Frequency Smoothing Selection
400 Hz 60 Hz 50 Hz 10 Hz

None 4 18 22 100
Weak 9 52 63 320
Medium 32 203 241 1200
Strong 61 400 483 2410
Sample Rate
 4 channels
 8 channels

 0.625
 1.25

 4.17
 4.17

 5
 5

 25
 25

CPU Analog Input Step Response (ms)

0V to 10V measured at 95%
Rejection Frequency Smoothing Selection

60 Hz 50 Hz 10 Hz
None 63 65 130
Weak 84 93 340
Medium 221 258 1210
Strong 424 499 2410
Sample Rate 4.17 5 25

https://sites.google.com/site/chauchiduc

 Technical specifications
 A.4 Analog signal modules (SMs)

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 309

Analog input representation for voltage

System Voltage Measuring Range
Decimal Hexadecimal ±10 V ±5 V ±2.5 V 0 to 10 V
32767 7FFF 11.851 V 5.926 V 2.963 V 11.851V
32512 7F00

Overflow

Overflow

32511 7EFF 11.759 V 5.879 V 2.940 V 11.759 V
27649 6C01

Overshoot range

Overshoot
range

27648 6C00 10 V 5 V 2.5 V 10 V
20736 5100 7.5 V 3.75 V 1.875 V 7.5 V
1 1 361.7 μV 180.8 μV 90.4 μV 361.7 μV
0 0 0 V 0 V 0 V 0 V

Rated range

-1 FFFF
-20736 AF00 -7.5 V -3.75 V -1.875 V
-27648 9400 -10 V -5 V -2.5 V

Rated range

-27649 93FF
-32512 8100 -11.759 V -5.879 V -2.940 V

Undershoot range

-32513 80FF
-32768 8000 -11.851 V -5.926 V -2.963 V

Underflow

Negative
values are not
supported

Analog input representation for current

System Current Measuring Range
Decimal Hexadecimal 0 mA to 20 mA
32767 7FFF 23.70 mA
32512 7F00

Overflow

32511 7EFF 23.52 mA
27649 6C01

Overshoot range

27648 6C00 20 mA
20736 5100 15 mA
1 1 723.4 nA
0 0 0 mA

Rated range

-1 FFFF
-4864 ED00 -3.52 mA

Undershoot range

-4865 ECFF
-32768 8000

Underflow

https://sites.google.com/site/chauchiduc

Technical specifications
A.4 Analog signal modules (SMs)

 S7-1200 Programmable controller
310 System Manual, 11/2009, A5E02486680-02

Analog output representation for voltage

System Voltage Output Range
Decimal Hexadecimal ± 10 V
32767 7FFF See note 1
32512 7F00 See note 1

Overflow

32511 7EFF 11.76 V
27649 6C01

Overshoot range

27648 6C00 10 V
20736 5100 7.5 V
1 1 361.7 μ V
0 0 0 V
-1 FFFF -361.7 μ V

Rated range

-20736 AF00 -7.5 V
-27648 9400 -10 V
-27649 93FF
-32512 8100 -11.76 V

Undershoot range

-32513 80FF See note 1
-32768 8000 See note 1

Underflow

1 . In an overflow or underflow condition, analog outputs will behave according to the device
configuration properties set for the analog signal module. In the "Reaction to CPU STOP"
parameter, select either: Use substitute value or Keep last value.

Analog output representation for current

System Current Output Range
Decimal Hexadecimal ± 20 mA
32767 7FFF See note 1
32512 7F00 See note 1

Overflow

32511 7EFF 23.52 mA
27649 6C01

Overshoot range

27648 6C00 20 mA
20736 5100 15 mA
1 1 723.4 nA
0 0 0 mA

Rated range

-1 FFFF
-32512 8100

Undershoot range

-32513 80FF See note 1
-32768 8000 See note 1

Underflow

1. In an overflow or underflow condition, analog outputs will behave according to the device
configuration properties set for the analog signal module. In the "Reaction to CPU STOP"
parameter, select either: Use substitute value or Keep last value.

https://sites.google.com/site/chauchiduc

 Technical specifications
 A.4 Analog signal modules (SMs)

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 311

Wiring Diagrams

SM 1231 AI 4 x 13 bit SM 1231 AI 8 x 13 bit

6ES7 231-4HD30-0XB0

6ES7 231-4HF30-0XB0

https://sites.google.com/site/chauchiduc

Technical specifications
A.4 Analog signal modules (SMs)

 S7-1200 Programmable controller
312 System Manual, 11/2009, A5E02486680-02

SM 1232 AQ 2 x 14 bit SM 1232 AQ 4 x 14 bit

6ES7 232-4HB30-0XB0

6ES7 232-4HD30-0XB0

SM 1234 AI 4 x 13 Bit / AQ 2 x 14 bit

6ES7 234-4HE30-0XB0

https://sites.google.com/site/chauchiduc

 Technical specifications
 A.5 Signal boards (SBs)

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 313

A.5 Signal boards (SBs)

A.5.1 SB 1223 2 X 24 VDC Input / 2 X 24 VDC Output Specifications

Digital signal board specifications

Technical Data
Model SB 1223 DI 2x24VDC, DQ 2x24VDC
Order number (MLFB) 6ES7 223-0BD30-0XB0
General
Dimensions W x H x D (mm) 38 x 62 x 21
Weight 40 grams
Power dissipation 1.0 W
Current consumption (SM Bus) 50 mA
Current consumption (24 VDC) 4 mA / Input used
Digital inputs
Number of inputs 2
Type IEC Type 1 sink
Rated voltage 24 VDC at 4 mA, nominal
Continuous permissible voltage 30 VDC, max.
Surge voltage 35 VDC for 0.5 sec.
Logic 1 signal (min.) 15 VDC at 2.5 mA
Logic 0 signal (max.) 5 VDC at 1 mA
HSC clock input rates (max.) 20 kHz (15 to 30 VDC)

30 kHz (15 to 26 VDC)
Isolation (field side to logic) 500 VAC for 1 minute
Isolation groups 1
Filter times 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, and 12.8 ms

Selectable in groups of 2
Number of inputs on simultaneously 2
Cable length (meters) 500 shielded, 300 unshielded
Digital Outputs
Number of outputs 2
Output type Solid state - MOSFET
Voltage range 20.4 to 28.8 VDC
Logic 1 signal at max. current 20 VDC min.
Logic 0 signal with 10K Ω load 0.1 VDC max.
Current (max.) 0.5 A
Lamp load 5 W
On state contact resistance 0.6 Ω max.
Leakage current per point 10 μA max.
Pulse Train Output rate 20 KHz max., 2 Hz min.

https://sites.google.com/site/chauchiduc

Technical specifications
A.5 Signal boards (SBs)

 S7-1200 Programmable controller
314 System Manual, 11/2009, A5E02486680-02

Technical Data
Model SB 1223 DI 2x24VDC, DQ 2x24VDC
Surge current 5 A for 100 ms max.
Overload protection No
Isolation (field side to logic) 500 VAC for 1 minute
Isolation groups 1
Currents per common 1 A
Inductive clamp voltage L+ minus 48 V, 1 W dissipation
Switching delay 2 μs max. off to on

10 μs max. on to off
Behavior on RUN to STOP Last value or substitute value (default value 0)
Number of outputs on simultaneously 2
Cable length (meters) 500 shielded, 150 unshielded

SB 1223 2 x 24 VDC Input / 2 x 24 VDC Output wiring diagram

https://sites.google.com/site/chauchiduc

 Technical specifications
 A.5 Signal boards (SBs)

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 315

A.5.2 SB 1232 1 Analog Output Specifications

Analog signal board specifications

Technical Data
Model SB 1223 AQ 1x12bit
Order no. (MLFB) 6ES7 232-4HA30-0XB0
General
Dimensions W x H x D (mm) 38 x 62 x 21 mm
Weight 40 grams
Power dissipation 1.5 W
Current consumption (SM Bus) 15 mA
Current consumption (24 VDC) 40 mA (no load)
Analog Outputs
Number of outputs 1
Type Voltage or current
Range ±10 V or 0 to 20 mA
Resolution Voltage: 12 bits

Current: 11 bits
Full scale range (data word) Voltage: -27,648 to 27,648

Current: 0 to 27,648
Accuracy (25°C / 0 to 55°C) ±0.5% / ±1% of full scale
Settling time (95% of new value) Voltage: 300 μS (R), 750 μS (1 uF)

Current: 600 μS (1 mH), 2 ms (10 mH)
Load impedance Voltage: ≥ 1000 Ω

Current: ≤ 600 Ω
Behavior on RUN to STOP Last value or substitute value (default value 0)
Isolation (field side to logic) None
Cable length (meters) 100 meters, twisted and shielded
Diagnostics
Overflow/underflow Yes
Short to ground (voltage mode only) Yes
Wire break (current mode only) Yes

https://sites.google.com/site/chauchiduc

Technical specifications
A.5 Signal boards (SBs)

 S7-1200 Programmable controller
316 System Manual, 11/2009, A5E02486680-02

SB 1232 1 x Analog Output wiring diagram

https://sites.google.com/site/chauchiduc

 Technical specifications
 A.6 Communication modules (CMs)

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 317

A.6 Communication modules (CMs)

A.6.1 CM 1241 RS485 Specifications

Table A- 1 Communication Module CM 1241 RS485

Technical Data
Order no. (MLFB) 6ES7 241-1CH30-0XB0
Dimensions and weight
Dimensions 30 x 100 x 75 mm
Weight 150 grams
Transmitter and Receiver
Common mode voltage range -7 V to +12 V, 1 second, 3 VRMS continuous
Transmitter differential output voltage 2 V min. at RL = 100 Ω

1.5 V min. at RL = 54 Ω
Termination and bias 10K Ω to +5 V on B, PROFIBUS Pin 3

10K Ω to GND on A, PROFIBUS Pin 8
Receiver input impedance 5.4K Ω min. including termination
Receiver threshold/sensitivity +/- 0.2 V min., 60 mV typical hysteresis
Isolation
RS485 signal to chassis ground
RS485 signal to CPU logic common

500 VAC, 1 minute

Cable length, shielded 1000 m max.
Power supply specification
Power loss (dissipation) 1.1 W
From +5 VDC 220 mA

Pin Description Connector

(female)
Pin Description

1 GND Logic or communication ground 6 PWR +5V with 100 ohm series resistor: Output
2 Not connected 7 Not connected
3 TxD+ Signal B (RxD/TxD+): Input/Output 8 TXD- Signal A (RxD/TxD-): Input/Output
4 RTS Request to send (TTL level): Output 9 Not connected
5 GND Logic or communication ground SHELL Chassis ground

https://sites.google.com/site/chauchiduc

Technical specifications
A.7 SIMATIC memory cards

 S7-1200 Programmable controller
318 System Manual, 11/2009, A5E02486680-02

A.6.2 CM 1241 RS232 Specifications

Communication Module CM 1241 RS232

Technical Data
Order no. (MLFB) 6ES7 241-1AH30-0XB0
Dimensions and weight
Dimensions 30 x 100 x 75 mm
Weight 150 grams
Transmitter and Receiver
Transmitter output voltage +/- 5 V min. at RL = 3K Ω
Transmit output voltage +/- 15 VDC max.
Receiver input impedance 3 K Ω min.
Receiver threshold/sensitivity 0.8 V min. low, 2.4 max. high

0.5 V typical hysteresis
Receiver input voltage +/- 30VDC max.
Isolation
RS 232 signal to chassis ground
RS 232 signal to CPU logic common

500 VAC, 1 minute

Cable length, shielded 10 m max.
Power supply specification
Power loss (dissipation) 1.1 W
From +5 VDC 220 mA

Pin Description Connector

(male)
Pin Description

1 DCD Data carrier detect: Input 6 DSR Data set ready: Input
2 RxD Received data from DCE: Input 7 RTS Request to send: Output
3 TxD Transmitted data to DCE: Output 8 CTS Clear to send: Input
4 DTR Data terminal ready: Output 9 RI Ring indicator (not used)
5 GND Logic ground SHELL Chassis ground

A.7 SIMATIC memory cards
Memory card specifications

Order Number Capacity
6ES7 954-8LF00-0AA0 24 MB
6ES7 954-8LB00-0AA0 2 MB

https://sites.google.com/site/chauchiduc

 Technical specifications
 A.8 Input simulators

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 319

A.8 Input simulators

Model 8 Position Simulator 14 Position Simulator
Order number (MLFB) 6ES7 274-1XF30-0XA0 6ES7 274-1XH30-0XA0
Dimensions W x H x D (mm) 43 x 35 x 23 67 x 35 x 23
Weight 20 grams 30 grams
Points 8 14
Used with CPU CPU 1211C, CPU 1212C CPU 1214C

WARNING
These input simulators are not approved for use in Class I DIV 2 or Class I Zone 2
hazardous locations. The switches present a potential spark hazard/explosion hazard if
used in a Class I DIV 2 or Class I Zone 2 location.

8 Position Simulator

6ES7 274-1XF30-0XA0

① 24 VDC sensor power out

https://sites.google.com/site/chauchiduc

Technical specifications
A.9 I/O expansion cable

 S7-1200 Programmable controller
320 System Manual, 11/2009, A5E02486680-02

14 Position Simulator

6ES7 274-1XH30-0XA0

① 24 VDC sensor
power out

A.9 I/O expansion cable

Technical Data
Order no (MLFB) 6ES7 290-6AA30-0XA0
Cable length 2 m
Weight 200 g

The I/O expansion cable has a male and female connector.
1. Connect the male connector to the bus connector on the right side of the signal module.
2. Connect the female connector to the bus connector on the left side of the signal module.

– Slip the hook extension of the female connector into the housing at the bus connector
– Push the female connector into the bus connector.

https://sites.google.com/site/chauchiduc

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 321

Calculating a power budget B

The CPU has an internal power supply that provides power for the CPU itself, for any
expansion modules, and for other 24 VDC user power requirements.
There are three types of expansion modules:
● Signal modules (SM) are installed on the right-side of the CPU. Each CPU allows a

maximum number of signal modules possible without regard to the power budget.
– CPU 1214 allows 8 signal modules
– CPU 1212 allows 2 signal modules
– CPU 1211 allows no signal modules

● Communication modules (CM) are installed on the left-side of the CPU. A maximum of 3
communication modules is allowed for any CPU without regard to the power budget.

● Signal boards (SB) are installed on top of the CPU. A maximum of 1 signal board is
allowed for any CPU.

Use the following information as a guide for determining how much power (or current) the
CPU can provide for your configuration.
Each CPU supplies both 5 VDC and 24 VDC power:
● The CPU provides 5 VDC power for the expansion modules when an expansion module

is connected. If the 5 VDC power requirements for expansion modules exceed the power
budget of the CPU, you must remove expansion modules until the requirement is within
the power budget.

● Each CPU has a 24 VDC sensor supply that can supply 24 VDC for local input points or
for relay coils on the expansion modules. If the power requirement for 24 VDC exceeds
the power budget of the CPU, you can add an external 24 VDC power supply to provide
24 VDC to the expansion modules. You must manually connect the 24 VDC supply to the
input points or relay coils.

WARNING

Connecting an external 24 VDC power supply in parallel with the DC sensor supply can
result in a conflict between the two supplies as each seeks to establish its own preferred
output voltage level.
The result of this conflict can be shortened lifetime or immediate failure of one or both
power supplies, with consequent unpredictable operation of the PLC system.
Unpredictable operation could result in death, severe personal injury and/or property
damage.
The DC sensor supply on the CPU and any external power supply should provide power
to different points. A single connection of the commons is allowed.

Some of the 24V power input ports in the PLC system are interconnected, with a logic
common circuit connecting multiple M terminals. The CPU 24V power supply input, the SM
relay coil power input, and a non-isolated analog power supply input are examples of circuits
that are interconnected when designated as not isolated in the data sheets. All non-isolated
M terminals must connect to the same external reference potential.

https://sites.google.com/site/chauchiduc

Calculating a power budget
B.2 Calculating a sample power requirement

 S7-1200 Programmable controller
322 System Manual, 11/2009, A5E02486680-02

WARNING
Connecting non-isolated M terminals to different reference potentials will cause unintended
current flows that may cause damage or unpredictable operation in the PLC and connected
equipment.
Such damage or unpredictable operation could result in death, severe personal injury
and/or property damage.
Always be sure that all non-isolated M terminals in a PLC system are connected to the
same reference potential.

Information about the power budgets of the CPUs and the power requirements of the signal
modules is provided in the technical specifications (Page 279).

 Note
Exceeding the power budget of the CPU may result in not being able to connect the
maximum number of modules allowed for your CPU.

B.2 Calculating a sample power requirement
The following example shows a sample calculation of the power requirements for a PLC that
includes a CPU 1214C AC/DC/Relay, 3 x SM 1223 8 DC In/8 Relay Out, and 1 x SM 1221 8
DC In. This example has a total of 46 inputs and 34 outputs.

 Note
The CPU has already allocated the power required to drive the internal relay coils. You do
not need to include the internal relay coil power requirements in a power budget calculation.

The CPU in this example provides sufficient 5 VDC current for the SMs, but does not provide
enough 24 VDC current from the sensor supply for all of the inputs and expansion relay
coils. The I/O requires 448 mA and the CPU provides only 400 mA. This installation requires
an additional source of at least 48 mA at 24 VDC power to operate all the included 24 VDC
inputs and outputs.

https://sites.google.com/site/chauchiduc

 Calculating a power budget
 B.3 Calculating your power requirement

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 323

CPU power budget 5 VDC 24 VDC
CPU 1214C AC/DC/Relay 1600 mA 400 mA

Minus
System requirements 5 VDC 24 VDC
CPU 1214C, 14 inputs - 14 * 4 mA = 56 mA
3 SM 1223, 5 V power 3 * 145 mA = 435 mA -
1 SM 1221, 5 V power 1 * 105 mA = 105 mA -
3 SM 1223, 8 inputs each - 3 * 8 * 4 mA = 96 mA
3 SM 1223, 8 relay coils each - 3 * 8 * 11 mA = 264 mA
1 SM 1221, 8 inputs - 8 * 4 mA = 32 mA
Total requirements 540 mA 448 mA

Equals
Current balance 5 VDC 24 VDC
Current balance total 1060 mA (48 mA)

B.3 Calculating your power requirement
Use the following table to determine how much power (or current) the S7-1200 CPU can
provide for your configuration. Refer to the technical specifications (Page 279) for the power
budgets of your CPU model and the power requirements of your signal modules.

CPU power budget 5 VDC 24 VDC

Minus
System requirements 5 VDC 24 VDC

Total requirements

Equals
Current balance 5 VDC 24 VDC
Current balance total

https://sites.google.com/site/chauchiduc

Calculating a power budget
B.3 Calculating your power requirement

 S7-1200 Programmable controller
324 System Manual, 11/2009, A5E02486680-02

https://sites.google.com/site/chauchiduc

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 325

Order numbers C

CPUs Order Number

CPU 1211C DC/DC/DC 6ES7 211-1AD30-0XB0
CPU 1211C AC/DC/Relay 6ES7 211-1BD30-0XB0

CPU 1211C

CPU 1211C DC/DC/Relay 6ES7 211-1HD30-0XB0
CPU 1212C DC/DC/DC 6ES7 212-1AD30-0XB0
CPU 1212C AC/DC/Relay 6ES7 212-1BD30-0XB0

CPU 1212C

CPU 1212C DC/DC/Relay 6ES7 212-1HD30-0XB0
CPU 1214C DC/DC/DC 6ES7 214-1AE30-0XB0
CPU 1214C AC/DC/Relay 6ES7 214-1BE30-0XB0

CPU 1214C

CPU 1214C DC/DC/Relay 6ES7 214-1HE30-0XB0

Signal modules, communication modules, and signal boards Order Number

SM 1221 8 x 24 VDC Input 6ES7 221-1BF30-0XB0
SM 1221 16 x 24 VDC Input 6ES7 221-1BH30-0XB0
SM 1222 8 x 24 VDC Output 6ES7 222-1BF30-0XB0
SM 1222 16 x 24 VDC Output 6ES7 222-1BH30-0XB0
SM 1222 8 x Relay Output 6ES7 222-1HF30-0XB0
SM 1222 16 x Relay Output 6ES7 222-1HH30-0XB0
SM 1223 8 x 24 VDC Input / 8 x 24 VDC Output 6ES7 223-1BH30-0XB0
SM 1223 16 x 24 VDC Input / 16 x 24 VDC Output 6ES7 223-1BL30-0XB0
SM 1223 8 x 24 VDC Input / 8 x Relay Output 6ES7 223-1PH30-0XB0
SM 1223 16 x 24 VDC Input / 16 x Relay Output 6ES7 223-1PL30-0XB0
SM 1231 4 x Analog Input 6ES7 231-4HD30-0XB0
SM 1231 8 x Analog Input 6ES7 231-4HF30-0XB0
SM 1232 2 x Analog Output 6ES7 232-4HB30-0XB0
SM 1232 4 x Analog Output 6ES7 232-4HD30-0XB0

Signal modules

SM 1234 4 x Analog Input / 2 x Analog Output 6ES7 234-4HE30-0XB0
CM 1241 RS232 6ES7 241-1AH30-0XB0 Communication

modules CM 1241 RS485 6ES7 241-1CH30-0XB0
SB 1223 2 x 24 VDC Input / 2 x 24 VDC Output 6ES7 223-0BD30-0XB0 Signal boards
SB 1232 1 Analog Output 6ES7 232-4HA30-0XB0

https://sites.google.com/site/chauchiduc

Order numbers

 S7-1200 Programmable controller
326 System Manual, 11/2009, A5E02486680-02

HMI devices Order Number
KTP400 Basic (Mono, PN) 6AV6 647-0AA11-3AX0
KTP600 Basic (Mono, PN) 6AV6 647-0AB11-3AX0
KTP600 Basic (Color, PN) 6AV6 647-0AD11-3AX0
KTP1000 Basic (Color, PN) 6AV6 647-0AF11-3AX0
TP1500 Basic (Color, PN) 6AV6 647-0AG11-3AX0

Programming package Order Number
STEP 7 Basic v10.5 6ES7 822-0AA0-0YA0

Memory cards, other hardware, and spare parts Order Number

SIMATIC MC 2 MB 6ES7 954-8LB00-0AA0 Memory Cards
SIMATIC MC 24 MB 6ES7 954-8LF00-0AA0
PSU 1200 power supply 6EP1 332-1SH71
CSM 1277 Ethernet switch - 4 ports 6GK7 277-1AA00-0AA0
Simulator (1214C/1211C - 8 position) 6ES7 274-1XF30-0XA0
Simulator (1214C - 14 position) 6ES7 274-1XH30-0XA0

Other hardware

I/O Expansion cable, 2 m 6ES7 290-6AA30-0XA0
Connector block, 7 terminal, Tin 6ES7 292-1AG30-0XA0
Connector block, 8 terminal, Tin (4/pk) 6ES7 292-1AH30-0XA0
Connector block, 11 terminal, Tin (4/pk) 6ES7 292-1AL30-0XA0
Connector block, 12 terminal, Tin (4/pk) 6ES7 292-1AM30-0XA0
Connector block, 14 terminal, Tin (4/pk) 6ES7 292-1AP30-0XA0
Connector block, 20 terminal, Tin (4/pk) 6ES7 292-1AV30-0XA0
Connector block, 3 terminal, Gold (4/pk) 6ES7 292-1BC0-0XA0
Connector block, 6 terminal, Gold (4/pk) 6ES7 292-1BF30-0XA0
Connector block, 7 terminal, Gold (4/pk) 6ES7 292-1BG30-0XA0

Spare Parts

Connector block, 11 terminal, Gold (4/pk) 6ES7 292-1BL30-0XA0

https://sites.google.com/site/chauchiduc

 Order numbers

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 327

Documentation Order Number
S7-1200 Programmable Controller System Manual
 German
 English
 French
 Spanish
 Italian
 Chinese

 6ES7 298-8FA30-8AH0
 6ES7 298-8FA30-8BH0
 6ES7 298-8FA30-8CH0
 6ES7 298-8FA30-8DH0
 6ES7 298-8FA30-8EH0
 6ES7 298-8FA30-8KH0

S7-1200 Easy Book
 German
 English
 French
 Spanish
 Italian
 Chinese

 6ES7 298-8FA30-8AQ0
 6ES7 298-8FA30-8BQ0
 6ES7 298-8FA30-8CQ0
 6ES7 298-8FA30-8DQ0
 6ES7 298-8FA30-8EQ0
 6ES7 298-8FA30-8KQ0

https://sites.google.com/site/chauchiduc

Order numbers

 S7-1200 Programmable controller
328 System Manual, 11/2009, A5E02486680-02

https://sites.google.com/site/chauchiduc

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 329

Index

A
Absolute value (ABS) instruction, 116
AC

Inductive loads, 34
Accessing the online help, 16
Add (ADD) instruction, 113
Adding a device

Unspecific CPU, 71
Analog I/O status indicators, 270
Analog signal module specifications, 306
Analog signal module voltage, 308
AND instruction, 127
ATEX approval, 280
ATTACH interrupt instruction, 167

B
Baud rate, 239
Bit logic, 93
Block

Types, 37
Block call

Basics, 37
Calling as single instance or multi-instance, 85

Block move (MOVE_BLK) instruction, 119
Blocks

data blocks (DBs), 37
function blocks (FBs), 37
functions (FCs), 37
organization blocks (OBs), 37, 42

Break, 241, 243
Bus connector, 13

C
Calendar instructions, 132
CAN_DINT time delay interrupt instruction, 170
CE approval, 279
Ceiling (CEIL) instruction, 124
Character position

message length, 245
Character sequence

message end, 244
message start, 243

Clearance for installation, 22

Clock
time-of-day clock, 50

Clock instructions, 134
read local time (RD_LOC_T), 134
read system time (RD_SYS_T), 134
write system time (WR_SYS_T), 134

CM 1241 RS232 specifications, 318
CM 1241 RS485 specifications, 317
Code block

DB (data block), 86
FB (function block), 84
FC (function), 84
Know-how protection, 89

Code blocks, 81
Communication

flow control, 239
hardware connection, 211
IP address, 76, 217
libraries, 237
load, 48
network, 210
polling architecture, 247
send and receive parameters, 241

Communication interfaces
configuration, 238
programming, 246

Communication module
Add modules, 73
Add new device, 70
Device configuration, 69

Communication module (CM)
Comparison chart, 12
Installation, 29
Overview, 14
Removal, 29

Communication modules
RS232 and RS485, 237

Communications module (CM), 248
data reception, 262
power requirements, 321
specifications, 317

Communications module (CM), USS library, 177
Compare instructions, 111
Comparison chart

CPU models, 12
HMI devices, 19

Comparison chart of modules, 12
Configuration

https://sites.google.com/site/chauchiduc

Index

 S7-1200 Programmable controller
330 System Manual, 11/2009, A5E02486680-02

communication interfaces, 238
Cycle time, 48
Discover, 71
HMI to CPU, 222
HSC (high-speed counter), 110
Industrial Ethernet port, 76, 217
IP address, 76, 217
PLC to PLC communication, 223
ports, 238
PROFINET, 76, 217
receive message, 242
Startup parameters, 38, 63

Configuring parameters
CPU, 72
Ethernet port, 76, 217
modules, 74
PROFINET, 76, 217

Connector
Installation and Removal, 31

Contact information, 3
Context-sensitive help, 16
Convert instructions, 123
Copy protection, 89
Counter

high-speed (HSC), 107
high-speed (HSC): configuring, 110

Counter instructions, 102
CPU

1211C specifications, 284
1211C wiring diagrams, 287
1212C specifications, 289
1212C wiring diagrams, 292
1214C specifications, 294
1214C wiring diagrams, 297
Add modules, 73
Add new device, 70
Comparison chart, 12
configuring communication to HMI, 221
configuring multiple, 223
Configuring parameters, 72
Creating a Program card, 66
Creating a transfer card, 63
Cycle time, 48
Device configuration, 69
download to device, 220
Empty transfer card, 53
Ethernet port, 76, 217
going online, 270
Grounding, 33
Inductive loads, 34
Installation procedures, 26
IP address, 76, 217

Isolation guidelines, 33
Lamp loads, 35
Lost password, 53
MAC address, 233
Network connection, 75
online, 271
Operating modes, 39
operating panel for online, 272
Overview, 11
Password protection, 52
Power budget, 22
power requirements, 321
PROFINET, 76, 217
Program card, 66
Program execution, 38
Recover from a lost password, 53
Security levels, 52
Signal board (SB), 13
Startup parameters, 38, 63
Startup processing, 40
STOP mode, 276
Thermal zone, 24
Transfer card, 63
Unspecific CPU, 71
watch tables, 273
Wiring guidelines, 32, 34

Creating a network connection, 75
C-Tick approval, 281
CTRL_PWM instruction, 174
CTS, 239
cULus approval, 280
Customer support, 3
Cycle time, 47, 48
Cycle time monitoring, online CPU, 272

D
Data block

Global data block, 53, 86
Instance data block, 53
organization block (OB), 82

Data block (DB), 86
Data handling block (DHB), 86
Data transmission, initiating, 259
Data types, 57

Arrays, 59
DTL, 60
STRING, 59

Date and Time Long data type, 60
Date instructions, 132
DB (data block), 86
DC

https://sites.google.com/site/chauchiduc

 Index

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 331

Inductive loads, 34
DEC (decrement) instruction, 115
Decode (DECO) instruction, 128
Designing a PLC system, 79, 80
DETACH interrupt instruction, 167
Device configuration, 69, 211

Add modules, 73
Add new device, 70
Configuring the CPU, 72
Configuring the modules, 74
Discover, 71
Ethernet port, 76, 217
Network connection, 75
PROFINET, 76, 217

Diagnostics buffer, 49, 272
Digital I/O status indicators, 270
Digital signal board (SB) specifications, 313
DIN rail, 25
DIS_AIRT alarm interrupt instruction, 172
Discover, 71
Displaying the contents and index (online help), 17
Divide (DIV) instruction, 113
Documentation, 16
Download to device, 220
DTL data type, 60

E
Electromagnetic compatibility (EMC), 281
EN and ENO (power flow), 88
EN_AIRT alarm interrupt instruction, 172
Encode (ENCO) instruction, 128
End conditions, 244
End message character, 244
Environmental conditions, 282
Environments

industrial, 281
Errors

Diagnostic errors, 46
PtP instructions, 266
Time errors, 45

Ethernet
IP address, 76, 217
Network connection, 75

Ethernet communication, 209
Ethernet instructions

TCON, 159
TDISCON, 159
TRCV, 159
TRCV_C, 154
TSEND, 159
TSEND_C, 154

Event execution, 43
Expanding the capabilities of the S7-1200, 12
Expanding the online help window, 17

F
FB (function block), 84
FBD (function block diagram), 88
FC (function), 84
Fill (FILL_BLK) instruction, 121
Floating-point math instruction, 118
Floor (FLOOR) instruction, 124
Flow control, 239

configuration, 239
FM approval, 280
Freeport protocol, 237
Function (FC), 84
Function block (FB)

Initial value, 84
Instance data block, 84
Output parameters, 85

G
General technical specifications), 279
Getting started

Cascading tool tips, 16
Context-sensitive help, 16
Documentation, 16
Information system, 16
Online help, 16
Portal and project views, 15
Rollout help, 16
Tool tips, 16

Global data block, 53, 86
Global library

USS, 177
Guidelines

Grounding, 33
Inductive loads, 34
Installation, 21
Installation procedures, 25
Isolation, 33
Lamp loads, 35
Wiring guidelines, 32, 34

H
Hardware configuration, 69

Add modules, 73
Add new device, 70

https://sites.google.com/site/chauchiduc

Index

 S7-1200 Programmable controller
332 System Manual, 11/2009, A5E02486680-02

Configuring the CPU, 72
Configuring the modules, 74
Discover, 71
Ethernet port, 76, 217
Network connection, 75
PROFINET, 76, 217

Hardware flow control, 239
Help, 16

Displaying the contents and index, 17
Expanding, 17
Printing, 18
Undocking, 17

High-speed counter, 107
High-speed counter (HSC) instruction, 105
HMI

configuring PROFINET communication, 221
HMI devices

Network connection, 75
Overview, 19

Hotline, 3
HSC (high-speed counter), 107

configuration, 110

I
I/O

Addressing, 57
analog status indicators, 270
digital status indicators, 270
Inductive loads, 34

I/O modules
watch tables, 273

Idle line, 241, 243
INC (increment) instruction, 115
Inductive loads, 34
Information system, 16

Displaying the contents and index, 17
Expanding, 17
Printing, 18
Undocking, 17

Input simulators, 319
In-range instruction, 112
Inserting a device

Unspecific CPU, 71
Installation

Clearance, 22
Communication module (CM), 29
CPU, 26
Grounding, 33
Guidelines, 21
Inductive loads, 34
Isolation guidelines, 33

Lamp loads, 35
Mounting dimensions, 24
Overview, 21
Power budget, 22
Signal board (SB), 30
Signal module (SM), 27
STEP 7, 14
Terminal block connector, 31
Thermal zone, 24
TIA Portal, 14
Wiring guidelines, 32, 34

Instance data block, 53
Instructions

absolute value (ABS), 116
add (ADD), 113
AND, 127
bit logic, 93
block move (MOVE_BLK), 119
calendar, 132
ceiling, 124
clock, 134
clock: read local time (RD_LOC_T), 134
clock: read system time (RD_SYS_T), 134
clock: write system time (WR_SYS_T), 134
compare, 111
convert, 123
counter, 102
CTRL_PWM), 174
date, 132
DEC (decrement), 115
decode (DECO), 128
divide (DIV), 113
encode (ENCO), 128
fill (FILL_BLK), 121
floating-point math, 118
floor (FLOOR), 124
GET_ERROR, 154
high-speed counter (HSC), 105
INC (increment), 115
in-range, 112
interrupt: ATTACH, 167
interrupt: CAN_DINT, 170
interrupt: DETACH, 167
interrupt: DIS_AIRT, 172
interrupt: EN_AIRT, 172
interrupt: SRT_DINT, 170
invert (INV), 127
jump (JMP), 126
label, 126
limit, 117
MAX (maximum), 116
MIN (minimum), 116

https://sites.google.com/site/chauchiduc

 Index

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 333

MOD (modulo), 114
move, 119
multiplex (MUX), 129
multiply (MUL), 113
NEG (negation), 115
negative edge, 97
normalize (NORM), 124
not OK, 113
OK, 113
OR, 127
out-of-range, 112
PID_Compact, 172
PORT_CFG (port configuration), 250
positive edge, 97
RCV_CFG (receive configuration), 253
RCV_PtP (receive Point-to-Point), 262
RCV_RST (receiver reset), 263
RE_TRIGR, 47, 150
reset, 95
return value (RET), 126
rotate left (ROL), 131
rotate right (ROR), 131
round, 123
scale (SCALE_X), 124
select (SEL), 129
SEND_CFG (send configuration), 251
SEND_PTP (send Point-to-Point data), 259
set, 95
SGN_GET (get RS232 signals), 264
SGN_SET (set RS232 signals), 265
shift left (SHL), 130
shift right (SHR), 130
STP (stop PLC scan cycle), 151
string to value: S_CONV, 136
string to value: STRG_VAL, 136
subtract (SUB), 113
swap, 122
T_ADD, 132
T_CONV, 132
T_DIFF, 132
T_SUB, 132
TCON, 159
TDISCON, 159
time, 132
timer, 99
timer: RT (reset timer), 99
timer: TOF (off-delay timer), 99
timer: TON (on-delay timer), 99
timer: TONR (on-delay retentive timer), 99
timer: TP (pulse timer), 99
TRCV, 159
TRCV_C, 154, 229

truncate (TRUNC), 123
TSEND, 159
TSEND_C, 154, 225
uninterruptible fill (UFILL_BLK), 121
uninterruptible move (UMOVE_BLK), 119
USS status codes, 186
USS_DRV, 180
USS_PORT, 182
USS_RPM, 183
USS_WPM, 184
value to string: S_CONV, 136
value to string: VAL_STRG, 136
XOR (exclusive OR), 127

Inter-character gap, 244
Interrupt latency, 45
Interrupts

Overview, 42
Invert (INV) instruction, 127
IP address, 76, 77, 217, 218

assigning, 212, 219
assigning online, 214
configuring, 76, 217

IP address, setting the online CPU, 271
IP router, 76, 217
Isolation guidelines, 33

J
JMPN instruction, 126
Jump (JMP) instruction, 126

K
Know-how protection, 89

L
Label instruction, 126
LAD (ladder logic), 87
Lamp loads, 35
LED indicators, 248, 269
Length

message, 245
Length m, 245
Length n, 245
Limit instruction, 117
Linear programming, 80
Lost password, 53

https://sites.google.com/site/chauchiduc

Index

 S7-1200 Programmable controller
334 System Manual, 11/2009, A5E02486680-02

M
MAC address, 76, 217, 233
Maritime approval, 281
Master polling architecture, 247
Math instructions, 113
MAX (maximum) instruction, 116
Maximum message length, 244
MB_COMM_LOAD, 187
MB_MASTER, 189
MB_SLAVE, 199
Memory

clock memory, 50
I (process image input), 54
L (local memory), 53
load memory, 48
M (bit memory), 56
Q (process image output), 55
retentive memory, 48
system memory, 50
Temp memory, 56
work memory, 48

Memory card
Configure the startup parameters, 63
empty transfer card, 53
Lost password, 53
Programr card, 66
Transfer card, 63

Memory card specifications, 318
Memory locations, 53, 54
Memory usage monitoring, online CPU, 272
Message configuration

instructions, 246
receive, 242
transmit, 241

Message end, 244
Message length, 244
Message start, 242
MIN (minimum) instruction, 116
Miscellaneous PtP parameter errors, 268
MOD (modulo) instruction, 114
MODBUS, 187

MB_Master, 189
MB_SLAVE, 199

Modules
Communication module (CM), 14
Comparison chart, 12
Configuring parameters, 74
Signal board (SB), 13
Signal module (SM), 13
Thermal zone, 24

Monitoring the program, 91
Mounting

Clearance, 22
Communication module (CM), 29
CPU, 26
Dimensions, 24
Grounding, 33
Guidelines, 21
Inductive loads, 34
Isolation, 33
Lamp loads, 35
Overview, 25
Signal board (SB), 30
Signal module (SM), 27
Terminal block connector, 31
Thermal zone, 24
Wiring guidelines, 32, 34

Move instruction, 119
Multiplex (MUX) instruction, 129
Multiply (MUL) instruction, 113

N
NEG (negation) instruction, 115
Negative edge instruction, 97
Network communication, 210
Network connection, 75

multiple CPUs, 224
Network time protocol (NTP), 234
Normalize (NORM) instruction, 124
Not OK instruction, 113
Numbers

Floating point, 58
Real, 58

O
Off-delay (TOF) instruction, 99
OK instruction, 113
On-delay delay (TON) instruction, 99
On-delay retentive (TONR) instruction, 99
Online CPU, 271

cycle time monitoring, 272
memory usage monitoring, 272
operating panel, 272

Online help, 16
Displaying the contents and index, 17
Expanding the help window, 17
Printing, 18
Undocking, 17

Online, going online, 270
OR instruction, 127
Organization block

https://sites.google.com/site/chauchiduc

 Index

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 335

Call, 42
configuring operation, 84
creating, 83
Function, 42
multiple cyclic, 83
Priority classes, 42
processing, 82

Out-of-range instruction, 112
Output parameters, 85

P
Parameter assignment, 85
Parameters configuration

receive, 230
transmit, 226

Parity, 239
Password, 53
Password protection

Code block, 89
CPU, 52
Empty transfer card, 53
lost password, 53

PID_Compact instruction, 172
PLC

Overview, 11
system design, 79
using blocks, 80

Point-to-point communication, 237
Point-to-Point programming, 246
Polling architecture, 247
Port configuration, 238

instructions, 246
Port configuration errors, 266
PORT_CFG (port configuration) instruction, 250
Portal view, 15

Add modules, 73
Add new device, 70
Configuring the CPU, 72
Configuring the Ethernet port, 76, 217
Configuring the modules, 74
PROFINET, 76, 217

Positive edge instruction, 97
Power budget, 22, 321

sample, 322, 323
Power requirements

calculating, 322, 323
Printing the help topics, 18
Priorities in processing, 43
Priority class

Overview, 42
PROFINET, 209

IP address, 76, 217
Network connection, 75
testing a network, 219

PROFINET interface
Ethernet address properties, 77, 218
Time synchronization properties, 235

Program card, 66
Program execution, 37
Program structure, 81
Programming

FBD (function block diagram), 88
LAD (ladder), 87
Linear, 80
power flow (EN and ENO), 88
PtP instructions, 246
Structured, 80
Unspecific CPU, 71

Programy card
Configure the startup parameters, 63

Project
Empty transfer card, 53
Lost password, 53
Programr card, 66
Protecting a code block, 89
Restricting access to a CPU, 52
transfer card, 63

Project view, 15
Add modules, 73
Add new device, 70
Configuring the CPU parameters, 72
Configuring the Ethernet port, 76, 217
Configuring the modules, 74
Device configuration, 69
Network connection, 75
PROFINET, 76, 217

Protection class, 283
Protection level

Code block, 89
CPU, 52
lost password, 53

Protocol
communication, 237
freeport, 237

PTO (pulse train output), 175
PtP communication, 237
PtP instruction return values, 266
PtP programming, 246
Pulse delay (TP) instruction, 99
Pulse train output (PTO), 175
PWM

CTRL_PWM instruction, 174

https://sites.google.com/site/chauchiduc

Index

 S7-1200 Programmable controller
336 System Manual, 11/2009, A5E02486680-02

Q
Queuing, 43

R
Rated voltages, 283
RCV_CFG (receive configuration) instruction, 253
RCV_PTP (receive Point-to-Point) instruction, 262
RCV_RST (receiver reset) instruction, 263
RE_TRIGR instruction, 150
Receive configuration errors, 267
Receive message configuration, 242
Receive parameters configuration, 230
Receive runtime return values, 268
Relay electrical service life, 283
Reset instruction, 95
Reset timer (RT) instruction, 99
Return value (RET) instruction, 126
Return values

PtP instructions, 266
Rollout help, 16
Rotate left (ROL) instruction, 131
Rotate right (ROR) instruction, 131
Round instruction, 123
Router IP address, 77, 218
RS232 and RS485 communication modules, 237
RT (reset timer) instruction, 99
RTS, 239
RTS always on, 240
RTS Off delay, 241
RTS On delay, 241
RTS switched, 239
RUN mode, 39, 41
RUN to STOP transition, 51

S
S_CONV instruction, 136
S7-1200

Add modules, 73
Add new device, 70
Clearance, 22
Communication module (CM), 14
Comparison chart of CPU models, 12
Configuring the CPU parameters, 72
Configuring the modules, 74
CPU, 11
CPU installation procedures, 26
Cycle time, 48
Device configuration, 69
empty transfer card, 53

Ethernet port, 76, 217
Expanding the capabilities, 12
Grounding, 33
HMI devices, 19
Inductive loads, 34
installing a CM, 29
installing an SB, 30
installing an SM, 27
IP address, 76, 217
Isolation guidelines, 33
Lamp loads, 35
Lost password, 53
Mounting dimensions, 24
Network connection, 75
Overview of installation, 25
Password protection, 52
Power budget, 22
PROFINET, 76, 217
Program card, 66
Signal board (SB), 13
Signal module (SM), 13
Startup parameters, 38, 63
Terminal block connector, 31
Thermal zone, 24
Transfer card, 63
Wiring guidelines, 32, 34

SB 1223 specifications, 313, 315
SB 1223 wiring diagram, 314
SB 1232 wiring diagram, 316
Scale (SCALE_X instruction, 124
Scan cycle time, 47
Security

Code block, 89
CPU, 52
Lost password, 53

Select (SEL) instruction, 129
Send message configuration, 241
Send parameters configuration, 226
SEND_CFG (send configuration) instruction, 251
SEND_PtP (send Point-to-Point data) instruction, 259
Serial communication, 237
Set instruction, 95
SGN_GET (get RS232 signals) instruction, 264
SGN_SET (set RS232 signals) instruction, 265
Shift left (SHL) instruction, 130
Shift right (SHR) instruction, 130
Signal board (SB)

Add modules, 73
Comparison chart, 12
Device configuration, 69
Installation, 30
Overview, 13

https://sites.google.com/site/chauchiduc

 Index

S7-1200 Programmable controller
System Manual, 11/2009, A5E02486680-02 337

power requirements, 321
Removal, 30

Signal board (SM)
Add new device, 70

Signal handling errors, 267
Signal module (SM)

Add modules, 73
Add new device, 70
Comparison chart, 12
Device configuration, 69
Installation, 27
Overview, 13
power requirements, 321
Removal, 27

Signal modules
SM 1221 specifications, 299
SM 1222 specifications, 301
SM 1223 specifications, 303

Single instance
Example, 85

Slave polling architecture, 247
Software flow control, 240
Specifications

Analog dignal module voltage, 308
Analog signal modules, 306
ATEX approval, 280
CE approval, 279
communication module CM 1241 RS232, 318
communication module CM 1241 RS485, 317
CPU 1211C, 284
CPU 1212C, 289
CPU 1214C, 294
C-Tick approval, 281
cULus approval, 280
digital signal boards (SBs), 313
electromagnetic compatibility (EMC), 281
environmental conditions, 282
environments, 281
FM approval, 280
general technical, 279
input simulators, 319
maritime approval, 281
memory cards, 318
protection, 283
rated voltages, 283
relay electrical service life, 283
SB 1223, 313
SB 1223, 315
SM 1221 signal module, 299
SM 1221 wiring diagram, 300
SM 1222 signal module, 301
SM 1222 wiring diagram, 302

SM 1223 signal module, 303
SM 1223 wiring diagram, 304
wiring diagrams: SM 1231, 1232, 1234, 311

SRT_DINT time delay interrupt instruction, 170
Start conditions, 242
Start message character, 243
Startup parameters, 38, 63
STEP 7

Add modules, 73
Add new device, 70
Configuring the CPU, 72
Configuring the modules, 74
Device configuration, 69
Ethernet port, 76, 217
Installation, 14
Network connection, 75
Portal view, 15
PROFINET, 76, 217
Project view, 15

Stop bits, 239
STOP mode, 39, 276
STP (stop PLC scan cycle) instruction, 151
STRG_VAL instruction, 136
String data type, 59
String to value instructions, 136
Structured programming, 80, 81
Subnet mask, 76, 217
Subtract (SUB) instruction, 113
Support, 3
Swap instruction, 122

T
T_ADD instruction, 132
T_CONV instruction, 132
T_DIFF instruction, 132
T_SUB instruction, 132
TCON instruction, 159
TCP/IP communication, 209
TDISCON instruction, 159
Technical specifications, 279
Technical support, 3
Terminal block connector

Installation, 31
Testing the program, 91
Thermal zone, 24
TIA Portal

Add modules, 73
Add new device, 70
Configuring the CPU, 72
Configuring the modules, 74
Device configuration, 69

https://sites.google.com/site/chauchiduc

Index

 S7-1200 Programmable controller
338 System Manual, 11/2009, A5E02486680-02

Ethernet port, 76, 217
Installation, 14
Network connection, 75
Portal view, 15
PROFINET, 76, 217
Project view, 15

Time instructions, 132
Time of day, setting the online CPU, 271
Timer instructions, 99
TOF (off-delay) timer instruction, 99
TON (on-delay delay) timer instruction, 99
TONR (on-delay retentive) timer instruction, 99
Tool tips, 16
TP (pulse delay) timer instruction, 99
Transfer card, 63

Configure the startup parameters, 63
Empty transfer card, 53
Lost password, 53

Transmission block (T-block), 225
Transmit configuration errors, 267
Transmit message configuration, 241
Transmit runtime errors, 267
TRCV instruction, 159
TRCV_C instruction, 154, 229
TRCV_C instruction configuration, 230
Truncate (TRUNC) instruction, 123
TSAP (transport service access points, 227
TSAP (transport service access points), 231
TSEND instruction, 159
TSEND_C instruction, 154, 225
TSEND_C instruction configuration, 226

U
Undocking the online help, 17
Uninterruptible fill (UFILL_BLK) instruction, 121
Uninterruptible move (UMOVE_BLK) instruction, 119
Unspecific CPU, 71

USS protocol library, 177
USS status codes, 186
USS_DRV instruction, 180
USS_PORT instruction, 182
USS_RPM instruction, 183
USS_WPM instruction, 184

V
VAL_STRG instruction, 136
Value to string instructions, 136

W
Wait time, 239
Watch tables, 91, 273
Watchdog, 150
Wiring diagrams

CPU 1211C, 287
CPU 1212C, 292
CPU 1214C, 297
SB 1223, 314
SB 1232, 316
SM 1221 signal module, 300
SM 1222 signal module, 302
SM 1223 signal module, 304
SM 1231, 1232, 1234, 311

Wiring guidelines
Grounding, 33
Prerequisites, 32

X
XON / XOFF, 240
XOR (exclusive OR) instruction, 127

https://sites.google.com/site/chauchiduc

