

CentOS	7	Linux	Server	Cookbook
Second	Edition

Table	of	Contents

CentOS	7	Linux	Server	Cookbook	Second	Edition
Credits
About	the	Authors
About	the	Reviewer
www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more
Why	Subscribe?
Free	Access	for	Packt	account	holders

Preface
What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Sections

Getting	ready
How	to	do	it…
How	it	works…
There's	more…

Conventions
Reader	feedback
Customer	support

Errata
Piracy
Questions

1.	Installing	CentOS
Introduction
Downloading	CentOS	and	confirming	the	checksum	on	Windows	or	OS	X

Getting	ready
How	to	do	it...
How	it	works…

Creating	USB	installation	media	on	Windows	or	OS	X
Getting	ready
How	to	do	it...
How	it	works...

Performing	an	installation	of	CentOS	using	the	graphical	installer
Getting	ready
How	to	do	it...
How	it	works…

Running	a	netinstall	over	HTTP
Getting	ready
How	to	do	it...
How	it	works...

Installing	CentOS	7	using	a	kickstart	file
Getting	ready
How	to	do	it...
How	it	works...

Getting	started	and	customising	the	boot	loader
Getting	ready
How	to	do	it...
How	it	works...

Troubleshooting	the	system	in	rescue	mode
Getting	ready
How	to	do	it...

Reaching	rescue	mode
Accessing	the	filesystem
Accessing	the	filesystem
Re-install	the	CentOS	boot	loader

How	it	works...
Updating	the	installation	and	enhancing	the	minimal	install	with	additional

administration	and	development	tools
Getting	ready
How	to	do	it...
How	it	works...

2.	Configuring	the	System
Introduction
Navigating	text	files	with	less

Getting	ready
How	to	do	it...
How	it	works...

Introduction	to	Vim
Getting	ready

How	to	do	it...
How	it	works...

Speaking	the	right	language
Getting	ready
How	to	do	it...
How	it	works...
There's	more…

Synchronizing	the	system	clock	with	NTP	and	the	chrony	suite
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Setting	your	hostname	and	resolving	the	network
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Building	a	static	network	connection
Getting	ready
How	to	do	it...
How	it	works...

Becoming	a	superuser
Getting	ready
How	to	do	it...
How	it	works...

Customizing	your	system	banners	and	messages
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Priming	the	kernel
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

3.	Managing	the	System
Introduction

Knowing	and	managing	your	background	services
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Troubleshooting	background	services
Getting	ready
How	to	do	it...
How	it	works...

Tracking	system	resources	with	journald
Getting	ready
How	to	do	it...
How	it	works...

Configuring	journald	to	make	it	persistent
Getting	ready
How	to	do	it...
How	it	works...

Managing	users	and	their	groups
Getting	ready
How	to	do	it...
How	it	works...

Scheduling	tasks	with	cron
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Synchronizing	files	and	doing	more	with	rsync
Getting	ready
How	to	do	it...
How	it	works...

Maintaining	backups	and	taking	snapshots
Getting	ready
How	to	do	it...
How	it	works...

Monitoring	important	server	infrastructure
Getting	ready
How	to	do	it...

How	it	works...
Taking	control	with	GIT	and	Subversion

Getting	ready
How	to	do	it...
How	it	works
There's	more...

4.	Managing	Packages	with	YUM
Introduction
Using	YUM	to	update	the	system

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Using	YUM	to	search	for	packages
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Using	YUM	to	install	packages
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Using	YUM	to	remove	packages
Getting	ready
How	to	do	it...
How	it	works...

Keeping	YUM	clean	and	tidy
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Knowing	your	priorities
Getting	ready
How	to	do	it...
How	it	works...

Using	a	third-party	repository

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Creating	a	YUM	repository
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Working	with	the	RPM	package	manager
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

5.	Administering	the	Filesystem
Introduction
Creating	a	virtual	block	device

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Formatting	and	mounting	a	filesystem
Getting	ready
How	to	do	it...
How	it	works…
There's	more...

Using	disk	quotas
Getting	ready
How	to	do	it...

Enabling	user	and	group	quotas
Enabling	project	(directory)	quotas

How	it	works...
There's	more...

Maintaining	a	filesystem
Getting	ready
How	to	do	it...
How	it	works...

There's	more...
Extending	the	capacity	of	the	filesystem

Getting	ready
How	to	do	it...
How	it	works...

6.	Providing	Security
Introduction
Locking	down	remote	access	and	hardening	SSH

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Changing	the	SSH	port	number	of	your	server
Limiting	SSH	access	by	user	or	group

Installing	and	configuring	fail2ban
Getting	ready
How	to	do	it...
How	it	works...

Working	with	a	firewall
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Forging	the	firewall	rules	by	example
Getting	ready
How	to	do	it...

To	change	an	existing	firewalld	service	(ssh)
To	create	your	own	new	service

How	it	works...
There's	more...

Generating	self-signed	certificates
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Using	secure	alternatives	to	FTP
Getting	ready

How	to	do	it...
Securing	your	vsftpd	server	with	SSL–FTPS
Securing	your	vsftpd	server	using	SSH	–	SFTP

How	it	works...
There's	more...

7.	Building	a	Network
Introduction
Printing	with	CUPS

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

How	to	add	a	network	printer	to	the	CUPS	server
How	to	share	a	local	printer	to	the	CUPS	server

Running	a	DHCP	server
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Using	WebDAV	for	file	sharing
Getting	ready
How	to	do	it…
How	it	works…

Installing	and	configuring	NFS
Getting	ready
How	to	do	it...

Installing	and	configuring	the	NFS	server
Creating	an	export	share

How	it	works...
Working	with	NFS

Getting	ready
How	to	do	it...
How	it	works...

Securely	sharing	resources	with	Samba
Getting	ready
How	to	do	it...
How	it	works...

There's	more...
8.	Working	with	FTP

Introduction
Installing	and	configuring	the	FTP	service

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Working	with	virtual	FTP	users
Getting	ready
How	to	do	it...
How	it	works...

Customizing	the	FTP	service
Getting	ready
How	to	do	it...
How	it	works...

Troubleshooting	users	and	file	transfers
Getting	ready
How	to	do	it...
How	it	works...

9.	Working	with	Domains
Introduction
Installing	and	configuring	a	caching-only	nameserver

Getting	ready
How	to	do	it...

Configuring	a	caching-only	Unbound	DNS	server
Configuring	a	forwarding	only	DNS	server

How	it	works...
There's	more...

Setting	up	an	authoritative-only	DNS	server
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Creating	an	integrated	nameserver	solution
Getting	ready
How	to	do	it...

How	it	works
There's	more...

Populating	the	domain
Getting	ready
How	to	do	it...
How	it	works…

Building	a	secondary	(slave)	DNS	server
Getting	ready
How	to	do	it...

Changes	to	the	primary	DNS	server
Changes	to	the	secondary	DNS	server(s)

How	it	works...
10.	Working	with	Databases

Introduction
Installing	a	MariaDB	database	server

Getting	ready
How	to	do	it...
How	it	works...

Managing	a	MariaDB	database
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Reviewing	and	revoking	permissions	or	dropping	a	user
Allowing	remote	access	to	a	MariaDB	server

Getting	ready
How	to	do	it...
How	it	works...

Installing	a	PostgreSQL	server	and	managing	a	database
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Configuring	remote	access	to	PostgreSQL
Getting	ready
How	to	do	it...
How	it	works...

Installing	phpMyAdmin	and	phpPgAdmin
Getting	ready
How	to	do	it...

Installing	and	configuring	phpMyAdmin
Installing	and	configuring	phpPgAdmin

How	it	works...
11.	Providing	Mail	Services

Introduction
Configuring	a	domain-wide	mail	service	with	Postfix

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Changing	an	e-mail's	appearing	domain	name
Using	TLS-	(SSL)	encryption	for	SMTP	communication
Configure	BIND	to	use	your	new	mailserver

Working	with	Postfix
How	to	do	it...

Connecting	mailx	to	a	remote	MTA
Reading	your	local	mails	from	the	mailbox

How	it	works...
Delivering	the	mail	with	Dovecot

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Setting	up	e-mail	software
Using	Fetchmail

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Configuring	Fetchmail	with	gmail.com	and	outlook.com	e-mail
accounts

Automating	Fetchmail
12.	Providing	Web	Services

Introduction

Installing	Apache	and	serving	web	pages
Getting	ready
How	to	do	it...
How	it	works...

Enabling	system	users	and	building	publishing	directories
Getting	ready
How	to	do	it...
How	it	works...

Implementing	name-based	hosting
Getting	ready
How	to	do	it...
How	it	works...

Implementing	CGI	with	Perl	and	Ruby
Getting	ready
How	to	do	it...

Creating	your	first	Perl	CGI	script
Creating	your	first	Ruby	CGI	script

How	it	works...
There's	more...

Installing,	configuring,	and	testing	PHP
Getting	ready
How	to	do	it...
How	to	do	it...

Securing	Apache
Getting	ready
How	to	do	it...

Configuring	httpd.conf	to	provide	better	security
Removing	unneeded	httpd	modules
Protecting	your	Apache	files

How	it	works...
Setting	up	HTTPS	with	Secure	Sockets	Layer	(SSL)

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

13.	Operating	System-Level	Virtualization
Introduction

Installing	and	configuring	Docker
Getting	ready
How	to	do	it...
How	it	works...

Downloading	an	image	and	running	a	container
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Stopping	and	starting	a	container
Attaching	and	interacting	with	your	container

Creating	your	own	images	from	Dockerfiles	and	uploading	to	Docker	Hub
Getting	ready
How	to	do	it...

Uploading	your	image	to	the	Docker	Hub
How	it	works...

Setting	up	and	working	with	a	private	Docker	registry
Getting	ready
How	to	do	it...

Steps	to	be	done	on	our	Docker	registry	server	(192.168.1.100)
Steps	to	be	done	on	every	client	needing	access	to	our	registry

How	it	works...
14.	Working	with	SELinux

Introduction
Installing	and	configuring	important	SELinux	tools

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Working	with	SELinux	security	contexts
Getting	ready
How	to	do	it...
How	it	works...

Working	with	policies
Getting	ready
How	to	do	it...
How	it	works...

There's	more...
Troubleshooting	SELinux

Getting	ready
How	to	do	it...
How	it	works...

15.	Monitoring	IT	Infrastructure
Introduction
Installing	and	configuring	Nagios	Core

Getting	ready
How	to	do	it...
How	it	works...

Setting	up	NRPE	on	remote	client	hosts
Getting	ready
How	to	do	it...
How	it	works...

Monitoring	important	remote	system	metrics
Getting	ready
How	to	do	it...
How	it	works...

Index

CentOS	7	Linux	Server	Cookbook
Second	Edition

CentOS	7	Linux	Server	Cookbook
Second	Edition
Copyright	©	2016	Packt	Publishing	All	rights	reserved.	No	part	of	this	book
may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in	any	form	or	by
any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the
case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy
of	the	information	presented.	However,	the	information	contained	in	this	book	is
sold	without	warranty,	either	express	or	implied.	Neither	the	author	nor	Packt
Publishing,	and	its	dealers	and	distributors	will	be	held	liable	for	any	damages
caused	or	alleged	to	be	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of
the	companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of
capitals.	However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this
information.

First	published:	April	2013

Second	edition:	January	2016

Production	reference:	1250116

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78588-728-4

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Oliver	Pelz

Jonathan	Hobson

Reviewer

Mitja	Resman

Commissioning	Editor

Priya	Singh

Acquisition	Editor

Kevin	Colaco

Content	Development	Editor

Pooja	Mhapsekar

Technical	Editor

Deepti	Tuscano

Copy	Editor

Angad	Singh

Project	Coordinator

Francina	Pinto

Proofreader

Safis	Editing

Indexer

Rekha	Nair

Production	Coordinator

Manu	Joseph

Cover	Work

Manu	Joseph

About	the	Authors
Oliver	Pelz	has	more	than	10	years	of	experience	as	a	software	developer	and
system	administrator.	He	graduated	with	a	diploma	degree	in	bioinformatics	and
is	currently	working	at	the	German	Cancer	Research	center	in	Heidelberg	where
he	has	authored	and	co-authored	several	scientific	publications	in	the	field	of
Bioinformatics.	As	well	as	developing	web	applications	and	biological	databases
for	his	department	and	scientists	all	over	the	world,	he	administers	a	division-
wide	Linux-based	data	center	and	has	set	up	two	high-performance	CentOS
clusters	for	the	analysis	of	high-throughput	microscope	and	genome	sequencing
data.	He	loves	writing	code,	riding	his	mountain	bike	in	the	Black	Forest	of
Germany	and	has	been	an	absolute	Linux	and	open	source	enthusiast	for	many
years.	He	has	contributed	to	several	open-source	projects	in	the	past	and	also
worked	as	a	reviewer	on	the	book	CentOS	High	Performance,	Packt	Publishing.
He	maintains	an	IT	tech	blog	at	www.oliverpelz.de.

	

I	would	like	to	thank	my	family	and	especially	my	wonderful	wife	Beatrice	and
little	son	Jonah	for	their	patience	and	understanding	during	all	the	long	working
hours	while	writing	this	book.	Also	I	would	like	to	thank	the	folks	at	Packt
Publishing	for	all	their	support	and	the	opportunity	to	to	write	this	book,	it	was	a
great	pleasure	for	me.	Last	but	not	least	I	would	like	to	thank	Jonathan	Hobson
for	writing	the	first	edition	of	this	book:	without	him	no	second	edition	of	this
book	would	have	been	possible.

I	would	also	like	to	thank	all	of	the	mentors	that	I've	had	over	the	years,
especially	Prof.	Dr.	Tobias	Dykerhoff,	who	introduced	me	to	the	whole	world	of
Linux	a	long	time	ago	and	infected	me	with	his	enthusiasm	about	open	source
and	the	free	software	movement.

Jonathan	Hobson	is	a	web	developer,	systems	engineer,	and	applications
programmer.	For	more	than	20	years,	he	has	been	working	behind	the	scenes	to
support	companies,	organizations,	and	individuals	around	the	world	to	realize
their	digital	ambitions.	With	an	honors	degree	in	both	english	and	history	and	as
a	respected	practitioner	of	many	computer	languages,	Jonathan	enjoys	writing
code,	publishing	articles,	building	computers,	playing	the	video	games,	and

http://www.oliverpelz.de

getting	'out	and	about'	in	the	big	outdoors.	He	has	been	using	CentOS	since	its
inception,	and	over	the	years,	it	has	not	only	earned	his	trust,	but	it	has	also
become	his	first	choice	for	a	server	solution.	CentOS	is	a	first	class	community-
based	enterprise	class	operating	system.	It	is	a	pleasure	to	work	with	and	because
of	this,	Jonathan	has	written	this	book	so	that	his	knowledge	and	experience	can
be	passed	on	to	others.

About	the	Reviewer
Mitja	Resman	comes	from	a	small,	beautiful	country	called	Slovenia,	located	in
southern	Central	Europe.	Mitja	is	a	fan	of	Linux	and	an	open	source	enthusiast,
and	also	a	Red	Hat	Certified	Engineer	and	Linux	Professional	Institute
professional.	Working	as	a	system	administrator,	Mitja	got	years	of	professional
experience	with	open	source	software	and	Linux	system	administration	on	local
and	international	projects	worldwide.	Swiss	Army	knife	syndrome	makes	Mitja
an	expert	in	the	fields	of	VMware	virtualization,	Microsoft	system
administration,	and	also	Android	system	administration.

Mitja	has	a	strong	desire	to	learn,	develop,	and	share	knowledge	with	others.
This	is	the	reason	he	started	a	blog	called	GeekPeek.Net.	This	website	provides
CentOS	Linux	guides	and	"how	to"	articles	covering	all	sorts	of	topics
appropriate	for	beginners	and	advanced	users.	Mitja	wrote	a	book	called	CentOS
High	Availability,	Packt	Publishing,	covering	how	to	install,	configure,	and
manage	cluster	on	CentOS	Linux.

Mitja	is	also	a	devoted	father	and	husband.	His	two	daughters	and	wife	take	his
mind	off	the	geek	stuff	and	make	him	appreciate	life,	looking	forward	to	things
to	come.

http://GeekPeek.Net

www.PacktPub.com
Support	files,	eBooks,	discount	offers,	and	more

For	support	files	and	downloads	related	to	your	book,	please	visit
www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at
www.PacktPub.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount
on	the	eBook	copy.	Get	in	touch	with	us	at	<service@packtpub.com>	for	more
details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,
sign	up	for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers
on	Packt	books	and	eBooks.

	

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt's	online
digital	book	library.	Here,	you	can	search,	access,	and	read	Packt's	entire	library
of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	Subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	Access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to
access	PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login
credentials	for	immediate	access.

This	work	is	dedicated	to	my	son	Marlin	Pelz	who	was	tragically	stillborn
on	2.10.15,	two	weeks	before	his	expected	date	of	delivery	while	I	was
writing	the	last	few	chapters	of	this	book.	Marlin,	words	can	not	express
how	much	I	miss	you!

http://www.PacktPub.com

Preface
This	is	the	second	edition	of	the	highly	rated	CentOS	Linux	Server	Cookbook.
With	the	advent	of	CentOS	7	in	mid	2014,	there	has	been	a	long	list	of
significant	changes	and	new	features	to	this	famous	operating	system.	To	name	a
few,	there	is	a	new	installer,	suite	of	system	management	services,	firewall
daemon,	enhanced	Linux	container	support,	and	a	new	standard	filesystem.	With
all	these	new	advances	in	the	operating	system,	a	major	part	of	the	recipes	from
the	CentOS	6	Linux	Server	Cookbook	became	obsolete	or	even	non-functional,
making	an	update	of	the	book's	original	content	essential.	But	this	book	is	not
just	a	refresher	of	the	topics	covered	in	the	first	edition:	two	brand	new	chapters
have	been	included	as	well	to	keep	up	to	date	with	the	latest	open	source
technologies	as	well	as	providing	better	security:	operating	system-level
virtualization	and	SELinux.	Finally,	to	make	the	book	a	more	comprehensive
server-administration	book,	another	chapter	about	server	monitoring	has	been
included	as	well.

Building	a	server	can	present	a	challenge.	It	is	often	difficult	at	the	best	of	times
and	frustrating	at	the	worst	of	times.	They	can	represent	the	biggest	of	problems
or	give	you	a	great	sense	of	pride	and	achievement.	Where	the	word	"server"	can
describe	many	things,	it	is	the	intention	of	this	book	to	lift	the	lid	and	expose	the
inner	workings	of	this	enterprise-class	computing	system	with	the	intention	of
enabling	you	to	build	your	professional	server	solution	of	choice.	CentOS	is	a
community-based	enterprise	class	operating	system.	It	is	available	free	of
charge,	and	as	a	fully	compatible	derivative	of	Red	Hat	Enterprise	Linux
(RHEL),	it	represents	the	first	choice	operating	system	for	organizations,
companies,	professionals,	and	home	users	all	over	the	world	who	intend	to	run	a
server.	It's	widely	respected	as	a	very	powerful	and	flexible	Linux	distribution
and	regardless	of	whether	you	intend	to	run	a	web	server,	file	server,	FTP	server,
domain	server,	or	a	multi-role	solution,	it	is	the	purpose	of	this	book	to	deliver	a
series	of	turnkey	solutions	that	will	show	you	how	quickly	you	can	build	a	fully
capable	and	comprehensive	server	system	using	the	CentOS	operating	system.
So	with	this	in	mind,	you	could	say	that	this	book	represents	more	than	just
another	introduction	to	yet	another	server-based	operating	system.	This	is	a
cookbook	about	an	enterprise-class	operating	system	that	provides	a	step-by-step
approach	to	making	it	work.	So,	regardless	of	whether	you	are	a	new	or	an
experienced	user,	there	is	something	inside	these	pages	for	everyone,	as	this

experienced	user,	there	is	something	inside	these	pages	for	everyone,	as	this
book	will	become	your	practical	guide	to	getting	things	done	and	a	starting	point
to	all	things	CentOS.

What	this	book	covers
Chapter	1,	Installing	CentOS,	is	a	series	of	recipes	that	introduces	you	to	the	task
of	installing	your	server,	updating,	and	enhancing	the	minimal	install	with
additional	tools.	It	is	designed	to	get	you	started	and	to	provide	a	reference	that
shows	you	a	number	of	ways	to	achieve	the	desired	installation.

Chapter	2,	Configuring	the	System,	is	designed	to	follow	on	from	a	successful
installation	to	offer	a	helping	hand	and	provide	you	with	a	number	of	recipes	that
will	enable	you	to	achieve	the	desired	starting	server	configuration.	Beginning
with	showing	you	how	to	work	with	text	files,	then	changing	language	and	time
and	date	settings,	you	will	not	only	learn	how	configure	your	network	settings
but	also	how	to	resolve	a	fully	qualified	domain	name	and	work	with	kernel
modules.

Chapter	3,	Managing	the	System,	provides	the	building	blocks	that	will	enable
you	to	champion	your	server	and	take	control	of	your	environment.	It	is	here
where	you	will	kick	start	your	role	as	a	server	administrator	by	disseminating	a
wealth	of	information	that	will	walk	you	through	a	variety	of	steps	that	are
required	to	develop	a	fully	considered	and	professional	server	solution.

Chapter	4,	Managing	Packages	with	YUM,	serves	to	introduce	you	to	working
with	software	packages	on	CentOS	7.	From	upgrading	the	system	to	finding,
installing,	removing,	and	enhancing	your	system	with	additional	repositories,	it
is	the	purpose	of	this	chapter	to	explain	the	open	source	command-line	package
management	utility	known	as	the	Yellowdog	Updater	Modified	(YUM)	as	well
as	the	RPM	package	manager.

Chapter	5,	Administering	the	Filesystem,	focuses	on	working	with	your	server's
file	system.	From	creating	mocking	disk	devices	to	test-drive	concepts	expert
level	formatting	and	partitioning	commands,	you	will	learn	how	to	work	with	the
Logical	Volume	Manager,	maintain	your	file	system	and	work	with	disk	quotas.

Chapter	6,	Providing	Security,	discusses	the	need	to	implement	a	series	of
solutions	that	will	deliver	the	level	of	protection	you	need	to	run	a	successful
server	solution.	From	protecting	your	ssh	and	FTP	services,	to	understanding	the
new	firewalld	manager	and	creating	certificates,	you	will	see	how	easy	it	is	to

build	a	server	that	not	only	considers	the	need	to	reduce	risk	from	external	attack
but	one	that	will	provide	additional	protection	for	your	users.

Chapter	7,	Building	a	Network,	explains	the	steps	required	to	implement	various
forms	of	resource	sharing	within	your	network's	computers.	From	IP	addresses
and	printing	devices	to	various	forms	of	file	sharing	protocols,	this	chapter	plays
an	essential	role	of	any	server	whether	you	are	intending	to	support	a	home
network	or	a	full	corporate	environment.

Chapter	8,	Working	with	FTP,	concentrates	on	the	role	of	VSFTP	with	a	series
of	recipes	that	will	provide	the	guidance	you	need	to	install,	configure	and
manage	the	File	Transfer	Protocol	(FTP)	you	want	to	provide	on	a	CentOS	7
server.

Chapter	9,	Working	with	Domains,	considers	the	steps	required	to	implement
domain	names,	domain	resolution,	and	DNS	queries	on	a	CentOS	7	server.	The
domain	name	system	is	an	essential	role	of	any	server	and	whether	you	are
intending	to	support	a	home	network	or	a	full	corporate	environment,	it	is	the
purpose	of	this	chapter	to	provide	a	series	of	solutions	that	will	deliver	the
beginning	of	a	future-proof	solution.

Chapter	10,	Working	with	Databases,	provides	a	series	of	recipes	that	deliver
instant	access	to	MySQL	and	PostgreSQL	with	the	intention	of	explaining	the
necessary	steps	required	to	deploy	them	on	a	CentOS	7	server.

Chapter	11,	Providing	Mail	Services,	introduces	you	to	the	process	of	enabling	a
domain-wide	Mail	Transport	Agent	to	your	CentOS	7	server.	From	building	a
local	POP3/SMTP	server	to	configuring	Fetchmail,	the	purpose	of	this	chapter	is
to	provide	the	groundwork	for	all	your	future	e-mail-based	needs.

Chapter	12,	Providing	Web	Services,	investigates	the	role	of	the	well-known
Apache	server	technology	to	full	effect,	and	whether	you	are	intending	to	run	a
development	server	or	a	live	production	server,	this	chapter	provides	you	with
the	necessary	steps	to	deliver	the	features	you	need	to	become	the	master	of	your
web	based	publishing	solution.

Chapter	13,	Operating	System-Level	Virtualization,	introduces	you	to	the	word
of	Linux	containers	using	the	state-of-the-art	open	source	platform	Docker,	and

guides	you	through	building,	running,	and	sharing	your	first	Docker	image.

Chapter	14,	Working	with	SELinux,	helps	to	understand	and	demystify	Security
Enhanced	Linux,	which	is	one	of	the	most	little-known	topics	of	CentOS	7.

Chapter	15,	Monitoring	IT	Infrastructure,	introduces	and	shows	how	to	set	up
Nagios	Core,	the	de-facto	industry	standard	for	monitoring	your	complete	IT
infrastructure.

What	you	need	for	this	book
The	requirements	of	this	book	are	relatively	simple	and	begin	with	the	need	to
download	the	CentOS	operating	system.	The	software	is	free,	but	you	will	need
a	computer	that	is	capable	of	fulfilling	the	role	of	a	server,	some	free	installation
media	(blank	CD-R/DVD-R	or	USB	device),	an	Internet	connection,	some	spare
time,	and	a	desire	to	have	fun.

In	saying	that,	many	readers	will	be	aware	that	you	do	not	need	a	spare	computer
to	take	advantage	of	this	book	as	the	option	of	installing	CentOS	on
virtualization	software	is	always	available.	This	approach	is	quite	common	and
where	the	recipes	contained	within	these	pages	remain	applicable,	you	should	be
aware	that	the	use	of	virtualization	software	is	not	considered	by	this	book.	For
this	reason,	any	requests	for	support	regarding	the	use	of	this	software	should	be
directed	towards	the	appropriate	supplier.

Who	this	book	is	for
This	is	a	practical	guide	for	building	a	server	solution,	and	rather	than	being
about	CentOS	itself,	this	is	a	book	that	will	show	you	how	to	get	CentOS	up	and
running.	It	is	a	book	that	has	been	written	with	the	novice-to-intermediate	Linux
user	in	mind	who	is	intending	to	use	CentOS	as	the	basis	of	their	next	server.
However,	if	you	are	new	to	operating	systems	as	a	whole,	then	don't	worry;	this
book	will	also	serve	to	provide	you	with	the	step-by-step	approach	you	need	to
build	a	complete	server	solution	with	plenty	of	tricks	of	the	trade	thrown	in	for
good	measure.

Sections
In	this	book,	you	will	find	several	headings	that	appear	frequently	(Getting
ready,	How	to	do	it,	How	it	works	and	There's	more).

To	give	clear	instructions	on	how	to	complete	a	recipe,	we	use	these	sections	as
follows:

Getting	ready
This	section	tells	you	what	to	expect	in	the	recipe,	and	describes	how	to	set	up
any	software	or	any	preliminary	settings	required	for	the	recipe.

How	to	do	it…
This	section	contains	the	steps	required	to	follow	the	recipe.

How	it	works…
This	section	usually	consists	of	a	detailed	explanation	of	what	happened	in	the
previous	section.

There's	more…
This	section	consists	of	additional	information	about	the	recipe	in	order	to	make
the	reader	more	knowledgeable	about	the	recipe.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between
different	kinds	of	information.	Here	are	some	examples	of	these	styles	and	an
explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file
extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown
as	follows:	"For	the	purpose	of	this	recipe,	it	is	assumed	that	all	the	downloads
will	be	stored	on	Windows	in	your	personal	C:\Users\<username>\Downloads
folder,	or	if	using	an	OS	X	system,	in	the	Users<username>/Downloads	folder."

A	block	of	code	is	set	as	follows:

<?xml	version="1.0"	encoding="utf-8"?>

<service>

		<description>enable	FTPS	ports</description>

		<port	protocol="tcp"	port="40000-40100">

		<port	protocol="tcp"	port="21">

		<module	name="nf_conntrack_ftp">

<service>

Any	command-line	input	or	output	is	written	as	follows:

sudo	diskutil	unmountDisk	devdisk3

sudo	dd	if=./CentOS-7-x86_64-Minimal-XXXX.iso	of=devdisk3	bs=1M

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the
screen,	for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:
"Clicking	the	Next	button	moves	you	to	the	next	screen."

Note

Warnings	or	important	notes	appear	in	a	box	like	this.

Tip

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think
about	this	book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us
as	it	helps	us	develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and
mention	the	book's	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either
writing	or	contributing	to	a	book,	see	our	author	guide	at
www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things
to	help	you	to	get	the	most	from	your	purchase.

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,
mistakes	do	happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake
in	the	text	or	the	code—we	would	be	grateful	if	you	could	report	this	to	us.	By
doing	so,	you	can	save	other	readers	from	frustration	and	help	us	improve
subsequent	versions	of	this	book.	If	you	find	any	errata,	please	report	them	by
visiting	http://www.packtpub.com/submit-errata,	selecting	your	book,	clicking
on	the	Errata	Submission	Form	link,	and	entering	the	details	of	your	errata.
Once	your	errata	are	verified,	your	submission	will	be	accepted	and	the	errata
will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the
book	in	the	search	field.	The	required	information	will	appear	under	the	Errata
section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all
media.	At	Packt,	we	take	the	protection	of	our	copyright	and	licenses	very
seriously.	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	please	provide	us	with	the	location	address	or	website	name
immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected
pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you
valuable	content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Installing	CentOS
In	this	chapter,	we	will	cover:

Downloading	CentOS	and	confirming	the	checksum	on	Windows	or	OS	X
Creating	USB	installation	media	on	Windows	or	OS	X
Performing	an	installation	of	CentOS	using	the	graphical	installer
Running	a	netinstall	over	HTTP
Installing	CentOS	using	a	kickstart	file
Re-installing	the	boot	loader
Troubleshooting	the	system	in	rescue	mode
Getting	started	and	customizing	the	boot	loader
Updating	the	installation	and	enhancing	the	minimal	install	with	additional
administration	and	development	tools

Introduction
This	chapter	is	a	collection	of	recipes	that	covers	the	basic	practice	of	installing
the	CentOS	7	operating	system.	The	purpose	of	this	chapter	is	to	show	you	how
quickly	you	can	get	CentOS	up	and	running	whilst	enabling	you	to	customize
your	installation	with	a	few	'tricks	of	the	trade'	thrown	in	for	good	measure.

Downloading	CentOS	and	confirming
the	checksum	on	Windows	or	OS	X
In	this	recipe,	we	will	learn	how	to	download	and	confirm	the	checksum	of	one
or	more	CentOS	7	disk	images	using	a	typical	Windows	or	OS	X	desktop
computer.	CentOS	is	made	available	in	various	formats	by	HTTP,	FTP,	or	the
rsync	protocol	from	a	series	of	mirror	sites	located	across	the	world	or	via	the
BitTorrent	network.	For	downloading	very	important	files	from	the	Internet,
such	as	operating	system	images,	it	is	considered	best	practices	to	validate	those
files'	checksum,	in	order	to	ensure	that	any	resulting	media	would	function	and
perform	as	expected	when	installing.	This	also	makes	certain	that	the	files	are
genuine	and	come	from	the	original	source.

Getting	ready
To	complete	this	recipe,	it	is	assumed	that	you	are	using	a	typical	Windows-
based	(Windows	7,	Windows	Vista,	or	similar)	or	OS	X	computer	with	full
administration	rights.	You	will	need	an	Internet	connection	to	download	the
required	installation	files	and	also	need	access	to	a	standard	DVD/CD	disk
burner	with	the	appropriate	software,	in	order	to	create	the	relevant	installation
disks	from	the	image	files.	For	the	purpose	of	this	recipe,	it	is	assumed	that	all
the	downloads	will	be	stored	on	Windows	in	your	personal	C:\Users\
<username>\Downloads	folder,	or	if	using	an	OS	X	system,	in	the
Users<username>/Downloads	folder.

How	to	do	it...
Regardless	of	the	type	of	installation	files	you	download,	the	following
techniques	can	be	applied	to	all	the	image	files	supplied	by	the	CentOS	project:

1.	 Let's	begin	by	visiting	http://www.centos.org	in	a	web	browser	and	navigate
to	the	button	link	Get	CentOS	Now.	Then	click	the	link	list	of	the	current
mirrors	in	the	text.

2.	 The	mirror	sites	are	categorized,	so	from	the	resulting	list	of	links,	choose	a
mirror	that	is	geographically	near	your	current	location.	For	example,	if	you
are	in	London	(UK),	you	can	choose	a	mirror	from	EU	and	United
Kingdom.	Now	choose	a	mirror	site	by	selecting	either	the	HTTP	or	the
FTP	link.

3.	 Having	made	your	selection,	you	will	now	see	a	list	of	directories	of	all	the
available	CentOS	versions.	To	proceed,	simply	click	the	appropriate	folder
that	reads	7.	Next,	you	will	see	an	additional	list	of	directories,	such	as
atomic,	centosplus,	cloud,	and	so	on.	We	proceed	by	choosing	the	isos
directory.

4.	 CentOS	7	currently	only	supports	the	64-bit	architecture,	so	browse	to	the
only	directory	available	labeled	x86_64,	which	is	a	container	for	the	64-bit
version.

5.	 You	will	now	be	presented	with	a	series	of	files	available	for	download.
Begin	by	downloading	a	copy	of	the	valid	checksum	result	identified	as
md5sum.txt.

6.	 If	you	are	new	to	CentOS	or	are	intending	to	follow	the	recipes	found
throughout	this	book,	then	the	minimal	installation	is	ideal.	This	contains
the	least	amount	of	packages	to	have	a	functional	system,	so	choose	the
following	(XXXX	is	the	month	stamp	of	this	release):

CentOS-7-x86_64-Minimal-XXXX.iso

On	a	Windows-based	system	only	(on	Mac,	this	tool	is	already	available	in	the
system),	visit	http://mirror.centos.org/centos/dostools/	in	your	browser	and
download	the	program	md5sum.exe.
Now	on	Windows,	open	the	command	prompt	(typically	found	at	Start	|	All

Programs	|	Accessories	|	Command	Prompt)	and	type	the	following
commands	into	the	window	that	will	open	(press	the	Enter	key	at	the	end	of	all
the	lines):

http://www.centos.org
http://mirror.centos.org/centos/dostools/

cd	downloads

dir

On	OS	X,	open	the	program	Finder	|	Applications	|	Utilities	|	Terminal,	then
type	the	following	commands	(press	the	Enter	key	at	the	end	of	all	the	lines):

cd	~/Downloads

ls

You	should	now	see	all	the	files	in	your	download	folder	(including	all	the
downloaded	CentOS	installation	image	files,	the	md5sum.txt	file	and	on
Windows,	the	md5sum.exe	program).
Based	on	the	file	names	shown,	modify	the	following	command	in	order	to

check	the	checksum	of	your	downloaded	ISO	image	file.	On	Windows,	type	the
following	command	(change	the	XXXX	month	stamp	accordingly):

md5sum.exe	CentOS-7-x86_64-Minimal-XXXX.iso

On	OS	X,	use	instead:

md5	CentOS-7-x86_64-Minimal-XXXX.iso

Press	the	Return	key	to	proceed	and	then	wait	for	the	command	prompt	to
respond.	The	response	is	known	as	the	MD5	sum	and	the	result	could	look	like
the	following:

d07ab3e615c66a8b2e9a50f4852e6a77		CentOS-7-x86_64-Minimal-1503-

01.iso

Now	look	at	the	the	sum	and	compare	against	the	relevant	listing	for	your
particular	image	file	in	md5sum.txt	(open	in	a	text	editor).	If	both	the	numbers
match,	then	you	can	be	confident	that	you	have	indeed	downloaded	a	valid
CentOS	image	file.	If	not,	your	downloaded	file	is	probably	corrupted,	so	please
restart	this	procedure	by	downloading	the	image	file	again.
When	you	have	finished,	simply	burn	your	image	file(s)	to	a	blank	CD-ROM

or	DVD-ROM	using	your	preferred	desktop	software,	or	create	a	USB
installation	media	from	it,	as	we	will	show	you	in	the	next	recipe	in	this	chapter.

How	it	works…
So	what	have	we	learned	from	this	experience?

The	act	of	downloading	a	CentOS	installation	image	is	just	the	first	step	towards
building	the	perfect	server.	Although	this	process	is	very	simple,	many	do	forget
the	need	to	confirm	the	checksum.	In	this	book,	we	will	work	with	the	minimal
installation	image,	but	you	should	be	aware	that	there	are	other	installation
options	available	to	you,	such	as	NetInstall,	DVD,	Everything,	and	various
LiveCDs.

Creating	USB	installation	media	on
Windows	or	OS	X
In	this	recipe,	we	will	learn	how	to	create	a	USB	installation	media	on	Windows
or	OS	X.	Nowadays,	more	and	more	server	systems,	desktop	PCs,	and	laptops
get	shipped	without	any	optical	drive.	Installing	a	new	operating	system,	such	as
CentOS	Linux	using	USB	devices	gets	essential	for	them	as	no	other	installation
option	is	available,	as	there	is	no	other	way	to	boot	the	installation	media.	Also,
installing	CentOS	using	USB	media	can	be	considerably	faster	than	using	the
CD/DVD	approach.

Getting	ready
Before	we	begin,	it	is	assumed	that	you	have	followed	the	previous	recipe	in
which	you	were	shown	how	to	download	a	minimal	CentOS	image	and	confirm
the	checksum	of	the	relevant	image	files.	It	is	also	assumed	that	all	the
downloads	(including	the	downloaded	ISO	file)	are	stored	on	Windows	in	your
C:\Users\<username>\Downloads	folder	or	if	using	a	OS	X	system,	in	the
Users<username>/Downloads	folder.	Next,	you	will	need	a	free	USB	device
which	can	be	discovered	by	your	operating	system,	with	enough	total	space,	and
which	is	empty	or	with	data	on	it	that	can	be	discarded.	The	total	space	of	the
USB	device	needed	for	preparing	as	an	installation	media	for	CentOS	7	for	the
minimal	version	must	be	roughly	700	megabyte.	If	you	are	working	on	a
Windows	computer,	you	will	need	a	working	Internet	connection	to	download
additional	software.	On	OS	X,	you	need	an	administrator	user	account.

How	to	do	it...
To	begin	this	recipe,	start	up	your	Windows	or	OS	X	operating	system,	then
connect	a	free	USB	device	with	enough	capacity,	and	wait	until	it	gets
discovered	by	File	Manager	under	Windows	or	Finder	under	OS	X.

1.	 On	a	Windows	based	system,	we	need	to	download	an	additional	software
called	dd.	Visit	http://www.chrysocome.net/dd	in	your	favorite	browser.
Now	download	the	latest	dd-XX.zip	file	you	can	find	there,	with	XX	being
the	latest	stable	version	number.	For	example,	dd-0.5.zip.

2.	 On	Windows,	navigate	to	your	Downloads	folder	using	File	Manager.	Here
you	will	find	the	dd-05.zip	file.	Right-click	on	it	and	click	on	Extract	All,
and	extract	the	dd.exe	file	without	creating	any	subdirectory.

3.	 On	Windows,	open	the	command	prompt	(typically	found	at	Start	|	All
Programs	|	Accessories	|	Command	Prompt)	and	type	the	following
commands:

cd	downloads

dd.exe	--list

On	OS	X,	open	the	program	Finder	|	Applications	|	Utilities	|	Terminal,	and
then	type	the	following	commands:

cd	~/Downloads

diskutil	list

On	Windows,	to	spot	the	name	of	the	right	USB	device	you	want	to	use	as
installation	media,	look	into	the	output	of	the	command	under	the	removable
media	section.	Below	that,	you	should	find	a	line	starting	with	Mounting	on	and
then	a	drive	letter,	for	example,	\.\e:.	This	cryptic	written	drive	letter	is	the
most	important	part	we	need	in	the	next	step,	so	please	write	it	down.
On	OS	X,	the	device	path	can	be	found	in	the	output	of	the	former	command

and	has	the	format	of	devdisk<number>,	where	number	is	a	unique	identifier	of
the	disk.	The	disks	are	numbered,	starting	with	zero	(0).	Disk	0	is	likely	to	be	the
OS	X	recovery	disk,	and	disk	1	is	likely	to	be	your	main	OS	X	installation.	To
identify	your	USB	device,	try	to	compare	the	NAME,	TYPE,	and	SIZE	columns	to
the	specifications	of	your	USB	stick.	If	you	have	identified	the	device	name,
write	it	down,	for	example,	devdisk3.
On	Windows,	type	the	following	command,	assuming	your	USB	device

selected	as	a	installation	media	has	the	Windows	device	name	\\.\e:	(change

http://www.chrysocome.net/dd

this	as	required	and	be	careful	what	you	type	–	this	can	create	tremendous	data
loss).	Also,	substitute	XXXX	with	the	correct	iso	file	version	number	in	the	next
command:

dd.exe	if=CentOS-7-x86_64-Minimal-XXXX.iso	of=\\.\e:	bs=1M

On	OS	X,	you	need	two	commands	which	will	ask	for	the	administrator
password	(replace	XXXX	and	disk3	with	the	correct	version	number	and	the
correct	USB	device	path):

sudo	diskutil	unmountDisk	devdisk3

sudo	dd	if=./CentOS-7-x86_64-Minimal-XXXX.iso	of=devdisk3	bs=1m

After	the	dd	program	finishes,	there	will	be	some	output	statistics	on	how	long
it	took	and	how	much	data	has	been	transferred	during	the	copy	process.	On	OS
X,	ignore	any	warning	messages	about	the	disk	not	being	readable.
Congratulations!	You	now	have	created	your	first	CentOS	7	USB	installation

media.	You	now	can	safely	remove	the	USB	drive	in	Windows	or	OS	X,	and
physically	unplug	the	device	and	use	it	as	a	boot	device	for	installing	CentOS	7
on	your	target	machine.

How	it	works...
So	what	have	we	learned	from	this	experience?

The	purpose	of	this	recipe	was	to	introduce	you	to	the	concept	of	creating	an
exact	copy	of	a	CentOS	installation	ISO	file	on	a	USB	device,	using	the	dd
command-line	program.	The	dd	program	is	a	Unix	based	tool	which	can	be	used
to	copy	bits	from	a	source	to	a	destination	file.	This	means	that	the	source	gets
read	bit	by	bit	and	written	to	a	destination	without	considering	the	content	or	file
allocation;	it	just	involves	reading	and	writing	pure	raw	data.	It	expects	two	file
name	based	arguments:	input	file	(if)	and	output	file	(of).	We	will	use	the
CentOS	image	file	as	our	input	filename	to	clone	it	exactly	1:1	to	the	USB
device,	which	is	accessible	through	its	device	file	as	our	output	file	parameter.
The	bs	parameter	defines	the	block	size,	which	is	the	amount	of	data	to	be
copied	at	once.	Be	careful,	it	is	an	absolute	expert	tool	and	overwrites	any
existing	data	on	your	target	while	copying	data	on	it	without	further
confirmation	or	any	safety	checks.	So	at	least	double-check	the	device	drive
letters	of	your	target	USB	device	and	never	confuse	them!	For	example,	if	you
have	a	second	hard	disk	installed	at	D:	and	your	USB	device	at	E:	(on	OS	X,	at
devdisk2	and	devdisk3	respectively)	and	you	confuse	the	drive	letter	E:	with	D:
(or	devdisk3	with	devdisk2),	your	second	hard	disk	would	be	erased	with	little
to	no	chances	of	recovering	any	lost	data.	So	handle	with	care!	If	you're	in	doubt
of	the	correct	output	file	device,	never	start	the	dd	program!

In	conclusion,	it	is	fair	to	say	that	there	are	other	far	more	convenient	solutions
available	for	creating	a	USB	installation	media	for	CentOS	7	than	the	dd
command,	such	as	the	Fedora	Live	USB	Creator.	But	the	purpose	of	this	recipe
was	not	only	to	create	a	ready-to-use	CentOS	USB	installer	but	also	to	get	you
used	to	the	dd	command.	It's	a	common	Linux	command	that	every	CentOS
system	administrator	should	know	how	to	use.	It	can	be	used	for	a	broad	variety
of	daily	tasks.	For	example,	for	securely	erasing	hard	disks,	benchmarking
network	speed,	or	creating	random	binary	files.

Performing	an	installation	of	CentOS
using	the	graphical	installer
In	this	recipe,	we	will	learn	how	to	perform	a	typical	installation	of	CentOS
using	a	new	graphical	installer	interface	introduced	in	CentOS	7.	In	many
respects,	this	is	considered	to	be	the	recommended	approach	to	installing	your
system,	as	it	not	only	provides	you	with	the	ability	to	create	the	desired	hard	disk
partitions	but	also	to	customize	your	installation	in	lots	of	ways	(for	example,
keyboard	layout,	package	selection,	installation	type,	and	so	on).	Your
installation	will	then	form	the	basis	of	a	server	on	which	you	can	build,	develop,
and	run	any	type	of	service	you	may	want	to	provide	in	the	future.

Getting	ready
Before	we	begin,	it	is	assumed	that	you	have	followed	the	previous	recipe	in
which	you	were	shown	how	to	download	a	CentOS	image,	confirm	the
checksum	of	the	relevant	image	files,	and	create	the	relevant	installation	optical
disks	or	USB	media.	Your	system	must	be	a	64	bit	(x64_86)	architecture,	must
have	at	least	406	MB	RAM	to	load	the	graphical	installer	1	GB	or	more	is
recommended	if	installing	a	graphical	window	manager	such	as	Gnome),	and
have	at	least	10	GB	free	hard	disk	space.

How	to	do	it...
To	begin	this	recipe,	insert	your	installation	media	(CD/DVD	or	USB	device),
restart	the	computer,	and	press	the	correct	key	for	selecting	the	boot	device
during	startup.	Then	choose	the	inserted	device	from	the	list	(for	many
computers,	this	can	be	reached	using	F11	or	F12	but	can	be	different	on	your
system.	Please	refer	to	your	motherboard's	manual).

1.	 On	the	welcome	splash	screen,	the	option	Test	this	media	&	install
CentOS	7	is	preselected	and	we	will	use	this	option.	When	you	are	ready,
press	the	Return	key	to	proceed.

2.	 After	loading	some	initial	files,	the	installer	then	starts	to	test	the
installation	media.	A	single	test	should	take	between	30	seconds	to	five
minutes	and	will	report	if	there	are	any	errors	on	your	installation	media.
When	this	process	is	complete,	the	system	will	finally	load	the	graphical
installer.

3.	 The	CentOS	installer	will	now	present	the	graphical	installation	welcome
screen.	From	this	point	onwards,	you	can	use	your	keyboard	and	mouse	(the
latter	is	highly	recommended),	but	remember	to	enable	the	number	lock	on
your	keyboard	if	you	intend	to	use	the	keypad.

4.	 On	the	left	side	you	see	the	main	language	category	and	on	the	right	side,
the	sub-languages	for	the	installer.	You	can	also	search	for	a	language	using
the	textbox	on	the	left	bottom.	All	changes	to	your	language	settings	will
take	effect	immediately,	so	when	you	are	ready,	choose	the	Continue
button	to	proceed.

5.	 Now	we	reach	the	main	installation	menu,	which	is	called	Installation
summary.

6.	 Most	options	shown	here	already	have	some	predefined	values	and	can	be
used	without	changing,	others	which	do	not	have	any	default	value	and
which	need	your	attention	are	labeled	with	a	red	exclamation	mark	like	the
Installation	Destination	under	System	category.	So	let's	click	on	it	using
the	mouse.

7.	 After	clicking	the	Installation	Destination	button,	you	will	see	a	graphical
list	of	all	the	hard	disk	devices	currently	connected	to	your	computer,	which
you	can	use	for	installing	the	operating	system	on.	You	can	select	your
target	hard	disk	by	clicking	on	the	correct	hard	disk	symbol.	It	will	then	put
a	check	mark	on	it.	If	you	are	unsure	about	the	right	hard	disk,	try	to

identify	it	by	comparing	its	brand	and	total	size	shown	in	the	menu.	Before
the	installation	can	proceed,	you	must	select	a	hard	disk.	Be	careful	and
choose	your	target	hard	disk	wisely	as	it	will	erase	any	existing	data	on	it
during	the	installation.	When	you	are	ready,	click	the	Done	button.

8.	 If	your	selected	hard	disk	already	contained	data,	then	when	clicking	on
Done,	you	may	see	what	could	be	described	as	a	warning/error	message.
The	message	may	read:	You	don't	have	enough	space	available	to	install
CentOS.	Don't	worry!	This	is	to	be	expected	and	the	message	is	simply
asking	you	to	re-initialize	your	hard	disk	because	CentOS	can	only	be
installed	on	an	empty	disk.	In	most	cases,	especially	if	you	have	more	than
one	partition	on	the	hard	disk,	simply	click	on	Reclaim	space	which	will
show	a	new	window	with	a	detailed	list	of	all	the	partitions	on	this	drive.
Here	just	click	on	Delete	All	and	then	again	on	Reclaim	space	to	discard
any	data	on	this	disk,	which	will	complete	the	task	of	disk	initialization	and
enable	you	to	proceed	to	the	next	step.	When	finished,	click	the	Done
button.

9.	 Back	at	the	Installation	Summary	screen,	the	exclamation	mark	on	the
Installation	Destination	item	should	be	gone	now.

10.	 Optionally,	we	can	click	on	Network	&	Hostname	under	System
category.	On	the	following	page,	on	the	left	side,	you	can	choose	the
primary	network	adapter	you	would	like	to	connect	to	the	Internet	and
select	it	by	clicking	on	it.	For	the	selected	device,	click	on	the	switch	on	the
right	side	to	enable	and	connect	it	automatically	using	the	On	position	of
the	switch.	Finally,	before	closing	this	submenu,	change	the	hostname	in	its
text	field	to	something	appropriate.	Click	Done.

11.	 Now	back	at	the	Installation	Summary	screen,	all	the	important	settings
have	been	made	or	have	got	predefined	values,	and	all	the	exclamation
marks	are	gone.	If	you	are	happy	with	these	settings,	click	on	the	Start
installation	button	or	change	the	settings	appropriately.

12.	 On	the	next	screen,	you	will	be	required	to	create	and	confirm	a	root
password	for	the	root	user	while	the	new	system	gets	installed	in	the
background.	Choose	a	secure	password	with	not	less	than	six	characters.

13.	 Here	on	this	screen	you	can	also	create	a	standard	user	account	which	is
highly	recommended.	If	you	create	a	new	user	do	not	check	Make	this	user
administrator.	When	you	are	ready,	click	Done	(if	you	entered	a	weak
password,	you	have	to	confirm	this	by	clicking	twice)

14.	 CentOS	will	now	partitionate	and	format	your	hard	disk	in	the	background

and	resolve	any	dependencies,	and	the	installer	will	begin	writing	to	the
hard	disk.	This	may	take	some	time,	but	a	progress	bar	will	indicate	the
status	of	your	installation.	When	finished,	the	installer	will	inform	you	that
the	entire	process	is	complete	and	that	the	installation	was	successful.	So
when	you	are	ready,	click	on	the	Reboot	button.	Now	release	your
installation	media	from	the	drive.

15.	 Congratulations!	You	have	now	installed	CentOS	7	on	your	computer.

How	it	works…
In	this	recipe,	you	have	discovered	how	to	install	the	CentOS	7	operating
system.	Having	covered	the	typical	approach	to	the	graphical	installation
process,	you	are	now	in	a	position	to	develop	the	server	with	additional
configuration	changes	and	packages	that	will	suit	the	role	you	intend	the	server
to	fulfill.	This	graphical	installer	has	been	built	with	the	aim	to	be	very	intuitive
and	flexible,	and	makes	installation	very	easy	as	it	will	guide	the	user	through
some	mandatory	tasks	that	he	has	to	fulfill	before	the	installation	of	the	main
system	can	be	started.

Running	a	netinstall	over	HTTP
In	this	recipe,	we	will	learn	how	to	initiate	the	process	of	running	a	netinstall
over	HTTP	(using	the	URL	method)	in	order	to	install	CentOS	7.	It	is	a	process
in	which	a	small	image	file	is	used	to	boot	the	computer	and	let	the	user	select
and	install	only	the	software	packages	and	services	he	wants	and	nothing	more
over	a	network	connection	thus	providing	great	flexibility.

Getting	ready
Before	we	begin,	it	is	assumed	that	you	already	know	how	to	download	and
checksum	a	CentOS	7	installation	image	and	how	to	create	the	relevant
installation	media	from	it.	For	this	recipe	here,	we	will	need	to	download	and
create	installation	media	for	the	netinstall	image	(download	the	latest	CentOS-7-
x86_64-NetInstall-XXXX.iso	file)	instead	of	the	minimal	ISO	shown	in	another
recipe	in	this	chapter.	Also,	it	is	assumed	that	you	have	at	least	gone	through	the
graphical	installation	procedure	once	to	exactly	know	how	to	boot	from	your
installation	media	and	work	with	the	installer	program.

How	to	do	it...
To	begin	this	recipe,	insert	your	prepared	netinstall	media,	boot	your	computer
from	it,	and	wait	for	the	welcome	screen	to	appear:

1.	 On	the	welcome	splash	screen,	the	option	Test	this	media	&	install
CentOS	7	is	preselected	and	we	will	use	this	option.	When	you	are	ready,
press	the	Return	key	to	proceed.

2.	 After	the	tests	finish,	the	graphical	installer	will	load	and	present	the	typical
graphical	installation	summary	screen.

Note

Here	the	installer	should	be	configured	exactly	as	in	the	normal	graphical
installation	recipe,	besides	the	following	mandatory	changes	to	the
Network	&	Host	name	and	Installation	source	menu	items	(which	is
shown	by	the	red	exclamation	marks).

3.	 Before	we	can	install	CentOS	over	the	network,	we	have	to	make	sure	that
we	have	a	working	network	connection.	Therefore,	you	should	first	click	on
the	Network	&	Host	name	menu	entry	and	activate	one	of	your	network
adapters	to	the	connected	state.	Refer	to	the	normal	installation	recipe	for
more	details.

4.	 Next,	click	on	Installation	source	to	enter	the	settings.	As	we	will	be
installing	over	HTTP	(also	referred	to	as	the	URL	method),	you	should
leave	the	default	On	the	network	selected	in	the	Which	installation
source	would	you	like	to	use?	section.

5.	 Now	type	in	the	following	URL	in	the	standard	http://	textfield,	which	we
will	use	to	download	all	the	required	installation	packages	at
http://mirror.centos.org/centos/7/os/x86_64/.

6.	 Alternatively,	you	can	also	use	a	personal	repository	which	you	would	have
to	create	in	advance	(see	Chapter	4,	Managing	Packages	with	YUM)

7.	 When	you	are	ready,	click	on	Done	to	start	the	initialization	process.
8.	 On	success,	the	installer	will	begin	to	retrieve	the	appropriate	install.img

file.	This	may	take	several	minutes	to	complete,	but	once	resolved,	a
progress	bar	will	indicate	all	the	download	activity.	When	this	process
finishes	successfully,	the	exclamation	mark	at	the	installation	source	will
go	away	but	another	one	will	pop	up	which	will	tell	the	user	that	it	is

http://%20http://mirror.centos.org/centos/7/os/x86_64/

missing	the	software	selection.	Click	on	it	and	choose	whatever	fits	your
need.	As	for	the	purpose	of	this	recipe,	just	select	Minimal	install	under
Base	environment	and	then	click	on	Done.

9.	 If	the	Which	installation	source	would	you	like	to	use	stays	greyed	out
and	cannot	be	changed,	then	there	are	connection	problems	with	your
network	adapter.	If	this	is	the	case,	go	back	to	configure	Network	&
Hostname	and	change	the	network	settings	until	the	connected	state	can	be
reached.

10.	 CentOS	7	will	now	install	the	operating	system	the	usual	way	and	will
congratulate	you	when	this	process	finishes.	It	may	be	slower	than
installing	from	a	physical	installation	media	since	all	the	packages	have	to
be	retrieved	from	the	Internet.

How	it	works...
The	purpose	of	this	recipe	was	to	introduce	you	to	the	concept	of	the	CentOS
network	installation	process,	in	order	to	show	you	just	how	simple	this	approach
can	be.	By	completing	this	recipe	you	have	not	only	saved	time	by	limiting	your
initial	download	to	those	files	that	are	required	by	the	installation	process,	but
you	have	also	been	able	to	take	advantage	of	the	full	graphical	installation
method	without	the	need	for	a	complete	DVD	suite.

Installing	CentOS	7	using	a	kickstart
file
While	installing	CentOS	7	manually	using	the	graphical	installer	utility	is	fine	on
a	single	server,	doing	so	on	a	multiple	number	of	systems	can	be	tedious.
Kickstart	files	can	automate	the	installation	process	of	a	server	system	and	here
we	will	show	how	this	can	be	done.	They	are	simple	text	based	configuration
files	which	provide	detailed	and	exact	instructions	on	how	the	target	system
should	be	set	up	and	installed	(for	example,	which	keyboard	layout	or	additional
software	packages	to	install).

Getting	ready
To	successfully	complete	this	recipe,	you	will	need	access	to	an	already	installed
CentOS	7	system	to	retrieve	the	kickstart	configuration	file	we	want	to	work
with	and	use	for	automated	installation.	On	this	pre-installed	CentOS	server,	you
also	need	a	working	Internet	connection	to	download	additional	software.

Next,	we	will	need	to	download	and	create	installation	media	for	the	DVD	or	the
Everything	image	(download	the	latest	CentOS-7-x86_64-DVD-XXXX.iso	or
CentOS-7-x86_64-Everything-XXXX.iso	file),	instead	of	the	minimal	iso	file
shown	in	another	recipe	in	this	chapter.	Then	you	need	another	USB	device
which	must	be	read	and	writable	on	Linux	systems	(formatted	as	FAT16,
FAT32,	EXT2,	EXT3,	EXT4,	or	XFS	filesystem).

How	to	do	it...
For	this	recipe	to	work,	we	first	need	physical	access	to	an	existing	kickstart	file
from	another	finished	CentOS	7	installation,	which	we	will	use	as	a	template	for
a	new	CentOS	7	installation.

1.	 Log	in	as	root	on	the	existing	CentOS	7	system	and	make	sure	the	kickstart
configuration	file	exists	by	typing	the	following	command	and	pressing	the
Return	key	to	execute	(this	will	show	you	the	details	of	the	file):

ls	-l	rootanaconda-ks.cfg

Next,	physically	plug	in	a	USB	device	and	then	type	the	following	command,
which	will	give	you	a	list	of	all	the	hard	disk	devices	currently	connected	to	the
computer:

fdisk	-l

Try	to	identify	the	device	name	by	comparing	its	size,	partitions,	and
identified	filesystems	with	the	specifications	of	your	USB	device.	The	device
name	will	be	of	kind	devsdX,	where	X	is	an	alphabetical	character,	such	as	b,	c,
d,	e,	…	and	so	on.	If	you	cannot	find	the	right	device	name	for	your	USB	media
using	the	fdisk	command,	try	the	following	trick:	run	fdisk	-l	twice	-	first
with	plugged-out	and	then	with	plugged-in	USB	device	and	compare	how	the
second	output	changed	-	it	has	one	device	name	more	than	the	first	output:	your
device	name	of	interest	!
If	you	have	found	the	right	device	name	in	the	list,	create	a	directory	to	mount

it	to	the	current	filesystem:

mkdir	mntkickstart-usb

Next,	actually	mount	the	stick	to	this	folder,	assuming	that	your	USB	partition
of	choice	is	at	devsdc1	(change	this	as	required):

mount	devsdc1	mntkickstart-usb

Now	we	will	create	our	working	copy	of	the	kickstart	file	on	the	USB	device
for	customizing:

cp	rootanaconda-ks.cfg	mntkickstart-usb

Next,	open	the	copied	kickstart	file	on	the	USB	device	with	your	favorite	text
editor	(here	we	will	use	the	editor	nano,	if	you	have	not	installed	it	yet	type	yum

install	nano):

nano	mntkickstart-usb/anaconda-ks.cfg

We	will	now	modify	the	file	for	installing	CentOS	on	a	new	target	system.	In
nano,	use	the	up	and	down	arrow	keys	to	go	to	the	line	which	starts	with
(<your_hostname>	will	be	the	name	of	the	hostname	you	gave	during	installation
e.g.	minimal.home):

network		--hostname=<your_hostname>

Now	edit	the	<your_hostname>	string	to	give	it	a	new	unique	hostname.	For
example,	add	a	-2	to	the	end	of	any	existing	name,	as	shown	next:

network		--hostname=minimal-2.home

Next,	move	the	cursor	down	using	the	up	and	down	arrow	keys	until	it	stops	at
the	line	which	says	%packages.	Append	the	following	lines	right	below	it	(you
can	further	customize	this	and	provide	additional	packages	that	you	want	to
install	automatically):

mariadb-server

httpd

rsync

net-tools

Now	save	and	close	the	file,	to	do	this	in	the	nano	editor	use	the	key
combination	Ctrl+o	(which	means,	hold	down	the	Ctrl	key	on	the	keyboard	and
then	the	o	key	without	releasing	the	Ctrl	key)	to	write	the	changes.	Then	press
Return	to	confirm	the	filename	and	Ctrl+x	to	exit	the	editor.
Next,	install	the	following	CentOS	package:

yum	install	system-config-kickstart

Now	we	validate	the	syntax	of	our	kickstart	file	using	the	ksvalidator
program,	which	is	included	in	the	package	we	just	installed:

ksvalidator	mntkickstart-usb/anaconda-ks.cfg

If	the	config	file	is	error-free,	unmount	the	USB	stick	now	by	using	the
following	commands:

cd

umount	mntkickstart-usb

When	you	get	a	new	command	prompt	again,	unplug	the	USB	device	with	the

kickstart	file	for	using	on	the	target	machine	physically	from	the	system.
Now	you	need	physical	access	to	the	target	machine	you	want	to	install

CentOS	on,	using	the	kickstart	file	just	created.	Disconnect	any	other	external
file	storage(s)	that	you	do	not	need	during	the	installation.
Power	on	the	computer	and	put	in	your	prepared	CentOS	installation	media

(must	be	a	CentOS	DVD	or	Everything	installation	disk	image	prepared	on	a
CD/DVD	disc	or	a	USB	device	installer).	Also	connect	to	the	computer	the	USB
stick	containing	the	kickstart	file	you	just	created	in	the	earlier	steps	(if	you
using	a	USB	drive	for	installing	CentOS	then	you	will	need	two	free	USB	ports
in	total	to	complete	this	recipe).
Next,	start	the	server	and	press	the	correct	key	during	the	initial	bootup	screen,

associated	with	booting	the	CentOS	installation	media	you	just	connected.
After	the	CentOS	installer	starts	loading,	the	common	standard	CentOS	7

installation	welcome	screen	will	show	up	and	the	option	Test	this	media	&
install	CentOS	7	will	be	pre-selected	by	the	cursor.
Next,	press	the	Esc	key	on	your	keyboard	once	to	switch	to	the	boot:	prompt.
Now	we	are	ready	to	start	the	kickstart	installation.	To	do	this,	you	need	to

know	the	exact	partition	name	on	the	USB	device	where	the	kickstart	file	is
located.	Type	the	following	command,	assuming	that	your	partition	is	at	devsdc1
(change	this	as	required),	and	press	the	Return	key	to	start	the	kickstart
installation	process:

linux	ks=hd:sdc1:/anaconda-ks.cfg

Note

If	you	cannot	find	out	the	right	device	and	partition	name	of	the	USB	stick,	you
have	to	start	the	target	system	in	rescue	mode	(refer	to	the	Troubleshooting	the
system	in	rescue	mode	recipe)	to	identify	the	right	device	name	and	partition
number	by	comparing	its	size,	partitions,	and	identified	filesystems	with	the
specifications	of	your	stick.

The	new	system	now	gets	installed	automatically	using	the	instructions	from
the	provided	kickstart	file.	You	can	watch	the	installation	output	messages	as	it
is	showing	the	user	detailed	installation	progress.
If	the	system	has	finished	installing,	reboot	the	system	and	log	in	to	your	new

machine	to	verify	that	the	new	system	has	been	setup	the	way	we	described
using	the	kickstart	file.

How	it	works...
In	this	recipe,	you	have	seen	that	every	server	running	a	CentOS	7	installation
keeps	the	kickstart	file	in	its	root	directory,	which	contains	detailed	information
on	how	the	system	had	been	set	up	during	the	installation.	The	kickstart	files	can
be	used	to	automate	the	installations	of	multiple	systems	with	the	same
configuration.	This	can	save	a	lot	of	time	doing	repetitive	work	as	no	user
interaction	during	installation	is	needed.	Also,	we	can	use	this	method	if	the
target	machines	don't	meet	the	minimum	requirement	in	RAM	for	graphical
based	installations	but	when	needed	other	features	the	text	mode	installer	does
not	provide	such	as	custom	partitioning	of	the	system.	Kickstart	configuration
files	are	simple	plain	text	files	which	can	be	created	manually	from	scratch.
Because	there	are	quite	a	number	of	different	commands	available	to	construct
your	system	using	the	kickstart	syntax,	we	used	an	existing	file	as	a	template	and
customized	it	to	fit	our	needs,	instead	of	starting	out	completely	new.	We	did	not
use	the	minimal	installation	image	to	drive	our	kickstart	installation	because	we
installed	some	extra	packages	not	included	on	the	minimal	ISO	file,	such	as	the
Apache	webserver.

Getting	started	and	customising	the
boot	loader
When	you	turn	on	your	computer,	the	boot	loader	is	the	first	program	that	starts
up	and	is	responsible	for	loading	and	transferring	control	to	an	underlying
operating	system.	Nowadays,	almost	any	modern	Linux	distribution	uses	the
GRand	Unified	Bootloader	version	2	(GRUB2)	for	starting	the	system.	It	has	a
lot	of	flexibility	in	configuration	and	supports	a	lot	of	different	operating
systems.	In	this	recipe,	we	will	show	how	to	customize	the	GRUB2	boot	loader
by	disabling	the	waiting	time	of	the	menu	display	and	therefore	improving	the
time	it	takes	for	booting	the	system.

Getting	ready
To	complete	this	recipe,	you	will	require	access	to	an	already	installed	CentOS	7
operating	system	(minimal	or	any	other	CentOS	7	installation	type	will	work)
with	root	privileges.	Also,	you	need	to	have	some	basic	experiences	with	a	text
based	editor,	such	as	nano,	for	changing	the	configuration	files.

How	to	do	it...
We	begin	this	recipe	by	opening	the	main	GRUB2	configuration	file	with	our
text	editor	of	choice	and	modifying	it.

1.	 First	log	in	as	root	into	your	system	and	create	a	copy	of	the	GRUB2
configuration	file	for	backup	and	rollback,	if	needed.	Press	the	Return	key
to	finish:

cp	etcdefault/grub	etcdefault/grub.BAK

Open	the	main	GRUB2	configuration	file	that	we	want	to	edit	with	the
following	command	and	press	the	Return	key	(here	we	will	use	the	editor	nano,
if	you	have	not	installed	it	yet	type	yum	install	nano):

nano	etcdefault/grub

Press	the	Return	key	in	the	first	line	where	the	cursor	is	at	to	insert	a	new	line
at	the	top,	and	then	insert	the	following	line:

GRUB_HIDDEN_TIMEOUT=0

Add	a	#	sign	to	the	beginning	of	the	following	line,	as	shown:

GRUB_TIMEOUT=0

Now	save	the	file	in	the	nano	using	Ctrl+o	(and	Return	to	confirm	the
filename	to	save).	Use	Ctrl+x	to	exit	the	editor	and	then	run	the	following
command:

dmesg	|	grep	-Fq	"EFI	v"

If	the	preceding	command	does	not	produce	any	output,	run	the	following
command:

grub2-mkconfig	-o	bootgrub2/grub.cfg

Otherwise,	if	there	is	an	output,	run:

grub2-mkconfig	-o	bootefi/EFI/centos/grub.cfg

If	grub2-mkconfig	is	successful,	it	will	print	Done.	Now	reboot	your	system
using	the	following	command:

reboot

During	the	rebooting	process,	you	will	notice	that	the	GRUB2	boot	menu	will
not	appear	any	more	and	the	system	will	boot	up	faster.

How	it	works...
Having	completed	this	recipe,	we	now	know	how	to	customize	the	GRUB2	boot
loader.	In	this	very	easy	recipe,	we	only	showed	you	very	basic	modifications	to
the	boot	loader	but	it	can	do	much	more!	It	supports	a	broad	variety	of
filesystems	and	can	boot	almost	any	compatible	operating	system.	This	is	also
particularly	useful	if	you	plan	to	run	multiple	operating	systems	on	the	same
machine.	To	learn	more	about	GRUB2's	configuration	file	syntax	type	the	info
grub2	|	less	command	and	go	to	the	section	6.1	Simple	configuration
handling	(read	the	recipe	Navigating	text	files	with	less	in	Chapter	2,
Configuring	the	System	to	learn	how	to	browse	this	document).

Troubleshooting	the	system	in	rescue
mode
We	all	make	mistakes	and	this	is	especially	true	for	novice	Linux	system
administrators.	Linux	can	have	a	steep	learning	curve	and	sooner	or	later	there
will	be	a	point	in	your	career	where	your	CentOS	installation	does	not	start	up
due	to	broad	number	of	reasons,	including	hardware	problems	or	human
mistakes	such	as	configuration	errors.	If	this	has	happened	to	you	then	you	can
use	the	CentOS	rescue	mode	in	order	to	boot	an	otherwise	unbootable	system
and	try	to	undo	your	mistakes	or	find	out	the	root	of	the	problems.	In	this	recipe,
we	will	show	you	three	common	use	cases	when	to	use	this	option:

Accessing	the	filesystem	for	recovering	important	data	or	undoing	changes
to	configuration	files	if	CentOS	is	not	booting	up
Changing	the	root	password	if	you	forgot	it
Reinstalling	the	boot	loader	which	can	be	damaged	when	installing	another
operating	system	on	the	same	harddisk	where	CentOS	is	installed

Getting	ready
To	complete	this	recipe,	you	will	require	a	standard	installation	media	(CD/DVD
or	USB	device)	of	the	CentOS	7	operating	system.	For	recovering	the	data	from
the	system,	you	will	need	to	connect	some	sort	of	external	storage	device	to	the
system,	such	as	an	external	hard	disk	or	a	working	network	connection	to
another	computer	to	copy	all	your	precious	data	to	a	different	location.

How	to	do	it...
To	begin	this	recipe,	you	should	boot	your	server	from	the	CentOS	installation
CD/DVD	or	the	USB	device	and	wait	until	the	first	welcome	splash	screen
appears	with	the	cursor	waiting	at	the	Test	this	media	&	install	CentOS	7
menu	option.

Reaching	rescue	mode
1.	 From	the	main	menu,	use	the	down	arrow	key	to	select	Troubleshooting

and	then	press	the	Return	key	to	proceed.
2.	 On	the	Troubleshooting	screen,	use	the	down	arrow	key	to	highlight

Rescue	a	CentOS	system.	When	you	are	ready,	press	the	Return	key	to
proceed.

3.	 After	some	loading	time,	we	enter	the	rescue	screen,	which	includes	various
confirmation	sub-screens.	To	begin	this	section,	use	the	left	and	right	arrow
keys	to	choose	Continue	and	press	the	Return	key	to	proceed.

4.	 On	the	first	sub-screen,	choose	OK	and	press	the	Return	key	to	proceed.
5.	 Again,	in	the	following	sub-screen,	choose	OK	and	press	the	Return	key	to

proceed.
6.	 On	the	next	screen,	choose	the	Start	shell	and	by	using	the	Tab	key,

highlight	OK	and	press	the	Return	key	to	proceed.
7.	 By	completing	the	preceding	steps,	you	will	launch	a	shell	session.	You

will	notice	this	at	the	bottom	of	your	display.	The	current	status	of	the	shell
session	will	read	as	follows:

bash-4.2#_

At	the	prompt,	type	the	following	instruction	to	change	the	root	filesystem,
before	pressing	the	Return	key	to	complete	your	request:

chroot	mntsysimage

Congratulations!	You	just	reached	the	rescue	mode.	To	exit	it	at	any	time,
simply	type	the	following	command	and	then	press	the	Return	key	to	complete
your	request	(don't	do	this	right	now	as	this	will	restart	the	system):

reboot

After	the	basic	rescue	mode	is	reached,	we	have	the	following	options,
depending	on	the	type	of	problem.

Accessing	the	filesystem

If	you	are	now	in	the	rescue	mode	and	need	to	backup	important	files	from	the
filesystem,	you	need	a	destination	location	for	the	data	transfer.	For	transferring
the	data	we	want	to	recover	from	the	server	to	another	computer	please
physically	connect	an	external	USB	device	to	it.	You	can	also	use	network
storages	for	the	recovery.	For	example,	you	could	import	an	NFS	server	share
and	copy	data	to	it.	Refer	to	the	Working	with	NFS	recipe	in	Chapter	7,	Building
a	Network.

1.	 On	the	rescue	mode	command	line,	type	in	the	following	command,	which
will	show	you	all	the	current	partitions	connected	to	the	system,	and	then
press	the	Return	key	to	complete	your	request:

fdisk	-l

You	now	need	to	find	out	the	right	device	name	with	the	partition	number	of
your	connected	device;	comparing	the	total	size	or	the	filesystem	output	of	the
various	devices	with	the	specifications	from	your	stick	can	help	you	in	this
process.	You	can	also	try	the	following	trick:	run	the	fdisk	-l	command	twice,
first	with	the	plugged-in	USB	device	and	then	again	with	the	USB	device
unplugged,	and	compare	the	output	of	both	the	commands.	It	should	be	different
by	one	device	name	which	you	are	searching	for!
If	you	have	found	the	right	device	name	in	the	list,	create	a	directory	to	mount

the	stick	to	the	filesystem:

mkdir	mnthdd-recovery

Next,	mount	the	disk	partition	to	this	folder.	Here	we	assume	that	the	USB
device	of	interest	has	the	device	name	sdd1	(please	change	if	different	on	your
system):

mount	devsdd1	mnthdd-recovery

The	original	system's	hard	disk's	root	partition	has	been	mounted	under	a
specific	folder	by	the	rescue	system	automatically	(under	mntsysimage),	if	you
need	to	access	it	for	example	to	change	configuration	files	which	caused	startup
problems	or	make	a	full	or	partial	backup.	For	example,	if	you	need	to	backup
your	Apache	webserver	configuration	files,	use:

cp	-r	mntsysimage/etc/http	mnthdd-recovery

If	you	need	to	access	the	data	that	lives	on	partitions	other	than	the	currently
mounted	root	partition,	use	fdisk	-l	to	identify	the	partition	of	interest.	Then
create	a	directory	and	mount	the	partition	to	it	and	change	to	that	directory	to
access	your	data	similar	you	did	when	mounting	the	USB	device.
To	finish	backing	up	the	files,	type:

reboot

Accessing	the	filesystem
1.	 If	you	are	in	the	rescue	mode	for	changing	the	root	password,	just	use	the

following	command	and	provide	a	new	password:

passwd

To	complete	changing	the	password,	type:

reboot

Reinstall	the	CentOS	boot	loader
1.	 We	will	now	use	the	fdisk	command	to	find	the	name	of	all	the	current

partitions.	To	do	this,	type	the	following	instruction	and	then	press	the
Return	key	to	complete	your	request:

fdisk	–l

Now	run	the	following	command:

dmesg	|	grep	-Fq	"EFI	v"

If	the	preceding	command	does	not	produce	any	output	look	for	the	*	symbol
in	the	fdisk	listing	in	the	boot	column	to	find	the	correct	start	partition,	and
assuming	that	your	boot	disk	is	on	devsda1	(change	this	as	required),	type	the
following:

grub2-install	devsda

Otherwise,	if	there	is	an	output,	run	instead:

yum	reinstall	grub2-efi	shim

If	no	error	is	reported,	the	console	should	respond	as	follows:

#	this	device	map	was	generated	by	anaconda

(hd0)	devsda

The	console	output	from	the	last	step	has	confirmed	that	GRUB	has	now	been
successfully	restored.
To	reboot	the	computer,	type:

reboot

How	it	works...
There	are	a	broad	variety	of	problems	which	can	be	resolved	by	the	tools
provided	through	the	rescue	mode	environment.	Often	these	problems	refer	to
booting	problems	but	can	also	be	from	different	types,	such	as	forgetting	the	root
password.	Rescue	mode	can	be	a	life-saver	and	an	understanding	of	it	is	a	very
important	skill	to	learn.	It	was	felt	that	such	a	recipe	should	thus	remain	close	at
hand.

Tip

Remember	to	always	be	careful	when	working	with	bootloader	commands	as
improper	use	can	make	your	operating	system	unbootable.

Updating	the	installation	and
enhancing	the	minimal	install	with
additional	administration	and
development	tools
In	this	recipe,	we	will	learn	how	to	enhance	the	minimal	install	with	additional
tools	that	will	give	you	a	variety	of	administrative	and	development	options,
which	in	turn	will	prove	vital	during	the	lifetime	of	your	server	and	which	are
essential	for	some	recipes	in	this	book.	The	minimal	install	is	probably	the	most
efficient	way	you	can	install	a	server,	but	having	said	that,	a	minimal	install	does
require	some	additional	features	in	order	to	make	it	a	more	compelling	model.

Getting	ready
To	complete	this	recipe,	you	will	require	a	minimal	installation	of	the	CentOS	7
operating	system	with	root	privileges	and	a	connection	to	the	Internet	in	order	to
facilitate	the	download	of	additional	packages.

How	to	do	it...
We	will	begin	this	recipe	by	updating	the	system.

1.	 To	update	the	system,	log	in	as	root	and	type:

yum	-y	update

2.	 CentOS	will	now	search	for	the	relevant	updates	and,	if	available,	they	will
be	installed.	On	completion	and	depending	on	what	was	updated	(that	is,
kernel	and	new	security	features	to	name	but	a	few),	you	can	decide	to
reboot	your	computer.	To	do	this,	type:

reboot

3.	 Your	server	will	now	reboot	and	return	to	the	login	screen.	We	will	now
complete	this	recipe	and	enhance	our	current	installation	with	a	series	of
package	groups	that	will	prove	to	be	very	useful	in	the	future.	To	do	this,
log	in	as	root	and	type:

yum	-y	groupinstall	"Base"	"Development	Libraries"	"Development	

Tools"

yum	-y	install	policycoreutils-python

How	it	works...
The	purpose	of	this	recipe	is	to	enhance	the	minimal	installation	of	the	CentOS	7
operating	system	and	by	doing	this	you	have	not	only	introduced	yourself	to	the
Yellowdog	Updater	Modified	(YUM)	package	manager	(something	to	which
we	will	return	to	later	on	in	this	book),	but	you	now	have	a	system	that	is
capable	of	running	a	vast	amount	of	applications	right	out-of-the-box.

So	what	have	we	learned	from	this	experience?

We	started	the	recipe	by	updating	the	system	in	order	to	ensure	that	it	is	up	to
date.	At	this	stage,	it	is	often	a	good	idea	to	reboot	the	system.	It	is	not	expected
that	we	will	do	this	very	often	but	it	is	expected	when	updating	for	the	first	time
after	the	installation	of	the	operating	system,	as	it	is	most	likely	that	there	are
major	changes	available.	The	reason	behind	this	is	typically	based	on	the	desire
to	take	advantage	of	a	new	kernel	or	revised	security	updates.	In	the	next	phase,
the	recipe	showed	you	how	to	add	a	series	of	package	groups	that	may	prove	to
be	more	than	useful	in	the	future.	To	save	time,	we	wrapped	the	instruction	to
install	the	three	main	package	groups:	Base,	Development	Libraries,	and
Development	Tools.	The	preceding	action	alone	installs	over	200	individual
packages,	thereby	giving	your	server	the	ability	to	compile	the	code	and	run	a
vast	array	of	applications	out-of	-the-box,	that	you	may	need	over	the	life	time	of
your	server.	To	see	a	list	of	all	the	packages	within	a	group,	for	example,	from
Base,	run	the	yum	groupinfo	Base	command.	Another	package	we	installed
was	policycoreutils-python	which	provides	tools	and	programs	to	manage
the	security	enhanced	access	control	to	Linux,	which	we	will	use	quite	often
throughout	the	chapters	of	this	book.

Chapter	2.	Configuring	the	System
In	this	chapter,	we	will	cover	the	following	topics:

Navigating	text	files	with	less
Introduction	to	Vim
Speaking	the	right	language
Synchronizing	the	system	clock	with	NTP	and	the	chrony	suite
Setting	your	hostname	and	resolving	the	network
Becoming	a	superuser
Building	a	static	network	connection
Customizing	your	system	banners	and	messages
Priming	the	kernel

Introduction
This	chapter	is	a	collection	of	recipes	that	covers	the	basic	practice	of
establishing	the	basic	needs	of	a	server.	For	many,	building	a	server	can	often
seem	to	be	a	daunting	task,	and	so	the	purpose	of	this	chapter	is	to	provide	you
with	an	instant	method	to	achieve	the	desired	goals.

Navigating	text	files	with	less
Throughout	this	book,	you	will	often	use	programs	and	tools	that	use	the
program	less	or	a	less-like	navigation	to	view	and	read	file	content	or	display
output.	At	first,	the	control	can	seem	a	bit	unintuitive	.Here,	in	this	recipe,	we
will	show	you	the	basics	of	how	to	navigate	through	a	file	using	less	controls.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges.

How	to	do	it...
1.	 To	begin,	log	in	as	root	and	type	the	following	command	to	open	a	program

that	uses	less	for	navigation:

man	man

To	navigate,	press	the	up	and	down	key	to	scroll	up	and	down	one	line	at	a
time,	the	spacebar	to	scroll	down	a	page,	and	the	b	key	to	scroll	up	a	page.	You
can	search	within	the	text	using	the	forward	slash	key,	/,followed	by	the	search
term,	then	press	Return	to	search.	Press	n	to	jump	to	the	next	search	result.	Press
the	q	key	to	exit.

How	it	works...
Here,	in	this	short	recipe,	we	have	shown	you	the	very	basics	of	less	navigation,
which	is	essential	for	reading	man	pages	and	is	used	by	a	lot	of	other	programs
throughout	this	book	to	display	text.	We	only	showed	you	the	basic	commands
and	there	is	much	more	to	learn.	Please	read	the	less	manual	to	find	out	more	on
man	less	command.

Introduction	to	Vim
In	this	recipe,	we	will	give	you	a	very	brief	introduction	to	the	text	editor,	Vim,
which	is	used	as	the	standard	text	editor	throughout	this	book.	You	can	also	use
any	other	text	editor	you	prefer,	such	as	nano	or	emacs,	instead.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges.

How	to	do	it...
We	will	start	this	recipe	by	installing	the	vim-enhanced	package,	as	it	contains	a
tutorial	you	can	use	to	learn	working	with	Vim:

1.	 To	begin,	log	in	as	root	and	install	the	following	package:

yum	install	vim-enhanced

Afterwards,	type	the	following	command	to	start	the	Vim	tutorial:

vimtutor

This	will	open	the	Vim	tutorial	in	the	Vim	editor.	To	navigate,	press	the	up
and	down	key	to	scroll	up	and	down	single-line	wise.	To	exit	the	tutorial,	press
the	Esc	key,	then	type	:q!,	followed	by	the	Return	key	to	exit.
You	should	now	read	through	the	file	and	go	through	the	lessons	to	get	a	basic

understanding	of	Vim,	to	learn	how	to	edit	your	text	documents.

How	it	works...
The	tutorial	shown	in	this	recipe	should	be	seen	as	a	starting	point	from	which	to
learn	the	basics	for	working	with	one	of	the	most	powerful	and	effective	text
editors	available	for	Linux.	Vim	has	a	very	steep	learning	curve,	but	after
dedicating	about	half	an	hour	to	the	vimtutor	guide	you	should	be	able	to	do	all
the	common	text	editing	tasks	without	any	problem,	such	as	opening,	editing,
and	saving	text	files.

Speaking	the	right	language
In	this	recipe,	we	will	show	you	how	to	change	the	language	settings	of	your
CentOS	7	installation	for	the	whole	system	and	for	single	users.	The	need	to
change	this	is	rare	but	can	be	important,	for	example	if	we	accidentally	chose	the
wrong	language	during	installation.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	and	a	console-based	text	editor	of	your
choice.	You	should	have	read	the	Navigating	text	files	with	less	recipe,	because
some	commands	in	this	recipe	will	use	less	for	printing	output.

How	to	do	it...
There	are	two	categories	of	settings	that	you	have	to	adjust	if	you	want	to	change
the	system-wide	language	settings	of	your	CentOS	7	system.	We	begin	by
changing	the	system	locale	information	and	then	the	keyboard	settings:

1.	 To	begin,	log	in	as	root	and	type	the	following	command	to	show	the
current	locale	settings	for	the	console,	graphical	window	managers	(X11
layout),	and	also	the	current	keyboard	layout:

localectl	status

2.	 Next,	to	change	these	settings,	we	first	need	to	know	all	the	available	locale
and	keyboard	settings	on	this	system	(both	commands	use	less	navigation):

localectl	list-locales

localectl	list-keymaps

3.	 If	you	have	picked	the	right	locale	from	the	output	above	in	our	example,
de_DE.utf8	and	keymap	de-mac	(change	to	your	own	appropriate	needs),
you	can	change	your	locale	and	keyboard	settings	using:

localectl	set-locale	LANG=de_DE.utf8

localectl	set-keymap	de-mac

4.	 Now,	verify	the	persistence	of	your	changes	using	the	same	command
again:

localectl	status

How	it	works...
As	we	have	seen,	the	localectl	command	is	a	very	convenient	tool	that	can
take	care	of	managing	all	important	language	settings	in	a	CentOS	7	system.

So	what	have	we	learned	from	this	experience?

We	started	by	logging	in	to	our	command	line	with	the	root	user.	Then,	we	ran
the	localectl	command	with	the	parameter	status,	which	gave	us	an	overview
of	the	current	language	settings	in	the	system.	The	output	of	this	command
showed	us	that	language	properties	in	a	CentOS	7	system	can	be	separated	into
locale	(system	locale)	and	keymap	(VC	keymap	and	all	X11	layout	properties)
settings.

Locales	on	Linux	are	used	to	set	the	system's	language	as	well	as	other	language-
specific	properties.	This	can	include	texts	from	error	messages,	log	output,	user
interfaces,	and,	if	you	are	using	a	window	manager	such	as	Gnome,	even
Graphical	User	Interfaces	(GUI).	Locale	settings	can	also	define	region-
specific	formatting	such	as	paper	sizes,	numbers	and	their	natural	sorting,
currency	information,	and	so	on.	They	also	define	character	encoding,	which	can
be	important	if	you	chose	a	language	that	has	characters	that	cannot	be	found	in
the	standard	ASCII	encoding.

Keymap	settings	on	the	other	hand	define	the	exact	layout	of	each	key	on	your
keyboard.

Next,	to	change	these	settings,	we	first	issued	the	localectl	command	with	the
list-locales	parameter	to	retrieve	a	full	list	of	all	locales	on	the	system,	and
list-keymaps	to	show	a	list	of	all	keyboard	settings	available	in	the	system.
Locales	as	outputted	from	the	list-locales	parameter	use	a	very	compact
annotation	for	defining	a	language:

Language[_Region][.Encoding][@Modificator]

Only	the	Language	part	is	mandatory,	all	the	rest	is	optional.	Examples	for
language	and	region	are:	en_US	for	English	and	region	United	States	or
American	English,	es_CU	would	be	language	Spanish	and	Region	Cuba	or	Cuban
Spanish.

Encodings	are	important	for	special	characters	such	as	German	umlaut	or
accents	in	the	French	language.	The	memory	representation	of	these	special
characters	can	be	interpreted	differently	depending	on	the	used	encoding	type.	In
general	UTF-8	should	be	used	as	it	is	capable	of	encoding	almost	any	character
in	every	language.

Modificators	are	used	to	change	settings	defined	by	the	locale.	For	example,
sr_RS.utf8@latin	is	used	if	you	want	to	have	Latin	settings	for	serbian	Serbia,
which	normally	uses	Cyrillic	definitions.	This	will	change	to	western	settings
such	as	sorting,	currency	information,	and	so	on.

To	change	the	actual	locale,	we	used	the	set-locale	LANG=de_DE.utf8
parameter.	Here,	the	encoding	was	selected	to	display	proper	German	umlauts.
Please	note	that	we	used	the	LANG	option	to	set	the	same	locale	value	(for
example,	de_DE.utf8)	for	all	available	locale	options.	If	you	don't	want	to	have
the	same	locale	value	for	all	available	options,	you	can	use	a	more	fine-grained
control	over	single	locale	options.	Please	refer	to	the	locale	description	using	the
man	page,	man	7	locale	(on	minimal	installation;	you	need	to	install	all	Linux
documentation	man	pages	before	using	the	yum	install	man-pages	command).
You	can	set	these	additional	options	using	a	similar	syntax,	for	example,	to	set
the	time	locale	use:

localectl	set-locale	LC_TIME="de_DE.utf8"

Next,	we	showed	all	available	keymap	codes	using	the	list-keymaps	parameter.
As	we	have	seen	from	running	localectl	status,	the	keymaps	can	be
separated	in	non-graphical	(VC	keymap)	and	graphical	(X11	layout)	settings,
which	allows	the	flexible	configuration	of	different	keyboard	layouts	when	using
a	window	manager	such	as	Gnome	and	for	the	console.	Running	localectl	with
the	parameter,	set-keymap	de-mac,	sets	the	current	keymap	to	a	German	Apple
Macintosh	keyboard	model.	This	command	applies	the	given	keyboard	type	to
both	the	normal	VC	and	the	X11	keyboard	mappings.	If	you	want	different
mappings	for	X11	than	for	the	console,	use	localectl	--no-convert	set-x11-
keymap	cz-querty,	where	we	use	cz-querty	for	the	keymap	code	to	a	Czech
querty	keyboard	model	(change	this	accordingly).

There's	more…
Sometimes,	single	system	users	need	different	language	settings	than	the
system's	locale	(which	can	only	be	set	by	the	root	user),	according	to	their
regional	keyboard	differences	and	for	interacting	with	the	system	in	their
preferred	human	language.	System-wide	locales	get	inherited	by	every	user	as
long	as	they	are	not	overwritten	by	local	environment	variables.

Note

Changing	system-wide	locales	does	not	necessarily	have	an	effect	on	your	user's
locales	if	they	have	already	defined	something	else	for	themselves.

To	print	all	the	current	locale	environment	variables	for	any	system	user,	we	can
use	the	command,	locale.	To	set	single	environment	variables	with	the
appropriate	variable	name;	for	example,	to	set	the	time	locale	to	US	time	we
would	use	the	following	line:

export	LC_TIME="en_US.UTF-8"

But,	most	likely	we	would	want	to	change	all	the	locales	to	the	same	value;	this
can	be	done	by	setting	LANG.	For	example,	to	set	all	the	locales	to	American
English,	use	the	following	line:

export	LANG="en_US.UTF-8"

To	test	the	effect	of	locale	changes,	we	can	now	produce	an	error	message	that
will	be	shown	in	the	language	set	by	the	locale	command.	Here	is	the	different
language	output	for	changing	locale	from	English	to	German:

export	LANG="en_US.UTF-8"

ls	!

The	following	output	will	be	printed:

ls:	cannot	access	!:	No	such	file	or	directory

Now,	change	to	German	locale	settings:

export	LANG="de_DE.UTF-8"

ls	!

The	following	output	will	be	printed:

ls:	Zugriff	auf	!	nicht	möglich:	Datei	oder	Verzeichnis	nicht	

gefunden

Setting	a	locale	in	an	active	console	using	the	export	command	will	not	survive
closing	the	window	or	opening	a	new	terminal	session.	If	you	want	to	make
those	changes	permanent,	you	can	set	any	locale	environment	variables,	such	as
the	LANG	variable,	in	a	file	called	.bashrc	in	your	home	directory,	which	will	be
read	everytime	a	shell	is	opened.	To	change	the	locale	settings	permanently	to
de_DE.UTF-8	in	our	example	(change	this	to	your	own	needs)	use	the	following
line:

echo	"export	LANG='de_DE.UTF-8'"	>>	~/.bashrc

Synchronizing	the	system	clock	with
NTP	and	the	chrony	suite
In	this	recipe,	we	will	learn	how	to	synchronize	the	system	clock	with	an
external	time	server	using	the	Network	Time	Protocol	(NTP)	and	the	chrony
suite.	From	the	need	to	time-stamp	documents,	e-mails,	and	log	files,	to
securing,	running,	and	debugging	a	network,	or	to	simply	interact	with	shared
devices	and	services,	everything	on	your	server	is	dependent	on	maintaining	an
accurate	system	clock,	and	it	is	the	purpose	of	this	recipe	to	show	you	how	this
can	be	achieved.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet	to	facilitate	downloading	additional	packages.

How	to	do	it...
In	this	recipe,	we	will	use	the	chrony	service	to	manage	our	time
synchronization.	As	chrony	is	not	installed	by	default	on	CentOS	minimal,	we
will	start	this	recipe	by	installing	it:

1.	 To	begin,	log	in	as	root	and	install	the	chrony	service,	then	start	it	and
verify	that	it	is	running:

yum	install	-y	chrony

systemctl	start	chronyd

systemctl	status	chronyd

2.	 Also,	if	we	want	to	use	chrony	permanently,	we	will	have	to	enable	it	on
server	startup:

systemctl	enable	chronyd

3.	 Next,	we	need	to	check	whether	the	system	already	uses	NTP	to
synchronize	our	system	clock	over	the	network:

timedatectl		|	grep	"NTP	synchronized"

4.	 If	the	output	from	the	last	step	showed	No	for	NTP	synchronized,	we	need
to	enable	it	using:

timedatectl	set-ntp	yes

5.	 If	you	run	the	command	(from	step	3)	again,	you	should	see	that	it	is	now
synchronizing	NTP.

6.	 The	default	installation	of	chrony	will	use	a	public	server	that	has	access	to
the	atomic	clock,	but	in	order	to	optimize	the	service	we	will	need	to	make
a	few	simple	changes	to	streamline	and	optimize	at	what	time	servers	are
used.	To	do	this,	open	the	main	chrony	configuration	file	with	your	favorite
text	editor,	as	shown	here:

vi	etcchrony.conf

7.	 In	the	file,	scroll	down	and	look	for	the	lines	containing	the	following:

server	0.centos.pool.ntp.org	iburst

server	1.centos.pool.ntp.org	iburst

server	2.centos.pool.ntp.org	iburst

server	3.centos.pool.ntp.org	iburst

8.	 Replace	the	values	shown	with	a	list	of	preferred	local	time	servers:

server	0.uk.pool.ntp.org	iburst

server	1.uk.pool.ntp.org	iburst

server	2.uk.pool.ntp.org	iburst

server	3.uk.pool.ntp.org	iburst

Note

Visit	http://www.pool.ntp.org/	to	obtain	a	list	of	local	servers
geographically	near	your	current	location.	Remember,	the	use	of	three	or
more	servers	will	have	a	tendency	to	increase	the	accuracy	of	the	NTP
service.

9.	 When	complete,	save	and	close	the	file	before	synchronizing	your	server
using	the	sytstemctl	command:

systemctl	restart	chronyd

10.	 To	check	whether	the	modifications	in	the	config	file	were	successful,	you
can	use	the	following	command:

systemctl	status	chronyd

11.	 To	check	whether	chrony	is	taking	care	of	your	system	time
synchronization,	use	the	following:

chronyc	tracking

12.	 To	check	the	network	sources	chrony	uses	for	synchronization,	use	the
following:

chronyc	sources

http://www.pool.ntp.org/

How	it	works...
Our	CentOS	7	operating	system's	time	is	set	on	every	boot	based	on	the
hardware	clock,	which	is	a	small-battery	driven	clock	located	on	the
motherboard	of	your	computer.	Often,	this	clock	is	too	inaccurate	or	has	not
been	set	right,	therefore	it's	better	to	get	your	system	time	from	a	reliable	source
over	the	Internet	(that	uses	real	atomic	time).	The	chrony	daemon,	chronyd,	sets
and	maintains	system	time	through	a	process	of	synchronization	with	a	remote
server	using	the	NTP	protocol	for	communication.

So,	what	have	we	learned	from	this	experience?

As	a	first	step,	we	installed	the	chrony	service,	since	it	is	not	available	by	default
on	a	CentOS	7	minimal	installation.	Afterwards,	we	enabled	the	synchronization
of	our	system	time	with	NTP	using	the	timedatectl	set-ntp	yes	command.

After	that,	we	opened	the	main	chrony	configuration	file,	etcchrony.conf,	and
showed	how	to	change	the	external	time	servers	used.	This	is	particularly	useful
if	your	server	is	behind	a	corporate	firewall	and	have	your	own	NTP	server
infrastructure.

Having	restarted	the	service,	we	then	learned	how	to	check	and	monitor	our	new
configuration	using	the	chronyc	command.	This	is	a	useful	command	line	tool	(c
stands	for	client)	for	interacting	and	controlling	a	chrony	daemon	(locally	or
remotely).	We	used	the	tracking	parameter	with	chronyc,	which	showed	us
detailed	information	of	the	current	NTP	synchronization	process	with	a	specific
server.	Please	refer	to	the	man	pages	of	the	chronyc	command	if	you	need	further
help	about	the	properties	shown	in	the	output	(man	chronyc).

We	also	used	the	sources	parameter	with	the	chronyc	program,	which	showed
us	an	overview	of	the	used	NTP	time	servers.

You	can	also	use	the	older	date	command	to	validate	correct	time
synchronization.	It	is	important	to	realize	that	the	process	of	synchronizing	your
server	may	not	be	instantaneous,	and	it	can	take	a	while	for	the	process	to
complete.	However,	you	can	now	relax	in	the	full	knowledge	that	you	now	know
how	to	install,	manage	and	synchronize	your	time	using	the	NTP	protocol.

There's	more...
In	this	recipe,	we	set	our	system's	time	using	the	chrony	service	and	the	NTP
protocol.	Usually,	system	time	is	set	as	Coordinated	Universal	Time	(UTC)	or
world	time,	which	means	it	is	one	standard	time	used	across	the	whole	world.
From	it,	we	need	to	calculate	our	local	time	using	time	zones.	To	find	the	right
time	zone,	use	the	following	command	(read	the	Navigating	textfiles	with	less
recipe	to	work	with	the	output):

timedatectl	list-timezones

If	you	have	found	the	right	time	zone,	write	it	down	and	use	it	in	the	next
command;	for	example,	if	you	are	located	in	Germany	and	are	near	the	city	of
Berlin,	use	the	following	command:

timedatectl	set-timezone	Europe/Berlin

Use	timedatectl	again	to	check	if	your	local	time	is	correct	now:

timedatectl	|	grep	"Local	time"

Finally,	if	it	is	correct,	you	can	synchronize	your	hardware	clock	with	your
system	time	to	make	it	more	precise:

hwclock	--systohc

Setting	your	hostname	and	resolving
the	network
The	process	of	setting	the	hostname	is	typically	associated	with	the	installation
process.	If	you	ever	need	to	change	it	or	your	server's	Domain	Name	System
(DNS)	resolver,	this	recipe	will	show	you	how.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	and	a	console-based	text	editor	of	your
choice.

How	to	do	it...
To	begin	this	recipe,	we	shall	start	by	accessing	the	system	as	root	and	opening
the	following	file	in	order	to	name	or	rename	your	current	server's	hostname:

1.	 Log	in	as	root	and	type	in	the	following	command	to	see	the	current
hostname:

hostnamectl	status

2.	 Now,	change	the	hostname	value	to	your	preferred	name.	For	example,	if
you	want	to	call	your	server	jimi,	you	would	type	(change	appropriately):

hostnamectl	set-hostname	jimi

Note

Static	hostnames	are	case-sensitive	and	restricted	to	using	an	Internet-
friendly	alphanumeric	string	of	text.	The	overall	length	should	be	no	longer
than	63	characters,	but	try	to	keep	it	much	shorter.

3.	 Next,	we	need	the	IP	address	of	the	server.	Type	in	the	following	command
to	find	it	(you	need	to	identify	the	correct	network	interface	in	the	output):

ip	addr	list

4.	 Afterwards,	we	will	set	the	Fully	Qualified	Domain	Name	(FQDN),	in
order	to	do	this,	we	will	need	to	open	and	edit	the	hosts	file:

vi	etchosts

5.	 Here,	you	should	add	a	new	line	appropriate	to	your	needs.	For	example,	if
your	server's	hostname	was	called	jimi,	(with	an	IP	address	of
192.168.1.100,	and	a	domain	name	of	henry.com)	your	final	line	to
append	will	look	like	this:

192.168.1.100								jimi.henry.com	jimi

Note

For	a	server	found	on	a	local	network	only,	it	is	advisable	to	use	a	non-
Internet	based	top-level	address.	For	example,	you	could	use	.local	or
.lan,	or	even	.home,	and	by	using	these	references	you	will	avoid	any

confusion	with	the	typical	.com,	.co.uk,	or	.net	domain	names.

6.	 Next,	we	will	open	the	resolv.conf	file,	which	is	responsible	for
configuring	static	DNS	server	addresses	that	the	system	will	use:

vi	etcresolv.conf

7.	 Replace	the	content	of	the	file	with	the	following:

#	use	google	for	dns

nameserver	8.8.8.8

nameserver	8.8.4.4

8.	 When	complete,	save	and	close	your	file	before	rebooting	your	server	to
allow	the	changes	to	take	immediate	effect.	To	do	this,	return	to	your
console	and	type:

reboot

9.	 On	a	successful	reboot,	you	can	now	check	your	new	hostname	and	FQDN
by	typing	the	following	commands	and	waiting	for	the	response:

hostname	--fqdn

10.	 To	test	if	we	can	resolve	domain	names	to	IP	addresses	using	our	static
DNS	server	addresses,	use	the	following	command:

ping	-c	10	google.com

How	it	works...
A	hostname	is	a	unique	label	created	to	identify	a	machine	on	a	network.	It	is
restricted	to	alphanumeric-based	characters,	and	making	a	change	to	your
server's	hostname	can	be	achieved	by	using	the	hostnamectl	command.	A	DNS
server	is	used	to	translate	domain	names	to	IP	addresses.	There	are	several
public	DNS	servers	available;	in	a	later	recipe,	we	will	build	our	own	DNS
service.

So,	what	have	we	learned	from	this	experience?

In	the	first	stage	of	the	recipe,	we	changed	the	current	hostname	used	by	our
server	with	the	hostnamectl	command.	This	command	can	set	three	different
types	of	hostnames.	Using	the	command	with	the	set-hostname	parameter	will
set	the	same	name	for	all	three	hostnames:	the	high-level	pretty	hostname,
which	might	include	all	kinds	of	special	characters	(for	example,	Lennart's
Laptop),	the	static	hostname	which	is	used	to	initialize	the	kernel	hostname	at
boot	(for	example	lennarts-laptop),	and	the	transient	hostname,	which	is	a
default	received	from	network	configurations.

Following	this,	we	set	the	FQDN	of	our	server.	A	FQDN	is	the	hostname	along
with	a	domain	name	after	it.	A	domain	name	gets	important	when	you	are
running	a	private	DNS,	or	allowing	external	access	to	your	server.	Besides	using
a	DNS	server	setting	the	FQDN	can	be	achieved	by	updating	the	hosts	file	found
at	etchosts.

This	file	is	used	by	CentOS	to	map	hostnames	to	an	IP	address,	and	it	is	often
found	to	be	incorrect	on	a	new,	un-configured,	or	recently	installed	server.	For
this	reason,	we	first	had	to	find	out	the	IP	address	of	the	server	using	ip	addr
list.

An	FQDN	should	consist	of	a	short	hostname	and	the	domain	name.	Based	on
the	example	shown	in	this	recipe,	we	set	the	FQDN	for	a	server	named	henry,
whose	IP	address	is	192.168.1.100	and	domain	name	is	henry.com.

Saving	this	file	would	arguably	complete	this	process.	However,	because	the
kernel	makes	a	record	of	the	hostname	during	the	boot	process,	there	is	no
choice	but	to	reboot	your	server	before	you	can	use	the	changed	settings.

Next,	we	opened	the	system's	resolv.conf	file,	which	keeps	the	IP	addresses	of
the	system's	DNS	servers.	If	your	server	does	not	use	or	have	any	DNS	records,
your	system	is	not	able	to	use	domain	names	for	network	destinations	in	any
program	at	all.	In	our	example,	we	entered	the	public	Google	DNS	server	IP
addresses,	but	you	are	allowed	to	use	any	DNS	server	you	want	or	have	to	use
(often	in	a	cooperate	environment,	behind	a	firewall,	you	have	to	use	internal
DNS	server	infrastructures).	On	a	successful	reboot,	we	confirmed	your	new
settings	by	using	the	hostname	command,	which	can	print	out	the	hostname	or
the	FQDN	based	on	the	parameters	given.

So,	in	conclusion,	you	can	say	that	this	recipe	has	not	only	served	to	show	you
how	to	rename	your	server	and	resolve	the	network,	but	has	also	showed	you	the
difference	between	a	hostname	and	domain	name:

As	we	have	learned,	a	server	is	not	only	known	by	the	use	of	a	shorter,	easier-to-
remember,	and	quicker-to-type	single-word-based	host	name,	it	also	consists	of
three	values	separated	with	a	period	(for	example	jimi.henry.com).	The
relationship	between	these	values	may	have	seemed	strange	at	first,	especially
where	many	people	would	have	seen	them	as	a	single	value,	but	by	completing
this	recipe	you	have	discovered	that	the	domain	name	remains	distinct	from	the
hostname	by	virtue	of	being	determined	by	the	resolver	subsystem,	and	it	is	only
by	putting	them	together	that	your	server	will	yield	the	FQDN	of	the	system	as	a
whole.

There's	more...
The	hosts	file	consists	of	a	list	of	IP	addresses	and	corresponding	hostnames,	and
if	your	network	contains	computers	whose	IP	addresses	are	not	listed	in	an
existing	DNS	record,	then	in	order	to	speed	up	your	network	it	is	often
recommended	that	you	add	them	to	this	file.

This	can	be	achieved	on	any	operating	system,	but	to	do	this	on	CentOS,	simply
open	the	hosts	file	in	your	favorite	text	editor,	as	shown	next:

vi	etchosts

Now,	scroll	down	to	the	bottom	of	the	file	and	add	the	following	values	by
substituting	the	domain	names	and	IP	addresses	shown	here	with	something
more	appropriate	to	your	own	needs:

192.168.1.100				www.example1.lan

192.168.1.101				www.example2.lan

You	can	even	use	external	address	such	as:

83.166.169.228		www.packtpub.com

This	method	provides	you	with	the	chance	to	create	mappings	between	domain
names	and	IP	addresses	without	the	need	to	use	a	DNS,	and	it	can	be	applied	to
any	workstation	or	server.	The	list	is	not	restricted	by	size,	and	you	can	even
employ	this	method	to	block	access	to	certain	websites	by	simply	re-pointing	all
requests	to	visit	a	known	website	to	a	different	IP	address.	For	example,	if	the
real	address	of	www.website.com	is	192.168.1.200	and	you	want	to	restrict
access	to	it,	then	simply	make	the	following	changes	to	the	hosts	file	on	the
computer	that	you	want	to	block	from	access:

127.0.0.1				www.website.com

It	isn't	failsafe,	but	in	this	instance	anyone	trying	to	access	www.website.com	on
this	system	will	automatically	be	sent	to	127.0.0.1,	which	is	your	local	network
address,	so	this	will	just	block	access.

When	you	have	finished,	remember	to	save	and	close	your	file	in	the	usual	way
before	proceeding	to	enjoy	the	benefits	of	faster	and	safer	domain	name
resolution	across	any	available	network.

resolution	across	any	available	network.

Building	a	static	network	connection
In	this	recipe,	we	will	learn	how	to	configure	a	static	IP	address	for	a	new	or
existing	CentOS	server.

While	a	dynamically	assigned	IP	address	or	DHCP	reservation	may	be	fine	for
most	desktop	and	laptop	users,	if	you	are	setting	up	a	server,	it	is	often	the	case
that	you	will	require	a	static	IP	address.	From	web	pages	to	e-mail,	databases	to
file	sharing,	a	static	IP	address	will	become	a	permanent	location	from	which
your	server	will	deliver	a	range	of	applications	and	services,	and	it	is	the
intention	of	this	recipe	to	show	you	how	easily	it	can	be	achieved.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges	and	a	console-based	text	editor	of	your
choice.

How	to	do	it...
For	the	purpose	of	this	recipe,	you	will	be	able	to	find	all	the	relevant	files	in	the
directory,	etcsysconfig/network-scripts/.	First,	you	need	to	find	out	the
correct	name	of	the	network	interface	that	you	want	to	set	as	static.	If	you	need
to	set	more	than	one	network	interface	as	static,	repeat	this	recipe	for	every
device.

1.	 To	do	this,	log	in	as	root	and	type	the	following	command	to	get	a	list	of	all
of	your	system's	network	interfaces:

ip	addr	list

2.	 If	you	have	only	one	network	card	installed,	it	should	be	very	easy	to	find
out	its	name;	just	select	the	one	not	named	lo	(which	is	the	loopback
device).	If	you	got	more	than	one,	having	a	look	at	the	IP	addresses	of	the
different	devices	can	help	you	choose	the	right	one.	In	our	example,	the
device	is	called	enp0s3.

3.	 Next,	make	a	backup	of	the	network	interface	configuration	file	(change	the
enp0s3	part	accordingly,	if	your	network	interface	is	named	differently):

cp	etcsysconfig/network-scripts/ifcfg-

enp0s3etcsysconfig/network-scripts/ifcfg-enp0s3.BAK

4.	 When	you	are	ready	to	proceed,	open	the	following	file	in	your	favorite	text
editor	by	typing	what	is	shown	next:

vi	etcsysconfig/network-scripts/ifcfg-enp0s3

5.	 Now,	work	down	the	file	and	apply	the	following	changes:

NM_CONTROLLED="no"

BOOTPROTO=none

DEFROUTE=yes

PEERDNS=no

PEERROUTES=yes

IPV4_FAILURE_FATAL=yes

6.	 Now,	add	your	IP	information	by	customizing	the	values	of
XXX.XXX.XXX.XXX	as	required:

IPADDR=XXX.XXX.XXX.XXX

NETMASK=	XXX.XXX.XXX.XXX

BROADCAST=	XXX.XXX.XXX.XXX

7.	 We	must	now	add	a	default	gateway.	Typically,	this	should	be	the	address
of	your	router.	To	do	this,	simply	add	a	new	line	at	the	bottom	of	the	file,	as
shown	next,	and	customize	the	value	as	required:

GATEWAY=XXX.XXX.XXX.XXX

8.	 When	ready,	save	and	close	the	file	before	repeating	this	step	for	any
remaining	Ethernet	devices	that	you	want	to	make	static.	When	doing	this,
remember	to	assign	a	different	IP	address	to	each	device.

9.	 When	finished,	save	and	close	this	file	before	restarting	your	network
service:

systemctl	restart	network

How	it	works...
In	this	recipe,	you	have	seen	the	process	associated	with	changing	the	state	of
your	server's	IP	address	from	a	dynamic	value	obtained	from	an	external	DHCP
provider,	to	that	of	a	static	value	assigned	by	you.	This	IP	address	will	now	form
a	unique	network	location	from	which	you	will	be	able	to	deliver	a	whole	host	of
services	and	applications.	It	is	a	permanent	modification,	and	yes,	you	could	say
that	the	process	itself	was	relatively	straightforward.

So,	what	have	we	learned	from	this	experience?

Having	started	the	recipe	by	identifying	your	network	interface	name	of	choice
and	creating	a	backup	of	the	original	Ethernet	configuration	files,	we	then
opened	the	configuration	file	located	at	etcsysconfig/network-
scripts/ifcfg-XXX	(with	XXX	being	the	name	of	your	interface,	for	example,
enp0s3).	As	being	static	no	longer	requires	the	services	of	the	network	manager,
we	disabled	NM_CONTROLLED	by	setting	the	value	to	no.	Next,	as	we	are	in	the
process	of	moving	to	a	static	IP	address,	BOOTPROTO	has	been	set	to	none,	as	we
are	no	longer	using	DHCP.	To	complete	our	configuration	changes,	we	then
moved	on	to	add	our	specific	network	values	and	set	the	IP	address,	the	netmask,
broadcast,	and	the	default	gateway	address.

In	order	to	assist	the	creation	of	a	static	IP	address,	the	default	gateway	is	a	very
important	setting	in	as	much	as	it	allows	the	server	to	contact	the	wider	world
through	a	router.

When	finished,	we	were	asked	to	save	and	close	the	file	before	repeating	this
step	for	any	remaining	Ethernet	devices.	Having	done	this,	we	were	then	asked
to	restart	the	network	service	in	order	to	complete	this	recipe	and	to	enable	our
changes	to	take	immediate	effect.

Becoming	a	superuser
In	this	recipe,	we	will	learn	how	to	provide	nominated	users	or	groups	with	the
ability	to	execute	a	variety	of	commands	with	elevated	privileges.

On	CentOS	Linux,	many	files,	folders,	or	commands	can	only	be	accessed	or
executed	by	a	user	called	root,	which	is	the	name	of	the	user	who	can	control
everything	on	a	Linux	system.	Having	one	root	user	per	system	may	suit	your
needs,	but	for	those	who	want	a	greater	degree	of	flexibility,	a	solid	audit	trail,
and	the	ability	to	provide	a	limited	array	of	administrative	capabilities	to	a	select
number	of	trusted	users,	you	have	come	to	the	right	place.	It	is	the	purpose	of
this	recipe	to	show	you	how	to	activate	and	configure	the	sudo	(superuser	do)
command.

Getting	ready
To	complete	this	recipe,	you	will	require	a	minimal	installation	of	the	CentOS	7
operating	system	with	root	privileges.	It	is	assumed	that	your	server	maintains
one	or	more	users	(other	than	root)	who	qualify	for	this	escalation	in	powers.	If
you	did	not	create	a	system	user	account	during	installation,	please	do	so	by	first
applying	the	recipe,	Managing	users	and	their	groups,	in	Chapter	3,	Managing
the	System.

How	to	do	it...
To	start	this	recipe,	we	will	first	test	the	sudo	command	with	a	non-privileged
user.

1.	 To	begin,	log	in	to	your	system	using	a	non-root	user	account,	then	type	the
following	to	verify	that	sudo	is	not	enabled	(use	your	user	account's
password	when	asked):

sudo	ls	varlog/audit

2.	 This	will	print	the	following	error	output	with	<username>,	which	is	the
user	you	are	currently	logged	in	with:

<username>	is	not	in	the	sudoers	file.		This	incident	will	be	

reported.

3.	 Now,	log	out	the	system	user	using	the	command:

logout

4.	 Next,	log	in	as	root	and	use	the	following	command	to	give	the	non-root
user	sudo	power	(change	<username>	appropriately):

usermod	-G	wheel	<username>

5.	 Now,	you	can	test	if	sudo	is	working	by	logging	out	root	again	and	re-
logging	in	the	user	from	step	1,	and	then	trying	again:

sudo	ls	varlog/audit

6.	 Congratulations,	you've	now	set	a	normal	user	to	have	sudo	powers	and	can
view	and	execute	files	and	directories	restricted	to	the	root	user.

How	it	works...
Unlike	some	Linux	distributions,	CentOS	does	not	provide	sudo	by	default.
Instead,	you	are	typically	allowed	to	access	restricted	parts	of	the	system	with
the	root	user	only.	This	offers	a	certain	degree	of	security,	but	for	a	multi-user
server	there	is	little	to	no	flexibility	unless	you	simply	provide	these	individuals
with	full	administrative	root	access	permissions.	This	is	not	advisable,	and	for
this	reason	it	was	the	purpose	of	this	recipe	to	show	you	how	to	provide	one	or
more	users	with	the	right	to	execute	commands	with	elevated	privileges.

So,	what	did	we	learn	from	this	experience?

We	started	by	logging	in	to	the	system	with	a	normal	user	account	having	no
root	privileges	or	sudo	powers.	With	this	user,	we	then	tried	to	list	a	directory
that	normally	only	the	root	user	is	allowed	to	see,	so	we	applied	the	sudo
command	on	it.	It	failed,	giving	us	the	error	that	we	are	not	in	the	sudoers	list.

The	sudo	command	provides	nominated	users	or	groups	with	the	ability	to
execute	a	command	as	if	they	were	the	root	user.	All	actions	are	recorded	(in	a
file	called	varlog/secure),	so	there	will	be	a	trace	of	all	the	commands	and
arguments	used.

We	then	logged	in	as	the	true	root	user	and	added	a	group	called	wheel	to	the
system	user	that	we	wanted	sudo	rights	for.	This	group	is	used	as	a	special
administration	group	and	every	member	of	it	is	granted	sudo	rights
automatically.

From	now	on,	the	nominated	user	can	implement	sudo	in	order	to	execute	any
command	with	elevated	privileges.	To	do	this,	the	user	would	be	required	to	type
the	word	sudo	before	any	command,	for	example,	they	could	run	the	following
command:

sudo	yum	update

They	will	be	asked	to	confirm	their	user	password	(not	the	root	password!),	and
after	successful	authentication	the	program	will	be	executed	as	the	user	root.

Finally,	we	can	say	that	there	are	three	ways	to	become	root	on	a	CentOS	Linux
system:

system:

First,	to	log	in	as	the	true	user	root	to	the	system.	Second,	you	can	use	the
command,	su	–	root,	while	any	normal	system	user	is	logged	in,	giving	the	root
user's	password	to	switch	to	a	root	shell	prompt	permanently.	Third,	you	can
give	a	normal	user	sudo	rights	so	that	they	can	execute	single	commands	using
their	own	passwords	as	if	they	were	the	root	user,	while	staying	logged	in	as
themselves.

Note

sudo	(superuser	do)	should	not	be	confused	with	the	su	(substitute	user)
command,	which	allows	you	to	switch	to	another	user	permanently	instead	of
executing	only	single	commands	as	you	would	do	being	the	root	user.

The	sudo	command	allows	great	flexibility	for	servers	that	have	a	lot	of	users,
where	one	administrator	is	not	enough	to	manage	the	whole	system.

Customizing	your	system	banners
and	messages
In	this	recipe,	we	will	learn	how	to	display	a	welcome	message	if	a	user
successfully	logs	in	to	our	CentOS	7	system	using	SSH	or	console,	or	opens	a
new	terminal	window	in	a	graphical	window	manager.	This	is	often	used	to
show	the	user	informative	messages,	or	for	legal	reasons.

Getting	ready
To	complete	this	recipe,	you	will	require	a	minimal	installation	of	the	CentOS	7
operating	system	with	root	privileges	and	a	console-based	text	editor	of	your
choice.

How	to	do	it...
1.	 To	begin,	log	in	to	your	system	using	your	root	user	account	and	create	the

following	new	file	with	your	favorite	text	editor:

vi	etcmotd

2.	 Next,	we	will	put	in	the	following	content	in	this	new	file:

###

#	This	computer	system	is	for	authorized	users	only.

#	All	activity	is	logged	and	regularly	checked.

#	Individuals	using	this	system	without	authority	or

#	in	excess	of	their	authority	are	subject	to

#	having	all	their	services	revoked...

###

3.	 Save	and	close	this	file.
4.	 Congratulations,	you	have	now	set	a	banner	message	for	whenever	a	user

successfully	logs	in	to	the	system	using	ssh	or	a	console.

How	it	works...
For	legal	reasons,	it	is	strongly	recommended	that	computers	display	a	banner
before	allowing	users	to	log	in;	lawyers	suggest	that	the	offense	of	unauthorized
access	can	only	be	committed	if	the	offender	knows	at	the	time	that	the	access	he
intends	to	obtain	is	unauthorized.	Login	banners	are	the	best	way	to	achieve	this.
Apart	from	this	reason,	you	can	provide	the	user	with	useful	system	information.

So,	what	did	we	learn	from	this	experience?

We	started	this	recipe	by	opening	the	file,	etcmotd,	which	stands	for	message	of
the	day;	this	content	will	be	displayed	after	a	user	logged	in	a	console	or	ssh.
Next,	we	put	in	that	file	a	standard	legal	disclaimer	and	saved	the	file.

There's	more...
As	we	have	seen,	the	etcmotd	file	displays	static	text	after	a	user	successfully
logs	in	to	the	system.	If	you	want	to	also	display	a	message	when	an	ssh
connection	is	first	established,	you	can	use	ssh	banners.	The	banner	behavior	is
disabled	in	the	ssh	daemon	configuration	file	by	default,	which	means	that	no
message	will	be	displayed	if	a	user	establishes	an	ssh	connection.	To	enable	this
feature,	log	in	as	root	on	your	server	and	open	the	etcssh/sshd_config	file
using	your	favorite	text	editor,	and	put	in	the	following	content	at	the	end	of	the
file:

Banner	etcssh-banner

Then,	create	and	open	a	new	file	called	etcssh-banner,	and	put	in	a	new	custom
ssh	greeting	message.

Finally,	restart	your	ssh	daemon	using	the	following	line:

systemctl	restart	sshd.service

The	next	time	someone	establishes	an	ssh	connection	to	your	server,	this	new
message	will	be	printed	out.

The	motd	file	can	only	print	static	messages	and	some	system	information
details,	but	it	is	impossible	to	generate	real	dynamic	messages	or	use	bash
commands	in	it	if	a	user	successfully	logs	in.

Also,	motd	does	not	work	in	non-login	shells,	such	as	when	you	open	a	new
terminal	within	a	graphical	window	manager.	In	order	to	achieve	this,	we	can
create	a	custom	script	in	the	etcprofile.d	directory.	All	scripts	in	this	directory
get	executed	automatically	if	a	user	logs	in	to	the	system.	First,	we	delete	any
content	in	the	etcmotd	file,	as	we	don't	want	to	display	two	welcome	banners.
Then,	we	open	the	new	file,	etcprofile.d/motd.sh,	with	our	text	editor	and
create	a	custom	message,	such	as	the	following,	where	we	can	use	bash
commands	and	write	little	scripts	(use	the	back	ticks	to	run	bash	shell	commands
in	this	file):

#!/bin/bash

echo	-e	"

##################################

#

#	Welcome	to	`hostname`,	you	are	logged	in	as	`whoami`

#	This	system	is	running	`cat	etcredhat-release`

#	kernel	is	`uname	-r`

#	Uptime	is	

`uptime	|	sed	's/.*up	([^,]*),	.*/1/'`

#	Mem	total	`cat	procmeminfo	|	grep	MemTotal	|	awk	{'print	$2'}`	kB

###################################"

Priming	the	kernel
The	Linux	kernel	is	a	program	that	constitutes	the	central	core	of	the	operating
system.	It	can	directly	access	the	underlying	hardware	and	make	it	available	to
the	user	to	work	with	it	using	the	shell.

In	this	recipe,	we	will	learn	how	to	prime	the	kernel	by	working	with
dynamically	loaded	kernel	modules.	Kernel	modules	are	device	driver	files	(or
filesystem	driver	files)	that	add	support	for	specific	pieces	of	hardware	so	that
we	can	access	them.

You	will	not	work	very	often	with	kernel	modules	as	a	system	administrator,	but
having	a	basic	understanding	of	them	can	be	beneficial	if	you	have	a	device
driver	problem	or	an	unsupported	piece	of	hardware.

Getting	ready
To	complete	this	recipe,	you	will	require	a	minimal	installation	of	the	CentOS	7
operating	system	with	root	privileges.

How	to	do	it...
1.	 To	begin,	log	in	to	your	system	using	your	root	user	account,	and	type	the

following	command	in	order	to	show	the	status	of	all	Linux	kernel	modules
currently	loaded:

lsmod

2.	 In	the	output,	you	will	see	all	loaded	device	drivers	(module);	let's	see	if	a
cdrom	and	floppy	module	have	been	loaded:

lsmod	|	grep	"cdrom\|floppy"

3.	 On	most	servers,	there	will	be	the	following	output:

cdrom																		42556		1	sr_mod

floppy																	69417		0

4.	 Now,	we	want	to	show	detailed	information	about	the	sr_mod	cdrom
module:

modinfo	sr_mod

5.	 Next,	unload	these	two	modules	from	the	kernel	(you	can	only	do	this	if	the
module	and	hardware	have	been	found	and	loaded	on	your	system;
otherwise	skip	this	step):

modprobe	-r	-v	sr_mod	floppy

6.	 Check	if	the	modules	have	been	unloaded	(output	should	be	empty	now):

lsmod	|	grep	"cdrom\|floppy"

7.	 Now,	to	show	a	list	of	all	kernel	modules	available	on	your	system,	use	the
following	directory	where	you	can	look	around:

ls	libmodules/$(uname	-r)/kernel

8.	 Let's	pick	a	module	from	the	subfolder	libmodules/$(uname	-
r)/kernel/drivers/	called	bluetooth	and	verify	that	it	is	not	loaded	yet
(output	should	be	empty):

lsmod	|	grep	btusb

9.	 Get	more	information	about	the	module:

modinfo	btusb

10.	 Finally,	load	this	bluetooth	USB	module:

modprobe	btusb

11.	 Verify	again	that	it	is	loaded	now:

lsmod	|	grep	"btusb"

How	it	works...
Kernel	modules	are	the	drivers	that	your	system's	hardware	needs	to
communicate	with	the	kernel	and	operating	system	(also,	they	are	needed	to	load
and	enable	filesystems).	They	are	loaded	dynamically,	which	means	that	only
the	drivers	or	modules	are	loaded	at	runtime,	which	reflects	your	own	custom
specific	hardware.

So,	what	did	we	learn	from	this	experience?

We	started	using	the	lsmod	command	to	view	all	the	currently	loaded	kernel
modules	in	our	system.	The	output	shows	three	columns:	the	module	name,	the
amount	of	RAM	the	module	occupies	while	loaded,	and	the	number	of	processes
this	module	is	used	by	and	a	list	of	dependencies	of	other	modules	using	it.	Next,
we	checked	if	the	cdrom	and	floppy	modules	have	been	loaded	by	the	kernel
yet.	In	the	output,	we	saw	that	the	cdrom	module	is	dependent	on	the	sr_mod
module.	So,	next	we	used	the	modinfo	command	to	get	detailed	information
about	it.	Here,	we	learned	that	sr_mod	is	the	SCSI	cdrom	driver.

Since	we	only	need	the	floppy	and	cdrom	drivers	while	we	first	installed	the
base	system	we	can	now	disable	those	kernel	modules	and	save	us	some
memory.	We	unloaded	the	modules	and	their	dependencies	with	the	modprobe	-
r	command	and	rechecked	whether	this	was	successful	by	using	lsmod	again.

Next,	we	browsed	the	standard	kernel	module	directory	(for	example,
libmodules/$(uname	-r)/kernel/drivers).	The	uname	substring	command
prints	out	the	current	kernel	version	so	that	it	makes	sure	that	we	are	always
listing	the	current	kernel	modules	after	having	installed	more	than	one	version	of
the	kernel	on	our	system.

This	kernel	module	directory	keeps	all	the	available	modules	on	your	system
structured	and	categorized	using	subdirectories.	We	navigated	to
drivers/bluetooth	and	picked	the	btusb	module.	Doing	modinfo	on	the	btusb
module,	we	found	out	that	it	is	the	generic	bluetooth	USB	driver.	Finally,	we
decided	that	we	needed	this	module,	so	we	loaded	it	using	the	modprobe
command	again.

There's	more...
It's	important	to	say	that	loading	and	unloading	kernel	modules	using	the
modprobe	command	is	not	persistent;	this	means	that	if	you	restart	the	system,	all
your	changes	to	kernel	modules	will	be	gone.	To	load	a	kernel	module	at	boot
time	create	a	new	executable	script	file,
etcsysconfig/modules/<filename>.modules,	where	<filename>	is	a	name	of
your	choice.	There	you	put	in	modprobe	execution	commands	just	as	you	would
on	the	normal	command	line.	Here	is	an	example	of	additionally	loading	the
bluetooth	driver	on	startup,	for	example
etcsysconfig/modules/btusb.modules:

#!/bin/sh

if	[!	-c	devinput/uinput]	;	then

exec	sbinmodprobe	btusb	>devnull	2>&1

fi

Finally,	you	need	to	make	your	new	module	file	executable	via	the	following
line:

chmod	+x	etcsysconfig/modules/btusb.modules

Recheck	your	new	module	settings	with	lsmod	after	reboot.

To	remove	a	kernel	module	at	boot	time	for	example	sr_mod,	we	need	to
blacklist	the	module's	name	using	the	rdblacklist	kernel	boot	option.	We	can
set	this	option	by	appending	it	to	the	end	of	the	GRUB_CMDLINE_LINUX	directive	in
the	GRUB2	configuration	file	etcdefault/grub	so	it	will	look	like:

GRUB_CMDLINE_LINUX="rd.lvm.lv=centos/root	rd.lvm.lv=centos/swap	

crashkernel=auto	rhgb	quiet	rdblacklist=sr_mod"

If	you	need	to	blacklist	multiple	modules,	the	rdblacklist	option	can	be
specified	multiple	times	like	rdblacklist=sr_mod	rdblacklist=nouveau.

Next	recreate	the	GRUB2	configuration	using	the	grub2-mkconfig	command	(to
learn	more	read	the	Getting	started	and	customizing	the	boot	loader	recipe	in
Chapter	1,	Installing	CentOS).

grub2-mkconfig	-o	bootgrub2/grub.cfg

Finally	we	also	need	to	blacklist	the	module	name	using	the	blacklist	directive
in	a	new.conf	file	of	your	choice	in	the	etcmodprobe.d/	directory	for	example:

echo	"blacklist	sr_mod"	>>	etcmodprobe.d/blacklist.conf

Chapter	3.	Managing	the	System
In	this	chapter,	we	will	cover	the	following	topics:

Knowing	and	managing	background	services
Troubleshooting	background	services
Tracking	system	resources	with	journald
Configuring	journald	to	make	it	persistent
Managing	users	and	their	groups
Scheduling	tasks	with	cron
Synchronizing	files	and	doing	more	with	rsync
Maintaining	backups	and	taking	snapshots
Monitoring	important	server	infrastructure
Taking	control	with	Git	and	Subversion

Introduction
This	chapter	is	a	collection	of	recipes	that	provides	for	the	need	to	maintain	a
performance-based	server	solution.	From	monitoring	your	free	disk	space,	to
working	with	system	services	and	managing	the	synchronization	of	remote	files,
the	purpose	of	this	chapter	is	to	show	you	how	quickly	and	easily	you	can	get	to
grips	with	the	task	of	server	maintenance.

Knowing	and	managing	your
background	services
Linux	system	services	are	one	of	the	most	fundamental	concepts	of	every	Linux
server.	They	are	programs	which	run	continuously	in	your	system,	waiting	for
external	events	to	process	something	or	do	it	all	the	time.	Normally,	when
working	with	your	server,	a	system	user	will	not	notice	the	existence	of	such	a
running	service	because	it	is	running	as	a	background	process	and	is	therefore
not	visible.	There	are	many	services	running	all	the	time	on	any	Linux	server.
These	can	be	a	web	server,	database,	FTP,	SSH	or	printing,	DHCP,	or	LDAP
server	to	name	a	few.	In	this	recipe,	we	will	show	you	how	to	manage	and	work
with	them.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet	to	facilitate	the	download	of	additional
packages.	Some	commands	shown	here	use	less	navigation	in	their	output.	Read
the	Navigating	text	files	with	less	recipe	from	Chapter	2,	Configuring	the	System
to	learn	how	to	browse	them.

How	to	do	it...
systemctl	is	a	program	that	we	will	use	to	manage	all	our	background	service
tasks	in	a	CentOS	7	system.	Here,	we	will	show	you	how	to	use	it,	taking	the
Apache	web	server	service	as	an	example	in	order	to	get	familiar	with	it.	For	a
full	explanation	of	Apache,	read	Chapter	12,	Providing	Web	Services:

1.	 First,	we	log	in	as	root	and	install	the	Apache	web	server	package:

yum	install	httpd

2.	 Next	we	will	check	Apache's	service	status:

systemctl	status	httpd.service

3.	 Start	the	webserver	service	in	the	background	and	print	out	it's	status	again:

systemctl	start	httpd.service

systemctl	status	httpd.service

4.	 Next,	let's	print	out	a	list	of	all	services	currently	running	in	the	background
of	your	system;	in	this	list,	you	should	identify	the	httpd	service	you	just
started:

systemctl	-t	service	-a	--state	running

5.	 Now,	let's	make	a	backup	of	the	Apache	configuration	file:

cp	etchttpd/conf/httpd.conf	etchttpd/conf/httpd.conf.BAK

6.	 Now,	we	will	make	some	changes	to	the	main	Apache	configuration	file
using	sed:

sed	-i	's/Options	Indexes	FollowSymLinks/Options	-Indexes	

+FollowSymLinks/g'	etchttpd/conf/httpd.conf

7.	 Now,	type	the	following	command	to	stop	and	start	the	service	and	apply
our	changes:

systemctl	stop	httpd.service

systemctl	start	httpd.service

systemctl	status	httpd.service

8.	 Next,	let's	enable	the	httpd	service	to	start	automatically	at	boot	time:

systemctl	enable	httpd.service

9.	 The	last	command	will	show	how	to	restart	a	service:

systemctl	restart	httpd.service

How	it	works...
As	we	have	seen,	the	systemctl	utility	can	be	used	to	take	full	control	of	your
system's	services.	The	systemctl	is	the	control	program	for	systemd,	which	is
the	system	and	service	manager	in	CentOS	7	Linux.	The	systemctl	command
can	be	used	for	a	variety	of	other	tasks	as	well,	but	here	we	concentrate	on
managing	services.

So,	what	have	we	learned	from	this	experience?

We	started	this	recipe	by	logging	in	as	root	and	installed	the	Apache	web	server
package	as	we	want	to	use	it	for	showing	how	to	manage	services	in	general
using	the	systemctl	program.	Apache	or	the	httpd.service,	as	it	is	called	by
systemd,	is	just	an	example	we	will	use;	other	important	services	that	might	be
running	in	a	basic	server	environment	could	be	sshd.service,
mariadb.service,	crond.service,	and	so	on.	Afterwards,	we	checked	httpd's
current	status	with	the	systemctl	status	command	parameter.	The	output
showed	us	two	fields:	Loaded	and	Active.	The	Loaded	field	tells	us	if	it	is
currently	loaded	and	if	it	will	automatically	be	started	at	boot	time;	the	Active
field	denotes	whether	the	service	is	currently	running	or	not.	Next,	we	showed
how	to	start	a	service	using	systemctl.	The	command's	exact	starting	syntax	for
services	is	the	systemctl	start	<name	of	the	service>.service.

Note

By	starting	a	service,	the	program	gets	detached	from	the	terminal	by	forking	off
a	new	process	that	gets	moved	into	the	background	where	it	runs	as	a	non-
interactive	background	process.	This	is	sometimes	called	daemon.

Next,	after	we	started	the	Apache	webserver	daemon,	we	then	used	systemctl's
status	parameter	again	to	show	how	the	status	changes	if	we	run	it.	The	output
shows	us	that	it	is	currently	loaded	but	disabled	on	reboot.	We	also	see	that	it	is
running,	along	with	the	latest	logging	output	from	this	service	and	other	detailed
information	about	the	process.	To	get	an	overview	of	all	status	information	for
all	services	on	the	system,	use	systemctl	--type	service	--all.	A	systemctl
service	must	not	be	running	all	the	time.	Its	state	can	also	be	stopped,	degraded,
maintained,	and	so	on.	Next,	we	used	the	following	command	to	get	a	list	of	all
currently	running	services	on	your	system:

systemctl	-t	service	-a	--state	running

As	you	can	see	here,	we	used	the	-t	flag	in	order	to	filter	only	for	type	service
units.	As	you	may	guess,	systemctl	can	not	only	deal	with	service	units,	but
also	with	a	lot	of	other	unit	types.	systemd	units	are	resources	systemd	can
manage	using	configuration	files,	and	which	encapsulate	information	about
services,	listening	sockets,	saved	system	state	snapshots,	mounting	devices,	and
other	objects	that	are	relevant	to	the	system.	To	get	a	list	of	all	possible	unit
types,	type	systemctl	-t	help.	These	configuration	unit	files	reside	in	special
folders	in	the	system,	and	the	type	they	belong	to	can	be	read	from	the	extension;
all	the	service	unit	files	have	the	file	extension,	.service	(for	example,	device
unit	files	have	the	extension,	.device).	There	are	two	places	where	the	system
stores	them.	All	the	systemd	unit	files	installed	by	the	basic	system	during
installation	are	in	usrlib/systemd/system,	all	other	services	that	come	from
installing	packages	such	as	Apache	or	for	your	own	configurations	should	go	to
etcsystemd/system.	We	can	find	our	Apache	service	configuration	file	exactly
at	usrlib/systemd/system/httpd.service.	Next,	we	showed	the	user	how	to
stop	a	service,	which	is	the	opposite	of	starting	it,	using	the	syntax,	systemctl
stop	<name	of	the	service>.	Finally,	as	a	last	step,	we	used	systemctl's
restart	parameter,	which	just	handles	the	stopping	and	starting	of	a	service	in
one	step	with	less	typing.	This	is	often	useful	if	a	service	hangs	and	is
unresponsive,	and	you	quickly	need	to	reset	it	to	get	it	working.	Before	showing
how	to	stop	and	restart	a	service,	we	did	another	important	thing.	While	the
Apache	service	was	running,	we	changed	its	main	service	configuration	file	with
the	sed	command,	adding	an	-Indexes	option	that	disables	the	directory	web
site	file	listings,	and	which	is	a	common	measure	to	increase	the	security	of	your
web	server.	Since	the	Apache	web	server	was	already	running	and	loading	its
configuration	into	memory	during	service	startup,	any	changes	to	this	file	will
never	be	recognized	by	the	running	service.

Note

Normally,	to	apply	any	configuration	file	change,	running	services	need	a	full
service	restart,	because	configuration	files	will	normally	only	be	loaded	during
startup	initialization.

Now,	imagine	that	your	web	server	is	reachable	from	the	Internet	and	at	the
moment	there	are	a	lot	of	people	accessing	your	web	pages	or	applications	in

parallel.	If	you	restart	the	Apache	normally,	the	web	server	will	be	inaccessible
for	a	while	(as	long	as	it	takes	to	restart	the	server)	as	the	process	will	actually
end	and	afterwards	start	all	over	again.	All	the	current	users	would	get	HTML
404	error	pages	if	they	were	to	request	something	at	that	moment.	Also,	all	the
current	session	information	would	have	gone;	imagine	you	have	an	online	web
shop	where	people	use	shopping	carts	or	logging	in.	All	this	information	would
also	be	gone.	To	avoid	the	disruption	of	important	services	such	as	the	Apache
web	server,	some	of	these	services	have	a	reload	option	(but	not	every	service
has	this	feature!)	that	we	can	apply	instead	of	the	restart	parameter.	This
option	just	reloads	and	applies	the	service's	configuration	file,	while	the	service
itself	stays	online	and	does	not	get	interrupted	during	execution.	For	Apache,
you	can	use	the	following	command-line:	systemctl	reload	httpd.service.
To	get	a	list	of	all	the	services	that	have	the	reload	functionality,	use	the
following	lines:

grep	-l	"ExecReload"	usrlib/systemd/system/*.service	

etcsystemd/system/*.service

So,	having	completed	this	recipe,	we	can	say	that	we	now	know	how	to	work
with	the	basic	systemctl	parameters	to	manage	services.	It	can	be	a	very
powerful	program	and	can	be	used	for	much	more	than	only	starting	and
stopping	services.	Also,	in	this	recipe,	we	have	used	different	names	that	all
mean	the	same:	system	service,	background	process,	or	daemon.

There's	more...
There	is	another	important	unit	type	called	target.	Targets	are	also	unit	files	and
there	are	quite	a	number	of	them	already	available	in	your	system.	To	show
them,	use	the	following:

ls	-a	usrlib/systemd/system/*.target	etcsystemd/system/*.target

Simply	said,	targets	are	collections	of	unit	files	such	as	services	or	other	targets.
They	can	be	used	to	create	runlevel-like	environments,	which	you	may	know
from	earlier	CentOS	versions.	Runlevels	define	which	services	should	be	loaded
at	which	system	state.	For	example,	there	is	a	graphical	state,	or	a	rescue	mode
state,	and	so	on.	To	see	how	the	common	runlevels	correspond	to	our	targets,	run
the	following	command,	which	shows	us	all	the	symbolic	links	between	them:

ls	-al	libsystemd/system	|	grep	runlevel

Targets	can	be	dependent	on	other	targets;	to	get	a	nice	overview	of	target
dependencies,	we	can	run	the	following	command	to	show	all	dependencies
from	the	multi-user	target	to	all	the	other	targets	(green	means	active	and	red
means	inactive):

systemctl	list-dependencies	multi-user.target

You	can	show	the	current	target	that	we	are	in	at	the	moment	with:

systemctl	get-default

You	can	also	switch	to	another	target:

systemctl	set-default	multi-user.target

Troubleshooting	background	services
Often,	a	big	part	of	every	system	administrator's	work	is	troubleshooting	the
server	when	something	goes	wrong.	This	is	especially	true	for	your	system's
services,	as	they	are	constantly	running	and	processing	information	all	the	time.
Services	can	be	dependent	on	other	services	and	on	the	server's	system,	and	there
will	be	situations	in	your	administrator's	life	where	the	system	services	will	fail
or	refuse	to	start.	Here,	in	this	recipe,	we	will	show	you	how	to	troubleshoot
them	if	something	goes	wrong.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges	and	a	console-based	text	editor	of	your
choice;	you	should	also	have	completed	the	Knowing	and	managing	your
background	services	recipe	from	this	chapter,	where	we	installed	the	Apache
web	server.

How	to	do	it...
In	order	to	show	you	how	to	troubleshoot	services,	we	will	introduce	a	random
error	in	the	Apache	service's	configuration	file	and	then	show	you	how	to
troubleshoot	and	fix	it:

1.	 Log	in	as	root	and	type	the	following	command	to	append	content	to	the
httpd.conf:

echo	"THIS_IS_AN_ERRORLINE"	>>	etchttpd/conf/httpd.conf

2.	 Next,	reload	the	httpd	service	and	show	its	output:

systemctl	reload	httpd.service

systemctl	status	httpd.service	-l

3.	 Let's	revert	this	error	line:

sed	-i	's/THIS_IS_AN_ERRORLINE//g'	etchttpd/conf/httpd.conf

4.	 Now,	restart	the	service	again:

systemctl	reload	httpd.service

systemctl	status	httpd.service

How	it	works...
In	this	fairly	short	recipe,	we	showed	you	how	an	example	service	will	behave	if
it	contains	errors,	and	what	you	can	do	to	fix	it	to	get	you	started.	There	are	a	lot
of	different	scenarios	where	something	can	go	wrong	when	services
malfunction,	and	it	can	be	a	big	part	of	a	system	administrator's	job	to	solve
those	kinds	of	problem.

So,	what	have	we	learned	from	this	experience?

We	started	this	recipe	by	introducing	a	line	of	text	in	the	main	Apache
configuration	file,	which	does	not	contain	any	valid	configuration	syntax,	and
therefore	the	httpd	service	cannot	interpret	it.	Then,	we	used	the	systemctl
reload	parameter	to	reload	our	server's	configuration	file.	As	said	before,	not	all
services	have	the	reload	option,	so	if	your	service	of	interest	does	not	support
this,	use	the	restart	parameter	instead.	Since	Apache	will	try	to	reload	the
configuration	file	with	our	current	changes,	it	will	refuse	to	accept	the	new
configuration	because	of	the	wrong	syntax	that	we	introduced.	Since	we	are	just
reloading	the	configuration,	the	running	Apache	process	will	not	be	affected	by
this	problem	and	will	stay	online	using	its	original	configuration.	The	systemctl
parameter	will	print	out	the	following	error	message,	giving	us	a	hint	of	what	to
do	next:

Job	for	httpd.service	failed.	Take	a	look	at	systemctl	status	

httpd.service	and	journalctl	-xe	for	details.

As	suggested	by	the	error	output,	the	systemctl	status	parameter	is	a	very
powerful	tool	to	see	what's	going	on	behind	the	scenes	with	this	service,	and	to
try	and	find	out	the	reason	for	any	failure	(here	you	can	also	see	that	Apache	is
still	running).	If	you	start	the	systemctl	status	with	the	-l	flag,	it	prints	out	an
even	longer	version	of	the	output,	which	can	help	you	even	more.

The	output	of	this	command	shows	us	the	exact	reason	for	failing	the
configuration	reload,	so	we	can	easily	trace	down	the	cause	of	the	problem	(the
output	has	been	truncated):

AH00526:	Syntax	error	on	line	354	of	etchttpd/conf/httpd.conf:

Invalid	command	ERRORLINE,	perhaps	misspelled	or	defined	by	a	

module,	is	not	included	in	the	server	configuration.

This	output	is	part	of	the	complete	journald	log	information.	If	you	want	to	read
more	about	it,	please	refer	to	the	Tracking	system	resources	with	journald	recipe
in	this	chapter.	So,	with	this	very	useful	information	from	the	output,	we	can
easily	spot	the	problem	and	redo	the	introduction	of	ERRORLINE	using	the	sed
command	and	reload	the	service	again;	this	time	everything	will	work	fine.

So,	in	summary,	we	can	say	that	the	systemctl	status	command	is	a	very
comfortable	command	that	can	be	tremendously	helpful	in	finding	out	problems
with	your	service.	Most	services	are	very	sensitive	to	syntax	errors,	and
sometimes	it	can	be	just	a	misplaced	space	character	that	caused	the	service	to
refuse	to	work.	Therefore,	system	administrators	must	work	precisely	all	the
time.

Tracking	system	resources	with
journald
Log	files	contain	system	messages	and	output	from	services,	the	kernel,	and	all
kinds	of	running	applications.	They	can	be	very	useful	in	many	situations,	for
instance,	to	troubleshoot	system	problems	and	monitor	services	or	other	system
resources,	or	doing	security	forensics	after	a	breach	of	security.	In	this	recipe,
you	will	learn	the	basics	of	how	to	work	with	logging	services	using	journald.

Getting	ready
To	complete	this	recipe,	you	will	need	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges	and	a	console-based	text	editor	of	your
choice.	Also,	setting	the	time	and	date	correctly	is	very	crucial	for	the	whole
logging	concept,	so	please	apply	the	Synchronizing	the	system	clock	with	NTP
and	the	chrony	suite	recipe	from	Chapter	2,	Configuring	the	System	before	using
this	recipe.	Also,	a	basic	knowledge	of	systemd	and	units	can	be	advantageous.
This	is	covered	in	the	Knowing	and	managing	background	services	recipe	in	this
chapter.	Journalctl	uses	less	navigation	to	show	output;	please	read	the
Navigating	text	files	with	less	recipe	from	Chapter	2,	Configuring	the	System	if
you	don't	know	how	to	work	with	it.

How	to	do	it...
On	CentOS	7,	we	have	a	choice	between	two	logging	mechanisms	called
rsyslog	and	the	journald	log	system,	which	is	a	component	of	the	new	systemd
system	manager,	for	viewing	and	managing	logging	information.	Here,	we	will
show	you	how	to	work	with	the	journalctl	command,	which	is	the	controlling
client	for	the	journald	daemon:

1.	 To	begin,	log	in	as	root	and	type	the	following	command	to	view	the	whole
journal	log:

journalctl

2.	 Next,	we	want	to	show	only	the	messages	within	a	specific	time	frame
(change	the	date	accordingly):

journalctl	--since	"2015-07-20	6:00:00"	--until	"2015-07-20	

7:30:00"

3.	 Afterwards,	we	want	to	filter	the	log	system	by	all	messages	from	the	sshd
service:

journalctl	-u	sshd.service	--since	"yesterday"

4.	 Now,	we	want	to	show	only	messages	with	type	error:

journalctl	-p	err	-b

5.	 To	get	the	most	verbose	version	of	journalctl,	use	the	verbose	option:

journalctl	-p	err	-b	-o	verbose

6.	 To	get	a	current	view	on	the	log	output,	use	the	following	command	(this	is
not	less	navigation—use	the	key	combination	Ctrl+C	to	exit	this	view):

journalctl	-f

How	it	works...
In	CentOS	7,	we	can	use	the	new	journald	logging	system,	which	is	a	part	of
the	systemd	system	management.	It	is	a	centralized	tool	that	will	log	just	about
everything	on	your	system	including	all	output	from	the	early	boot	over	kernel	to
services	and	all	program	messages.	The	main	advantage	over	other	logging
mechanisms	is	that	you	don't	have	to	configure	logging	for	each	of	your	services
or	other	resources,	because	everything	is	already	set	up	for	all	applications	that
are	controlled	and	running	through	the	centralized	systemd	system.

So,	what	have	we	learned	from	this	experience?

We	began	our	journey	by	running	the	journalctl	command,	which	when
applied	without	any	parameters	show	us	the	complete	journal	log,	which
includes	everything	from	starting	your	system	and	capturing	the	first	boot	log
entries	to	the	latest	system	messages	in	the	order	they	appeared,	appending	new
messages	to	the	bottom	(chronological	order).	If	your	system	has	been	running
for	a	while,	it	can	contain	hundreds	of	thousands	of	lines	of	logging	data,	and	is
very	impractical	to	work	with	in	this	raw	form.

This	output	is	constantly	captured	by	the	journald	daemon,	but	is	not	written	to
text	files	as	other	logging	systems	such	as	rsyslog	do	it.	Instead,	it	uses	a
structured	and	indexed	binary	file,	which	stores	a	lot	of	additional	meta
information	such	as	user	Id,	timestamp,	and	so	on,	and	which	makes	it	easy	to
transform	into	all	kinds	of	different	output	formats.	This	can	be	very	convenient
if	you	want	to	further	process	journal	information	by	another	tool.	As	you	cannot
read	binary	files,	you	will	need	the	client	journalctl	for	it,	which	is	used	to
query	the	journald	database.	Since	it	is	almost	impossible	to	parse	through	this
sheer	amount	of	data	manually,	we	then	take	advantage	of	journalctl's	rich
filtering	options.	First,	we	used	the	--since	and	--until	parameters	to	extract
all	log	messages	within	a	specific	time	frame.	The	syntax	for	specifying	the	time
and	date	here	is	very	flexible	and	understands	phrases	such	as	yesterday	or	now,
but	we	stick	with	the	simple	date	syntax,	YYYY-MM-DD	HH:MM:SS.	Next,	we	used
journalctl's	-u	parameter	to	filter	log	messages	for	a	specific	unit	type.	We	used
it	to	filter	messages	coming	from	the	sshd	daemon	service.	We	added	another
filter	using	the	--since	parameter,	which	tightens	the	result	of	the	-u	unit	filter
even	more,	outputting	only	sshd	service	results	that	occurred	yesterday.	The	next

filter	we	applied	was	using	the	parameter	string,	-p	err	-b,	which	filters	the	log
database	by	priority	or	log	level.	Every	log	message	can	have	an	associated
priority	that	determines	the	importance	of	the	message.	To	find	out	more	about
different	log	levels,	refer	to	the	manual	using	the	command	line	man	3	syslog
(if	this	manual	is	not	available,	install	it	by	typing	yum	install	man-pages).
Our	command	will	print	out	all	log	messages	labeled	as	error	or	above,	which
includes:	error,	critical,	alert,	or	emergency.

Next,	we	used	the	same	command	parameters	but	added	-o	verbose,	which
gives	the	most	verbose	output	of	logging	information.	Lastly	we	presented	the	-f
parameter	(for	follow),	which	will	give	us	a	live	view	of	the	latest	log	messages
and	leaves	this	connection	open,	appending	any	new	messages	to	the	end	of	the
output	when	they	occur.	This	is	often	useful	to	see	how	the	system	reacts	if	you
are	currently	testing	out	settings	or	starting/stopping	services.

Summing	up,	one	can	say	that,	on	CentOS	7,	two	logging	systems	do	coexist:
the	older	rsyslog	and	the	newer	journald,	with	the	latter	being	your	primary
tool	of	choice	for	troubleshooting	your	system.	But	remember	that	on	CentOS	7,
journald	is	not	a	full	replacement	for	rsyslog	though.	There	are	some	rsyslog
features	that	are	missing	in	journald,	and	also	there	are	lots	of	tools	and	scripts,
such	as	log	digesting	tools	or	monitoring	suites	such	as	Nagios,	that	work
exclusively	with	rsyslog.

System	administrators	often	face	a	big	challenge	troubleshooting	system	errors
or	unexpected	server	behaviors.	Often,	it's	not	easy	to	find	the	single	point	of
failure	by	searching	through	massive	amounts	of	different	log	file	texts	while
applying	regular	expression	searches	or	Linux	command	line	kung	fu.	Journald
provides	a	very	convenient	alternative	by	providing	a	powerful	and	well-defined
centralized	querying	system	to	get	the	log	file	analysis	done	quickly	and
efficiently!

Configuring	journald	to	make	it
persistent
Journald's	advantages	over	other	logging	systems	such	as	rsyslog	is	that	it	is
very	efficient	and	logs	just	about	everything	on	your	system	automatically
without	the	need	to	configure	anything,	because	it	is	a	part	of	the	systemd	suite.
The	main	disadvantage	is	that	all	journald	log	information	will	get	lost	after	a
system's	restart.	Journald	logging	can	produce	huge	amounts	of	data	and	by
default	all	logging	information	is	only	kept	in	memory,	which	is	not	very
practicable	if	you	need	to	access	older	log	information	or	analyze	causes	of
system	crash	reboots.	Here,	in	this	recipe,	we	show	you	how	to	configure
journald	to	make	it	persistent.

Getting	ready
To	complete	this	recipe,	you	will	require	a	minimal	installation	of	the	CentOS	7
operating	system	with	root	privileges	and	a	console-based	text	editor	of	your
choice.

How	to	do	it...
To	begin	this	recipe,	we	need	to	create	a	location	that	will	hold	our	persistent
journal	database:

1.	 Log	in	as	the	root	user	and	create	the	following	directory:

mkdir	varlog/journal

2.	 Next,	add	the	new	directory	to	journald	to	use	it	as	a	storage	location	and
fix	permissions:

systemd-tmpfiles	--create	--prefix	varlog/journal

3.	 Now,	restart	journald:

systemctl	restart	systemd-journald

4.	 Finally,	to	check	whether	the	log	survived	the	reboot,	restart	the	computer
and	type	the	following:

journalctl	--boot=-1

How	it	works...
We	started	this	recipe	by	creating	the	new	directory,	varlog/journal.	By
default,	journald	writes	its	log	database	to	runlog/journal,	which	is	a
directory	only	for	runtime	information,	and	its	content	does	not	survive	system
reboots.	Afterwards,	we	used	the	systemd-tmpfiles	command	to	set	up	our	new
directory	for	journald.	Finally,	we	restarted	the	journald	server	daemon	to
apply	our	changes	to	the	system.	To	test	if	persistence	is	working,	restart	your
server	and	afterwards	use	journalctl	–boot=-1.	This	will	show	us	all	journal
information	from	the	last	boot.	If	persistence	is	not	working,	it	will	print	out	the
following	error;	otherwise	it	will	correctly	show	all	journal	messages	before	the
last	boot:

Failed	to	look	up	boot	-1:	Cannot	assign	requested	address

In	this	fairly	simple	recipe,	we	have	shown	how	to	make	journald	persistent
over	system	reboots.	This	is	really	useful	if	you	need	to	review	older	log	files
from	the	past,	which	can	sometimes	help	you	find	out	problems,	for	example,	the
roots	of	past	hardware	failures.

Managing	users	and	their	groups
In	this	recipe,	we	will	learn	how	to	manage	your	system's	users	and	groups	on
CentOS	7.	Essential	user	and	group	managing	skills	are	one	of	the	most
important	CentOS	system	administrator	fundamentals.

Getting	ready
To	complete	this	recipe,	you	will	need	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges	and	a	console-based	text	editor	of	your
choice.

How	to	do	it...
This	recipe	shows	you	how	to	manage	users	and	groups	by	learning	how	to	add,
delete,	and	modify	them:

1.	 To	begin	this	recipe,	we	log	in	as	root	and	type	the	following	command	to
get	a	list	of	all	the	users	known	to	the	system:	cat	etcpasswd.

2.	 Now,	show	the	root	user	ID	(UID)	and	group	ID	(GID):

id	root

3.	 Next,	we	will	run	the	following	command	to	add	a	new	user	to	the	system
(exchange	your_new_username	with	a	username	of	your	choice):

useradd	your_new_username

4.	 However,	in	order	to	complete	this	process,	you	will	be	expected	to	provide
a	suitable	password.	To	do	this,	type	the	following	command	(change
your_new_username	with	a	username	of	choice)	than	enter	a	secure
password	when	prompted:

passwd	your_new_username

Note

Passwords	should	not	be	less	than	six	characters,	but	should	not	be	longer
than	sixteen	characters.	They	should	consist	of	alphanumeric	values,	and
for	obvious	reasons	you	must	avoid	the	use	of	whitespaces.	Do	not	use	a
dictionary-based	word	and	refrain	from	using	a	known	or	obvious	phrase.

5.	 Next,	create	a	new	group	and	give	it	a	special	name:

groupadd	your_new_group

6.	 Then,	we	add	our	new	user	to	this	new	group:

usermod	-G	your_new_group	your_new_username

7.	 Finally,	let's	print	the	user	ID	and	group	IDs	of	our	new	user	to	see	what
has	changed:

id	your_new_username

How	it	works...
The	purpose	of	this	recipe	was	to	create	a	new	user	and	group	and	show	how	to
connect	them	together.

So,	what	did	we	learn	from	this	experience?

First,	we	printed	out	the	content	of	file	etcpasswd	to	show	all	the	current	users
in	the	system.	This	list	not	only	contains	normal	user-accounts	that	belong	to	real
persons,	but	also	accounts	that	are	used	to	control	and	own	a	specific	application
or	service.	Then,	we	used	the	id	command	to	display	the	unique	user	UID	and
GID	for	our	existing	user	root.	In	Linux,	every	user	can	be	identified	by	their
UID	and	GID,	and	every	file	in	the	filesystem	has	specific	permission	settings
that	manage	its	access	for	the	file	owner,	group	owner,	and	the	rest	of	the	users.
For	each	of	those	three	groups,	you	can	enable	or	disable	read,	write,	and
execute	permissions	using	the	command,	chmod	(use	man	chmod	to	learn	more,
and	also	check	out	man	chown).	The	owner	and	group	permissions	correspond	to
a	UID	and	GID	that	we	can	display	for	every	file	using	ls	-l.

Next,	we	issued	the	useradd	command	that	required	us	to	supply	a	suitable
name	for	the	new	user,	which	in	turn	will	enable	the	server	to	establish	the	new
identity	with	a	default	set	of	values	and	criteria	that	includes	a	user	ID,	home
directory,	primary	group	(GID),	and	also	set	the	default	shell	to	bash.
Completing	this	process	is	simply	a	matter	of	confirming	a	suitable	password.
To	remove	a	user,	there	is	the	opposite	command,	userdel,	which	works
similarly	but	can	be	given	the	option	-f	to	remove	the	home	directory	instead	of
leave	it	on	the	system.	Next,	we	used	the	groupadd	command,	which,	as	the
name	implies,	will	create	a	new	group	and	associate	a	new	unique	GID	to	it.
Afterwards,	we	made	our	user	in	question	a	member	of	the	new	group	that	we
created	before	using	the	usermod	-G	command.	As	said	before,	each	user	has
exactly	one	unique	UID	and	GID.	The	first	group	is	the	primary	group	and	is
mandatory;	however	a	user	can	belong	to	a	number	of	different	groups,	which
are	then	called	secondary	groups.	The	primary	group	is	needed	when	creating	a
new	file	because	it	will	set	the	GID	and	UID	of	the	user	creating	it.	To	delete	a
group,	we	can	use	the	groupdel	command.	Finally,	we	used	the	id	command
again	on	our	new	user	to	show	its	UID,	primary	GID,	and	the	new	secondary
GID	groups	we	added	to	it.

You	are	now	able	to	fully	control	your	user	and	groups	with	just	a	few
commands:	useradd,	usermod,	userdel,	groupadd,	groupmod,	and	groupdel.

Scheduling	tasks	with	cron
In	this	recipe,	we	will	investigate	the	role	of	server	automation	and	the
convenience	of	running	specific	tasks	at	predefined	periods	by	introducing	you
to	the	time-based	job	scheduler	known	as	cron.	Cron	allows	for	the	automation
of	tasks	by	enabling	the	administrator	to	determine	a	predefined	schedule	based
on	any	hour,	any	day,	or	any	month.	It	is	a	standard	component	of	the	CentOS
operating	system,	and	it	is	the	purpose	of	this	recipe	to	introduce	you	to	the
concept	of	managing	recurring	tasks	in	order	to	take	advantage	of	this	invaluable
tool	and	to	make	CentOS	work	for	you.

Getting	ready
To	complete	this	recipe,	you	will	require	a	minimal	installation	of	the	CentOS	7
operating	system	with	root	privileges,	and	a	console-based	text	editor	of	your
choice.	The	crontab	program	uses	Vim	for	file	editing.	If	you	do	not	know	how
to	work	with	Vim,	go	through	the	tutorial	shown	in	the	recipe	Introduction	to
Vim	in	Chapter	2,	Configuring	the	System.

How	to	do	it...
The	purpose	of	this	recipe	is	to	create	a	script	that	will	write	the	time	and	date
with	a	few	words	of	your	choice	to	a	text	file	every	five	minutes.	This	may	seem
to	be	a	relatively	simple	exercise,	but	the	intention	is	to	show	you	that,	from
such	simplicity,	cron	can	be	used	to	do	so	much	more	that	will	make	working
with	CentOS	an	absolute	pleasure.

1.	 To	begin	this	recipe,	log	in	as	root	and	create	your	first	cron	job	by	typing:

crontab	-e

2.	 We	will	now	create	a	simple	cron	job	that	will	write	the	date	and	time	with
the	words	hello	world	to	a	file	located	at	rootcron-helloworld.txt
every	five	minutes.	To	do	this,	add	the	following	line:

/5				*	echo	`date`	"Hello	world"	>>$HOME/cron-helloworld.txt

3.	 When	complete,	simply	save	the	file	and	exit	the	editor.	The	system	will
now	respond	with	the	following	message:

crontab:	installing

	new	crontab

4.	 The	preceding	message	informs	you	that	the	server	is	now	creating	the	new
cron	job	and	will	automatically	activate	it.	You	can	view	the	output	of	the
script	by	reviewing	the	file	found	at	rootcron-helloworld.txt	(you	have
to	wait	5	minutes),	or	by	monitoring	the	logfile	found	at	varlog/cron	(use
tail	-f	varlog/cron	and	Ctrl+C	to	exit).

How	it	works...
Cron	is	the	name	of	a	program	that	enables	CentOS	users	to	execute	commands
or	scripts	automatically	at	a	specified	time	and	date.	Cron's	settings	are	kept	in	a
user-specific	file	called	crontab,	and	as	we	have	seen	in	this	recipe	this	file	can
be	edited	to	create	automated	tasks	as	often	as	they	are	required.

So	what	did	we	learn	from	this	experience?

The	example	used	was	very	simple,	but	in	many	ways	this	was	the	purpose	of
this	recipe.	Crontab	uses	a	daemon,	crond,	which	runs	constantly	in	the
background	and	checks	once	a	minute	to	see	if	any	of	the	scheduled	jobs	need	to
be	executed.	If	a	task	is	found,	then	cron	will	execute	it.	To	edit	an	existing
crontab	file	or	to	create	a	new	crontab,	we	use	the	crontab	-e	command.	To
view	a	list	of	current	cron	jobs,	you	can	type	crontab	-l.	Alternatively,	to	view
a	list	of	the	current	jobs	for	another	user,	you	can	type	crontab	-u	username	-
l.	Tasks	or	jobs	are	generally	referred	to	as	cron	jobs,	and	by	avoiding
complication	in	our	first	script,	it	was	the	intention	to	show	you	that	the	nature	of
command	construction	was	very	simple.	The	formation	of	a	cron	job	looks	like
this:

<minute>	<hour>	<day	of	the	month>	<month	of	the	year>	<day	of	the	

week>	<command>

Entries	are	separated	by	a	single	or	tabbed	space,	and	the	allowed	values	are
primarily	numeric	(that	is,	0-59	for	a	minute,	0-23	for	an	hour,	1-31	for	a	day	of
the	month,	1-12	for	month	of	the	year,	and	0-7	for	day	of	the	week).	However,
in	saying	this,	it	is	also	true	to	say	that	there	are	more	specific	operators	(/	,	-)
and	cron-specific	shortcuts	(that	is,	@yearly,	@daily,	@hourly,	and	@weekly)	that
do	allow	for	additional	controls.	For	example,	where	the	/	operator	is	used	to
step	through	specified	units,	it	can	be	read	as	every,	so	in	our	recipe	the	use	of
*/5	will	run	the	task	every	five	minutes	while	the	use	of	*/1	runs	the	task	every
minute.	As	an	addition	to	this,	you	should	be	aware	that	the	use	of	this	syntax
will	align	all	commands	on	the	hour.	So,	with	this	in	mind,	the	most	suitable
template	or	starting	point	for	anyone	wanting	to	write	their	first	cron	job	is	to
start	with	a	series	of	five	asterisks	followed	by	the	command,	like	this:

				*	absolutepath/to/script.sh

Then,	proceed	to	configure	the	minute,	hour,	day,	month,	and	day-of-the-week
values	as	desired.	For	example,	if	you	want	a	particular	PHP	script	to	run	at	8
P.M.	(20:00	hrs)	on	every	weekday	(Monday-Friday),	it	may	look	like	this:

0	20			1-5	fullpath/to/your/php/script.php

So,	with	this	in	mind,	and	by	completing	this	recipe,	you	can	see	how	cron	can
be	used	to	manage	a	database	backup,	run	a	scheduled	system	backup,	provide
support	to	websites	by	activating	scripts	at	predefined	intervals,	or	run	various
bash	scripts	and	a	whole	lot	more.

There's	more...
To	delete	or	disable	a	cron	job,	it	is	simply	a	matter	of	either	removing	the
instruction	from	an	individual	user's	cron	file	or	by	placing	a	hash	(#)	at	the
beginning	of	the	line.	Individual	cron	files	can	be	found	at
varspool/cron/<username>,	and	the	use	of	the	hash	will	either	disable	the	cron
job	or	allow	you	to	write	comments.	To	completely	remove	a	crontab	file,	you
can	also	use	crontab	-r.	For	example,	if	you	want	to	remove	the	cron	job
created	in	the	main	recipe,	you	can	log	in	as	root	and	begin	by	typing	the
command,	crontab	-e.	At	this	point,	you	may	either	remove	the	entire	line	or
comment	it	out,	as	shown	here:

#	*/15					echo	`date`	"Hello	world"	>>$HOME/cron-helloworld.txt

Next,	save	the	file.	There	are	also	some	special	cron	directories	in	the	filesystem
for	system-wide	cron	jobs	that	will,	if	you	drop	a	script	file	in	it,	run	it
automatically	at	a	certain	time	point.	The	folders	are	called	cron.daily,
cron.hourly,	cron.weekly,	and	cron.monthly	in	the	/etc	directory,	and	their
names	refer	to	the	time	point	that	they	are	run.	Just	remove	the	script	from	the
folder	if	you	don't	want	to	execute	it	anymore.	Take	a	look	at	the	Monitoring
important	server	infrastructure	recipe	for	an	example.

Synchronizing	files	and	doing	more
with	rsync
rsync	is	a	program	that	can	be	used	to	synchronize	files	and	directories	across	a
variety	of	local	and	remote	locations.	It	can	interact	with	multiple	operating
systems,	work	over	SSH,	provide	incremental	backups,	execute	commands	on	a
remote	machine,	and	replace	the	need	for	the	cp	and	scp	commands.	The	rsync
program	is	an	invaluable	asset	for	any	system	administrator	who	intends	to	run	a
server	or	manage	a	network	of	computers,	as	it	not	only	simplifies	the	process	of
making	backups	in	general,	but	it	can	be	used	to	action	a	complete	backup
solution.	For	this	reason,	it	is	the	purpose	of	this	recipe	to	offer	a	suitable
starting	point	for	a	small	utility	that	will	quickly	become	your	trusted	friend.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet	in	order	to	facilitate	the	download	of	additional
packages.

How	to	do	it...
During	the	course	of	this	recipe,	it	will	be	assumed	that	you	know	the	location	of
the	source	files	and	directories	that	you	wish	to	synchronize,	and	that	a	suitable
destination	is	available:

1.	 To	begin	this	recipe,	log	in	as	root	and	install	rsync	by	typing:

yum	install	rsync

2.	 Now,	create	a	target	directory	for	our	synchronization	(change	the	folder
name	appropriately):

mkdir	~/sync-target

3.	 To	begin	the	synchronization	process,	simply	repeat	the	following
command	by	modifying	the	value	used	for	pathto/source/files/	with
something	more	applicable	to	your	needs:

rsync	-avz	--delete	pathto/source/files/		~/sync-target

4.	 Having	used	the	Return	key	to	confirm	the	preceding	instruction,	your
system	will	now	respond	with	a	live	report	of	what	is	being	copied.	When
this	process	has	finished,	you	can	then	compare	both	directories	to	see	that
the	contents	are	exactly	the	same.	To	do	this,	use	the	diff	command	(if
both	are	the	same,	no	output	will	be	written):

diff	-r	pathto/source/files/	~/sync-target

How	it	works...
In	this	recipe,	we	considered	the	use	of	rsync	through	the	command	line.	Of
course,	this	is	only	one	of	the	many	ways	that	this	tool	can	be	used,	but	by	using
this	approach	we	were	able	to	explore	a	handful	of	the	features	provided	by	this
very	valuable	utility.

So,	what	did	we	learn	from	this	experience?

Rsync	is	not	intended	to	be	complicated.	It	is	a	fast	and	efficient	file
synchronization	tool	that	is	designed	to	be	versatile	by	giving	you	complete
access	to	an	array	of	features	on	the	command	line.	It	can	be	used	to	maintain	an
exact	copy	(or	mirror)	of	the	source	directory	on	the	same	machine	or	on	a
completely	different	system,	and	it	does	this	by	copying	all	the	files	once	and
then	only	updating	the	files	that	have	changed	the	next	time	you	run	it.	This	can
save	tremendous	bandwidth	and	should	be	your	primary	tool	when	copying	data
over	the	network.	The	use	of	the	phrase,	--delete,	is	important,	as	it	instructs
rsync	to	delete	files	on	the	target	that	do	not	exist	in	the	source,	while	the
chosen	flags	imply	that	rsync	should	use	-a	archive	mode	in	order	to	recursively
copy	files	and	directories	while	keeping	all	permissions	and	time-based
information;	–v)verbosity	mode	so	you	can	see	what	is	happening;	and	–z	to
compress	the	data	during	the	file	transfer	in	order	to	save	bandwidth	and	reduce
the	amount	of	time	required	to	complete	the	entire	process.

As	you	can	see,	rsync	is	very	flexible	and	has	many	options	that	go	beyond	the
purpose	of	this	recipe,	but	if	you	want	to	exclude	certain	files	you	could	always
extend	the	original	instruction	by	invoking	the	--exclude	flag.	By	doing	this,
you	tell	rsync	to	back	up	an	entire	directory	but	ensure	that	it	does	not	include	a
predefined	pattern	of	files	and	folders.	For	example,	if	you	are	copying	files
from	your	server	to	a	USB	device	and	you	do	not	want	to	include	large	files
(such	as	an	.iso	image)	or	ZIP	files,	then	your	command	may	look	similar	to
this:

rsync	--delete	-avz	--exclude=".zip"	--exclude=".iso"		

pathto/source/	pathto/external/disk/

On	a	final	note,	there	is	the	subject	of	verbosity.	Verbosity	is	very	useful,	but	a
tendency	to	use	bytes	as	its	primary	unit	of	measurement	can	be	a	source	of

confusion.	So,	in	order	to	change	this,	you	can	invoke	rsync	with	the	–h	(or
human	readable)	option,	as	shown	next:

rsync	-avzh	--exclude="homepathto/file.txt"	home	

pathto/external/disk/

Maintaining	backups	and	taking
snapshots
In	this	recipe,	we	will	show	you	how	to	do	data	backups,	on	a	regular	basis,	that
will	take	snapshots	of	some	of	your	system's	directory	using	the	crond	daemon.
This	will	run	the	rsync	program	at	regular	intervals	to	implement	a	fully
automated	backup	solution.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges	and	a	console-based	text	editor	of	your
choice.	It	is	also	advantageous	if	you	have	read	the	Synchronizing	files	and
doing	more	with	rsync	and	Scheduling	tasks	with	cron	recipes	in	this	chapter	to
get	a	deeper	understanding	of	used	commands.

How	to	do	it...
It's	important	to	install	the	rsync	program	on	your	server	before	proceeding	with
this	recipe.

1.	 First,	log	in	as	root	and	create	a	directory	where	our	backups	will	land:

mkdir	/backups

2.	 Now,	we	will	create	the	following	shell	script	file	and	open	it	for	editing:

mkdir	/bin;vi	/bin/mybackup.sh

3.	 Put	in	the	following	content,	replacing	/backups	in	the	environment
variable	DEST	and	SOURCE	with	the	one	you	would	like	to	backup	as	well	as
the	recipient's	EMAIL:

#!/bin/bash

SBJT="cron	backup	report	for	`hostname	-s`	from	$(date	

+%Y%m%d:%T)"

FROM=root@domain

EMAIL=johndoe@internet.com

SOURCE=/root

DEST=/backups

LFPATH=/tmp

LF=$LFPATH/$(date	+%Y%m%d_%T)_logfile.log

rsync	--delete	--logfile=$LF	-avzq	$SOURCE	$DEST

(echo	"$SBJT";	echo;	cat	$LF)	|	sendmail	-f	$FROM	-t	$EMAIL

4.	 Make	the	script	executable:

chmod	a+x	rootbin/mybackup.sh

5.	 Now,	open	crontab	using:

crontab	-e

6.	 Next,	create	the	following	entry	by	adding	the	following	line	to	the	end	of
the	document,	then	save	and	close	it:

30	20			*	rootbin/mybackup.sh

How	it	works...
In	this	recipe,	we	have	created	a	full	automatic	backup	solution	for	a	single
system	directory,	which	will	create	a	snapshot	of	the	files	at	a	certain	time	point.
At	the	time	the	backup	process	is	complete	you	will	receive	an	e-mail	informing
you	that	a	backup	has	been	made	with	a	brief	review	of	the	actions	taken.

So	what	did	we	learn	from	this	experience?

We	started	this	recipe	by	creating	a	directory	where	our	backup	will	be	placed.
Next	we	created	the	actual	script	and	filled	it	with	some	commands.	Line	1
defines	the	file	as	a	bash	script,	lines	2-6	are	variables	you	can	modify	and
customize	to	fit	your	own	needs.	lines	7-8	create	a	path	and	name	for	the	log	file
based	on	the	date,	and	line	9	calls	rsync	which	will	synchronize	all	our	source
files	to	the	target	directory	/backups.	It	uses	a	special	--logfile	parameter
which	writes	all	output	to	the	given	file.	The	final	line	(10)	sends	the	content	of
this	log	file	to	an	email	address.

Remember,	you	should	customize	the	values	as	required	(that	is,	change	the	e-
mail	address	used,	select	a	source	directory,	and	choose	a	destination	directory,
and	so	on.).	Before	it	can	be	used	and	executed	by	cron,	we	made	it	executable.
Finally,	we	added	this	script	as	a	cron	job	to	run	on	a	daily	schedule	at	20:30
hours.	However,	as	this	may	be	some	hours	away,	if	you	would	like	to	test	your
script	right	now,	you	can	execute	it	on	the	command	line	using	the	following:

rootbin/mybackup.sh

In	conclusion,	it	will	go	without	saying	that	a	backup	should	be	located	on	an
external	drive	or	on	a	separate	partition,	but	having	completed	this	introduction	I
think	you	will	agree	that	rsync	is	ideally	positioned	in	such	a	way	that	it	will
enable	any	server	administrator	to	develop	their	own	policy	with	regard	to
maintaining	an	effective	backup	of	important	data.

Monitoring	important	server
infrastructure
In	this	recipe,	we	will	use	a	small	script	that	will	monitor	the	available
filesystem's	disk	space	periodically	using	cron,	and	if	it	exceeds	a	certain
percentage	threshold	the	script	will	send	out	a	mail	with	a	warning	message.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges	and	a	console-based	text	editor	of	your
choice.	You	should	have	read	the	Scheduling	tasks	with	cron	recipe	to	have	a
basic	understanding	of	the	principles	behind	the	cron	system.

How	to	do	it...
1.	 To	begin	this	recipe,	log	in	as	root	and	create	the	following	file	that	will

contain	our	monitoring	script:

vi	etccron.daily/monitor_disk_space.sh

Now,	put	in	the	following	content:

#!/bin/bash

EMAIL="root@localhost"

THRESHOLD=70

df	-H	|	grep	-vE	'^Filesystem|tmpfs|cdrom'	|	awk	'{	print	$5	"	"	$6	

}'	|	while	read	output;

do

		usep=$(echo	$output	|	awk	'{	print	$1}'	|	cut	-d'%'	-f1)

		partition=$(echo	$output	|	awk	'{	print	$2	}')

		if	[$usep	-ge	$THRESHOLD];	then

		(echo	"Subject:	Alert:	Free	space	low	on	`hostname	-s`,	$usep	%	

used	on	$partition";	echo)|	

		sendmail	-t	$EMAIL

		fi

done

Now,	save	the	file	and	make	it	executable:

chmod	+x	etccron.daily/monitor_disk_space.sh

How	it	works...
We	made	this	script	executable	and	put	it	in	the	etccron.daily	directory,	which
is	all	we	need	to	do	to	run	this	script	automatically	every	day	via	the	crond
service.

This	simple	script	showed	us	how	easy	it	is	to	build	monitoring	scripts,	and	this
can	be	a	real	alternative	to	installing	and	configuring	big	monitoring	suites	such
as	Nagios.	You	can	use	the	shown	script	as	a	starting	point	to	expand	on,	adding
further	resources	that	are	important	to	monitor,	such	as	CPU	load,	available
RAM,	and	so	on.

We	used	a	script	that	executes	the	Linux	command	df,	which	is	a	tool	to	report
file	system	disk	space	usage.	From	this	command's	output,	the	script	then	parsed
the	USE%	column	(with	the	Unix	tools	awk	and	cut),	which	gives	us	the	total	disk
percentage	used.	This	number	will	then	be	compared	to	a	threshold	the	user	can
set	by	editing	the	script	and	changing	the	environment	variable,	THRESHOLD.	If
the	extracted	percentage	number	is	higher	than	our	threshold,	there	will	be	an
email	sent	to	the	email	address	defined	with	the	environment	variable,	EMAIL
(change	appropriately	if	needed).

Taking	control	with	GIT	and
Subversion
Document	revision	control	systems	or	version	control	systems,	as	they	are
sometimes	called,	are	used	for	the	management	of	changes	to	documents.	These
systems	get	more	and	more	important	these	days	as	modern	work	often	connects
people	from	around	the	globe	to	collaborate	and	work	together	on	all	kinds	of
documents	(for	example,	software	source	code)	making	it	important	to	manage
the	file	changes	by	different	people	using	revisions.	In	this	recipe,	we	will	show
you	how	to	use	modern	version	control	systems	such	as	GIT	and	Subversion	to
manage	the	versioning	of	config	files.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	and	a	connection	to	the	Internet	in	order	to
facilitate	the	download	of	additional	packages.

How	to	do	it...
Here	in	this	recipe,	we	will	put	the	complete	main	Linux	configuration	directory,
etc,	under	version	control	of	a	Git	repository	to	keep	track	of	all	our	changes	to
configuration	files:

1.	 To	begin,	log	in	as	root,	install	Git,	and	configure	it	by	providing	an	email
address	and	username	(please	substitute	your_username	and
your_email_address	with	real	names):

yum	install	git

git	config	--global	user.email		"your_email_address"

git	config	--global	user.name	"your_username"

2.	 Now,	let's	create	a	new	repository	in	the	/etc	directory:

cd	etc

git	init

3.	 Now,	after	we	have	our	new	repository,	let's	add	all	the	files	in	the	etc
directory	under	version	control:

git	add	*

4.	 To	commit	the	files	to	the	repository	creating	your	first	revision,	type	the
following:

git	commit	-a	-m	"inital	commit	of	the	full	etc	directory"

5.	 Now,	let's	change	a	file:

echo	"FILE	HAS	CHANGED"	>>	yum.conf

6.	 Next,	show	the	changes	to	your	repository:

git	status

7.	 Next,	we	will	commit	these	changes	and	create	a	new	revision	of	it:

git	commit	-a	-m	"changing	yum.conf	files"

8.	 Next,	show	all	the	commits	so	far:

git	log	--pretty=oneline	--abbrev-commit

9.	 This	will	output	the	following	commits	on	my	system	(the	number	hashes
will	be	different	on	yours):

8069c4a	changing	yum.conf

5f0d50a	inital	commit	of	the	full	/etc	directory

10.	 Based	on	the	output	from	the	earlier	step,	we	will	now	show	all	the
differences	between	the	two	revision	numbers	(change	the	number	hashes
on	your	system	based	on	the	output	from	the	earlier	step):

git	diff	8069c4a	5f0d50a

11.	 To	complete	this	recipe,	we	will	revert	our	changes	to	the	original	file
revision	(the	initial	commit):

git	checkout	5f0d50a

How	it	works
Here,	in	this	recipe,	we	showed	you	how	to	use	Git	to	manage	changes	to	system
config	files	in	the	/etc	directory.	This	can	be	important,	for	example,	if	you	are
testing	things	out,	so	a	lot	of	changes	will	be	made	to	some	configuration	files
and	you	will	want	to	keep	track	of	your	changes,	which	is	nice	because	you	don't
need	to	memorize	every	single	step	you	have	taken	if	you	later	have	to	revert	the
changes	or	go	back	to	a	specific	revision,	or	compare	different	file	versions.

So,	what	did	we	learn	from	this	experience?

We	started	by	installing	Git	and	added	a	username	and	an	e-mail	address	to	its
configuration,	which	is	essential	for	using	it	later	in	the	process.	Then,	we
changed	to	the	/etc	directory	and	initialized	(using	the	init	parameter)	a	new
empty	Git	project	there,	which	is	called	repository	and	keeps	track	of	all	the	files
associated	to	it.	This	command	will	add	a	hidden	.git	directory	to	it,	which	will
contain	the	complete	file	changes	and	revision	information.	Next,	we	added	all
the	files	(using	the	wildcard	*	operator)	from	this	directory,	including	all	sub-
directories	to	the	next	revision.	A	revision	is	like	a	state	the	files	are	in	at	a	given
time	point,	and	is	identified	by	a	unique	hash	ID	such	as	8069c4a.	Then,	we
actually	created	a	new	revision	using	the	commit	parameter	and	supplied	a
meaningful	message	using	the	-m	parameter.	After	we	set	up	the	Git	repository
and	added	all	the	files	to	it,	every	change	to	the	files	gets	watched	in	the	/etc
directory.	Next,	we	changed	the	main	YUM	configuration	file	in	our	repository
by	adding	a	random	string	to	the	end	of	it	using	the	echo	>>	command.	If	we
now	use	git's	status	parameter	again,	we	see	in	the	output	that	the	Git	system
has	notified	that	this	file	has	been	changed.	We	can	now	create	a	new	revision
with	the	changed	file	by	using	git's	commit	parameter	again,	using	another
meaningful	message	here	stating	that	yum.conf	has	been	changed.	We	then	used
the	git	log	command.	This	will	show	us	all	the	committed	revisions	with	their
unique	md5	hash	string	IDs.	With	this	ID,	we	can	fuel	the	git	diff	command	to
see	all	the	file	changes	between	two	revisions.	To	learn	more	about	the	output
format,	use	man	git-diff-files	and	read	its	section	COMBINED	DIFF	FORMAT.	In
our	last	step,	we	used	the	checkout	command	to	go	to	a	specific	file	revision;
here	we	reverted	all	our	changes	and	went	back	to	the	original	file	state.

Git	is	a	very	powerful	version	management	tool,	and	in	this	recipe	we	just

scratched	the	surface	of	what	can	be	done	with	it.	To	learn	more	about	Git's
wonderful	techniques,	such	as	branching,	merging,	pull	requests,	and	so	on,	start
with	the	Git	tutorial	pages	by	typing	in	man	gittutorial.

There's	more...
You	can	also	use	the	program	Subversion	to	bring	your	/etc	directory	under
version	control.	Subversion	is	another	common	document	revision	control
system	whose	main	difference	from	Git	is	that	it	uses	a	centralized	server	to	keep
track	of	the	file	changes.	Git	is	distributed,	meaning	that	everybody	working	on
a	Git	project	will	have	the	complete	repository	locally	on	their	computer.	Here,
we	will	show	you	the	exact	steps	necessary	to	use	Subversion	instead	of	Git	for
this	purpose:

1.	 First,	install	Subversion	and	configure	a	new	server	directory	for	our	/etc
repository:

yum	install	subversion

mkdir	-p	varlocal/svn/etc-repos

svnadmin	create	--fs-type	fsfs	varlocal/svn/etc-repos

2.	 Now,	make	an	in-place	import	of	the	/etc	filesystem	to	our	new	repository:

svn	mkdir	file://varlocal/svn/etc-repos/etc	

-m	"Make	a	directory	in	the	repository	to	correspond	to	/etc"

3.	 Now,	switch	to	the	/etc	directory	and	add	all	the	files	to	a	new	revision:

cd	/etc

svn	checkout		file://varlocal/svn/etc-repos/etc	./

svn	add	*

4.	 Now,	create	your	first	commit:

svn	commit	-m	"inital	commit	of	the	full	etc	directory"

5.	 Next,	change	the	yum.conf	file:

echo	"FILE	HAS	CHANGED"	>>	yum.conf

6.	 Commit	your	changes	to	a	new	file	revision:

svn	commit	-m	"changing	yum.conf	files"

7.	 Now,	show	the	change	log:

svn	log	-r	1:HEAD

8.	 Show	the	file	differences	between	our	two	commits	(the	first	commit	was
the	/etc	import):

svn	diff	-r	2:3

9.	 Finally,	revert	to	the	first	revision	of	our	yum.conf	file:

svn	update	-r	2	yum.conf

Chapter	4.	Managing	Packages	with
YUM
In	this	chapter,	we	will	cover	the	following	topics:

Using	YUM	to	update	the	system
Using	YUM	to	search	for	packages
Using	YUM	to	install	packages
Using	YUM	to	remove	packages
Keeping	YUM	clean	and	tidy
Knowing	your	priorities
Using	a	third-party	repository
Creating	a	YUM	repository
Working	with	the	RPM	package	manager

Introduction
This	chapter	is	a	collection	of	recipes	that	provides	a	review	of	the	tools	required
to	grow	your	server.	Package	management	is	at	the	heart	of	any	Linux-based
system	and	the	purpose	of	this	chapter	highlights	the	critical	tools	needed	to
manage	software	packages	on	a	CentOS	based	server.

Using	YUM	to	update	the	system
In	this	recipe,	we	will	investigate	the	role	of	the	Yellowdog	Updater,	Modified
(YUM)	package	manager	with	regard	to	running	a	system	update.	Every	once	in
a	while,	you	may	become	aware	of	an	update	or	may	simply	wish	to	discover	if
one	exists.	Applying	patches	and	updates	is	a	regular	task	for	every	server
administrator,	and	an	up-to-date	system	can	help	increase	or	ensure	the	security
of	your	server	as	software	bugs	and	vulnerabilities	are	found	all	the	time	and
must	be	fixed	promptly.	In	this	recipe,	you	will	learn	how	to	achieve	this	with
the	help	of	YUM.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet	in	order	to	facilitate	the	download	of	additional
packages.

How	to	do	it...
You	can	run	this	recipe,	as	often	as	required	but	it	should	be	done	frequently,
based	on	a	schedule	of	your	own	choosing	in	the	full	knowledge	that	on
occasion,	some	updates	may	require	a	full	system	reboot:

1.	 Log	in	as	root	and	check	whether	there	are	any	updates	for	your	installed
packages.	To	do	this,	log	in	and	type	the	following:

yum	check-update

2.	 If	no	updates	are	available,	then	the	update	process	will	end	and	no	further
work	will	need	to	be	done.	However,	if	updates	are	available,	YUM	will
now	return	a	list	of	all	package	updates	from	the	repositories	known	to	your
system.	To	complete	the	update	process,	type	the	following	command:

yum	-y	update

3.	 By	using	the	-y	flag,	the	preceding	command	will	now	bypass	the	need	to
confirm	the	transaction	summary,	and	your	system	will	now	undergo	an
immediate	update	process.	When	complete,	you	will	be	provided	with	a
final	report	that	identifies	what	dependencies	have	been	installed	and	what
packages	have	been	updated.

4.	 Generally	speaking,	no	further	work	is	required	and	you	may	resume
typical	operations.	However,	if	a	new	kernel	has	been	installed,	or	an
important	security	update	has	taken	place,	it	may	be	necessary	to	reboot	the
system	for	the	new	changes	to	take	effect.	To	do	this,	type	the	following:

reboot

Note

While	there	is	much	debate	as	to	whether	an	update	will	require	a	full
system	restart	in	practice,	this	is	only	to	be	considered	after	a	kernel	update,
which	is	an	update	to	glibc	and	particular	security-based	features	that	are
activated	during	the	boot	process.

How	it	works...
YUM	is	the	default	package	management	system	for	CentOS	and	part	of	its	role
is	to	automatically	calculate	what	packages	may	require	updating,	what
dependencies	are	required,	and	to	manage	the	entire	process	of	updating	your
system	in	a	very	simple	way.

So,	what	have	we	learned	from	this	experience?

We	started	the	recipe	by	checking	to	see	if	any	updates	were	available	to	our
system	using	the	yum	command	with	the	check-update	option.	In	this	way,
YUM	will	now	check	a	central	repository	to	confirm	if	an	update	is	applicable	to
our	system.	A	repository	is	a	remote	directory	or	website	that	contains	prepared
software	packages	and	utilities.	YUM	will	use	this	facility	to	automatically
locate	and	obtain	the	correct	Red	Hat	Package	Manager	(RPM)	and
dependencies,	and	if	an	update	is	available,	then	YUM	will	respond	accordingly
with	a	full	summary	of	what	packages	and	dependencies	are	available.	For	this
reason,	YUM	is	a	very	useful	tool,	and	without	doubt	its	mechanism	does	serve
to	simplify	the	processes	associated	with	package	management,	because	it	can
talk	to	repositories	and	this	saves	us	from	having	to	find	and	install	new
applications	or	updates	manually.	If	there	are	updates	available,	the	output	will
show	us	exactly	which	packages	are	affected,	then	we	can	proceed	to	update	the
system	by	using	YUM's	update	parameter.	In	this	instance,	the	preceding
command	includes	the	-y	flag.	This	is	done	in	order	to	circumvent	the	need	to
agree	with	the	transaction	summary	given,	and	to	confirm	that	we	have	already
agreed	to	make	these	updates	after	running	the	previous	check.	Otherwise,	you
would	simply	confirm	the	requests	by	using	the	Y	key.

There's	more...
You	can	also	use	the	update	parameter	to	update	single	packages	instead	of	the
whole	system	by	providing	the	package	name	like	so:	yum	update
package_name.	YUM	will	serve	to	ensure	that	all	of	the	requirements	for	an
application	are	met	during	installation,	and	it	will	automatically	install	the
packages	for	any	dependencies	that	are	not	already	present	on	your	system.
However,	and	I	am	sure	you	will	be	pleased	to	hear	this,	if	a	new	application	has
requirements	that	conflict	with	existing	software,	YUM	will	abort	the	process
without	making	any	changes	to	your	system.	If	you	want	to	automate	the
updating	of	your	system	using	a	specific	time	interval,	you	can	install	the	yum-
cron	package,	which	can	be	highly	customized	but	is	outside	the	scope	of	this
book.	To	start	after	installation,	use	man	yum-cron.

Using	YUM	to	search	for	packages
In	this	recipe,	we	will	investigate	the	role	of	using	YUM	to	find	a	package.
YUM	was	developed	to	improve	the	installation	of	RPM	software	packages,	and
it	is	used	to	access	a	growing	list	of	packages	that	provide	a	full	range	of
services	offered	by	your	server.	YUM	is	simple	to	use,	but	if	you	are	not	sure
what	a	package	is	called,	then	your	duties	as	the	server	administrator	can	become
that	much	harder.	To	overcome	this,	YUM	maintains	an	extensive	range	of
discovery	tools	and	it	is	the	purpose	of	this	recipe	to	show	you	how	to	use	this
functionality	in	order	to	search	through	the	various	repositories	and	find	the
package	you	need.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet.

How	to	do	it...
This	recipe	will	show	you	how	to	find	one	or	more	packages	by	invoking	YUM's
searching	options.	To	do	this,	you	will	need	to	log	in	as	the	root	user	and
complete	the	following	process:

1.	 To	search	for	a	single	package,	replace	the	keyword	value	with	the
appropriate	phrase,	string,	or	parameter,	and	type	the	following:

yum	search	keyword

2.	 Wait	for	a	summary	of	the	search	results,	and	when	a	list	is	generated,	you
can	query	any	package	shown	by	simply	replacing	package_name	with	the
appropriate	value:

yum	info	package_name

3.	 If	the	preceding	results	prove	satisfactory,	and	you	want	to	view	a	list	of
dependencies	associated	with	the	package	in	question,	type	the	following:

yum	deplist	package_name

How	it	works...
Searching	for	packages	with	YUM	can	be	achieved	in	the	same	way	as	you
would	search	for	anything	on	the	World	Wide	Web	(WWW).	The	types	of
words	you	can	search	for	can	be	as	specific	or	as	general	as	you	like.	They	can
even	consist	of	full	or	partial	words;	having	found	a	package	that	you	may	be
interested	in,	you	will	have	noticed	that	this	recipe	has	also	served	to	show	you
how	to	discover	additional	information	about	the	package	in	question.

So,	what	have	we	learned	from	this	experience?

YUM	maintains	extensive	search	features	and	it	allows	you	to	query	packages
by	keyword,	package	name,	and	pathname.	For	example,	if	you	want	to	locate
the	correct	package	for	compiling	C,	Objective-C,	and	C++	code,	you	can	use
the	yum	search	compiler	query.	When	using	these	search	terms	on	the
command	line,	there	are	a	number	of	related	results,	and	each	package	carries	a
brief	description	that	enables	us	to	use	a	simple	process	of	elimination	in	order	to
select	the	most	obvious	or	the	most	relevant	value.	With	this	in	mind,	you	can
then	query	YUM	using	the	info	parameter	to	find	out	more	about	certain
packages.	This	option	reveals	the	full	package	details	together	with	a	detailed
description	of	what	functionality	the	package	is	intended	to	provide.	Generally
speaking,	you	may	not	need	to	know	any	further	details.

However,	there	may	be	circumstances	in	which	you	want	to	know	how	this
package	interacts	with	the	server	as	a	whole	(especially	if	you	are	working	with
source	installations	or	troubleshooting	broken	packages),	so	we	can	use	YUM's
deplist	parameter	that	can	give	quite	a	detailed	report;	if	you	do	happen	to	have
any	broken	packages,	you	could	simply	use	this	output	to	detail	what
dependencies	you	may	or	may	not	need	to	install	in	order	to	fix	an	underlying
issue.	This	command	is	particularly	useful	when	debugging	dependencies	or
when	working	with	source-based	installations.

There's	more...
Sometimes,	you	may	not	want	to	search	for	a	specific	package,	and	instead	you
may	prefer	to	display	the	contents	of	your	repositories	in	a	catalog-style	format.
Again,	this	is	easy	to	do	and	YUM	provides	for	this	functionality	with	the
following	commands.	If	you	would	like	to	simply	list	all	the	packages	available
to	you	from	the	current	repositories	used	by	your	system,	type	yum	list	all.
However,	because	this	list	may	be	quite	exhaustive,	you	may	prefer	to	page
through	the	results	by	using	yum	list	all	|	less.	In	a	similar	fashion,	if	you
would	simply	like	to	list	all	the	software	currently	installed	on	your	system,	type
yum	list	installed	|	less.	If	you	would	like	to	determine	which	packages
provide	for	a	specific	file	or	feature,	simply	run	the	following	command	at	any
time	by	substituting	your_filename_here	with	something	more	relevant	to	your
own	needs:	yum	provides	your_filename_here.

Using	YUM	to	install	packages
In	this	recipe,	we	will	investigate	the	role	of	YUM	in	installing	new	packages	on
your	server.	An	important	task	for	every	server	administrator	is	the	installation
of	applications	and	services.	There	are	several	different	ways	to	achieve	this,	but
the	most	effective	method	involves	the	YUM	package	manager.	YUM	is	able	to
search	through	any	number	of	repositories,	automatically	resolve	package
dependencies,	and	specify	the	installation	of	one	or	more	packages.	YUM	is	a
modern	and	definitive	way	to	install	your	packages	on	your	server,	and	it	is	the
purpose	of	this	recipe	to	show	you	how	it	is	done.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet	in	order	to	facilitate	the	download	of	additional
packages.	It's	also	good	if	you	have	already	found	some	interesting	packages	to
install,	which	can	be	learned	by	using	the	instructions	from	the	Using	YUM	to
search	for	packages	recipe.

How	to	do	it...
This	recipe	will	show	you	how	to	install	one	or	more	packages	by	invoking	the
YUM	installation	option.	To	do	this,	you	will	need	to	log	in	as	the	root	user	and
complete	the	following	process:

1.	 To	install	a	single	package,	replace	the	package_name	value	with	the
appropriate	value	and	type	the	following:

yum	install	package_name

2.	 Your	system	will	now	provide	a	transaction	report	that	will	require	your
approval.	So,	when	prompted,	simply	respond	by	using	the	Y	or	N	key	and
press	the	Return	key	to	either	accept	or	decline	the	transaction,	as	shown	as
follows:

Is	this	ok	[y/d/N]:	y

3.	 If	you	have	declined	the	transaction,	then	no	further	work	is	required	and
you	will	exit	the	package	management	routine.	However,	if	you	have
confirmed	the	transaction,	then	watch	the	progress	of	your	installation,	and
in	the	end	it	will	show	you	a	Complete!	message.

4.	 Congratulations!	You	now	have	successfully	installed	your	package	of
choice.

How	it	works...
All	packages	are	stored	in	the	RPM	package	file	format,	and	it	is	the	role	of
YUM	to	provide	access	to	those	files	that	are	stored	in	various	repositories	on
the	Internet.	YUM	is	the	power	behind	the	package	management	for	CentOS	and
it	really	does	make	the	installation	process	very	easy,	but	what	have	we	learned
from	this	experience?

Having	invoked	the	install	command,	YUM	will	conduct	a	search	of	the
various	repositories	in	order	to	find	the	relevant	headers	and	metadata	associated
with	the	package	in	question.	For	example,	if	you	wanted	to	install	a	package
called	wget,	you	would	begin	by	issuing	the	install	command	like	so:	yum
install	wget.	YUM	will	then	locate	the	package	and	generate	a	transaction
summary	that	will	not	only	indicate	the	required	disk	size	and	expected
installation	size,	but	will	also	indicate	any	necessary	dependencies	required	by
the	requested	package.	YUM	will	then	check	several	different	repositories	(base,
extras,	and	updates)	and,	having	resolved	the	need	for	any	necessary
dependencies,	YUM	will	be	asking	us	to	confirm	the	request	before	continuing
with	the	installation	process.	So,	as	you	can	see,	by	using	the	Y	key,	we	will	be
providing	YUM	with	the	permission	to	fulfill	the	request,	which	in	turn	will
result	in	the	download,	verification,	and	installation	of	the	package(s)	concerned.

There's	more...
There	are	times	when	you	may	wish	to	install	more	than	one	package	at	a	time.
To	do	this,	simply	invoke	the	same	install	command,	but	instead	of	naming	a
single	package,	simply	identify	the	full	list	of	packages	you	may	require	in	such
a	way	that	it	forms	a	long	shopping	list:

yum	install	package_name1	package_name2	package_name3

The	number	of	packages	you	can	install	in	this	way	is	unlimited,	but	always
leave	a	single	space	between	each	package	name	and	keep	the	command	on	a
single	line.	For	very	long	installation	instructions,	line-wrapping	may	occur.

You	do	not	need	to	list	the	packages	in	any	particular	order	and	the	request	will
be	processed	in	exactly	the	same	way	as	it	was	in	the	original	recipe,	and	again
after	listing	the	transaction	summary,	it	will	remain	pending	until	it	is	confirmed
or	declined.	Again,	use	the	Y	key	to	confirm	your	request	so	that	the	process
completes.

Using	YUM	to	remove	packages
In	this	recipe,	we	will	investigate	the	role	of	using	YUM	with	the	intention	of
removing	packages	from	your	server.	During	the	lifetime	of	your	server,	it	is
possible	that	certain	applications	and	services	may	no	longer	be	required.	In	such
situations,	it	is	typical	that	you	will	want	to	remove	such	packages	in	order	to
optimize	your	working	environment,	and	it	is	the	purpose	of	this	recipe	to	show
you	how	this	is	done.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet.

How	to	do	it...
This	recipe	will	show	you	how	to	remove	one	or	more	packages	by	invoking	the
yum	remove	option.	To	do	this,	you	will	need	to	log	in	as	the	root	user	and
complete	the	following	process:

1.	 To	remove	a	single	package,	replace	the	package_name	value	with	the
appropriate	value	and	type	the	following:

yum	remove	package_name

2.	 Wait	for	the	transaction	summary	and	confirmation	prompt	to	be	displayed,
and	then	press	either	the	Y	key	to	confirm,	or	the	N	key	to	decline	the
transaction,	as	shown	next:

Is	this	ok	[y/d/N]:	y

3.	 If	you	have	declined	the	transaction,	then	no	further	work	is	required	and
you	will	exit	YUM.	However,	if	you	have	confirmed	the	transaction,	then
simply	watch	the	progress	of	package	removal	until	it	is	confirmed	and
prints	out	a	Complete!	message.

How	it	works...
Applications	that	are	no	longer	required	can	be	removed	with	YUM.	The	process
is	very	intuitive	and	similar	to	installing	a	new	package,	and	it	only	requires	you
to	confirm	the	name	of	the	packages	you	want	to	remove.

So,	what	have	we	learned	from	this	experience?

Having	invoked	the	remove	command,	YUM	will	search	your	system	to	discover
the	relevant	package;	and	by	reading	the	package	headers	and	metadata,	it	will
also	determine	what	dependencies	this	will	affect.	For	example,	if	we	wanted	to
remove	a	package	called	wget,	we	would	begin	by	issuing	the	remove	command
like	so:	yum	remove	wget.	YUM,	in	turn,	would	then	locate	the	package	details
from	your	system	and	obtain	a	transaction	summary	that	may	include	any
necessary	dependencies	that	are	no	longer	required.	The	transaction	printed	out
will	remain	pending	until	you	instruct	YUM	to	remove	the	package(s)
concerned.	When	confirmed,	YUM	will	complete	the	transaction,	which	in
return	will	result	in	the	removal	of	the	package	or	packages.	You	should	take
extra	care	if	the	summary	makes	reference	to	any	dependencies	as	these	may	be
required	by	other	RPMs.	If	you	are	concerned	that	certain	dependencies	should
remain	on	the	system,	it	is	often	a	good	idea	to	end	the	current	transaction	and
simply	de-activate	or	disable	the	software	concerned.	As	with	the	install
command,	you	can	also	remove	multiple	packages	at	a	time,	leaving	a	single
space	between	the	package	names:

yum	remove	package_name1	package_name2	package_name3

Keeping	YUM	clean	and	tidy
In	this	recipe,	we	will	investigate	the	role	of	YUM	with	regard	to	ensuring	that
the	working	cache	remains	current.	As	a	part	of	its	typical	mode	of	operation,
YUM	will	create	a	cache	that	consists	of	metadata	and	packages.	These	files	are
very	useful,	but	over	time,	they	will	accumulate	in	size	to	such	an	extent	that	you
may	find	that	YUM	is	acting	erratically	or	not	as	intended.	The	frequency	of	this
happening	can	vary	from	system	to	system,	but	it	generally	implies	that	the
YUM	cache	system	requires	your	immediate	attention.	Such	a	situation	can	be
quite	frustrating,	but	it	is	the	purpose	of	this	recipe	to	provide	a	quick	solution
that	will	serve	to	assist	you	in	cleaning	the	cache	and	restoring	YUM	to	its
original	working	state.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet	in	order	to	facilitate	the	download	of	additional
packages.

How	to	do	it...
Before	we	begin,	it	is	important	to	realize	that,	while	we	are	troubleshooting	a
current	problem,	this	same	recipe	can	be	run	as	often	as	required	in	order	to	keep
YUM	in	an	optimal	working	state:

1.	 We	will	begin	this	recipe	by	asking	YUM	to	clean	any	cached	package
information.	To	do	this,	log	in	as	root	and	type	the	following:

yum	clean	packages

2.	 Allow	time	for	your	system	to	respond	and	when	finished,	type	the
following	command	to	remove	any	cached	XML-based	metadata:

yum	clean	metadata

3.	 Again,	wait	for	YUM	to	respond	and	when	ready,	type	the	following
command	to	remove	any	cached	database	files:

yum	clean	dbcache

4.	 Following	this,	you	will	want	to	clean	all	the	files	to	confirm	the	preceding
instructions	and	to	ensure	that	unnecessary	disk	space	is	not	used.	To	do
this,	type	the	following	line:

yum	clean	all

5.	 Finally,	you	will	want	to	rebuild	the	YUM	cache	by	typing	what	is	shown
next:

yum	makecache

How	it	works...
YUM	is	a	very	powerful	tool	that	is	known	for	its	ability	to	resolve	package
dependencies	and	automate	the	process	of	package	management,	but	as	with	all
things,	there	are	times	when	even	the	best	utilities	can	get	confused	and	may
report	errors	or	behave	erratically.	Fixing	this	issue	is	relatively	simple	and	the
approach	outlined	in	this	recipe	will	also	serve	to	keep	your	package	manager	in
a	healthy	running	state	for	the	life	of	your	operating	system.

So,	what	have	we	learned	from	this	experience?

During	its	typical	operation,	YUM	will	create	a	cache	of	metadata	and	packages
that	can	be	found	at	varcache/yum.	These	files	are	essential,	but	as	they	grow	in
size,	this	cache	will	ultimately	serve	to	slow	down	the	overall	use	of	this	utility
and	may	even	cause	some	issues.	To	address	this	situation,	we	started	by	using
the	following	command	to	clean	the	current	package-based	cache	using	YUM's
clean	packages	parameter	options.	We	then	followed	this	by	cleaning	the
metadata	cache	using	the	command	clean	metadata,	which	will	remove	any
excess	XML-based	files.	YUM	uses	a	SQLite	database	as	a	part	of	its	normal
operation,	so	the	next	step	was	to	remove	any	remaining	database	files	using	the
clean	dbcache	parameters.	The	next	step	was	to	clean	all	files	associated	with
enabled	repositories	in	order	to	reclaim	any	unused	disk	space:	yum	clean	all.
Finally,	we	restored	YUM	to	its	normal	working	state	by	rebuilding	the	cache
using	the	makecache	option.

There's	more...
On	a	typical	server,	YUM	is	a	great	tool	that	will	solve	the	most	complex
problems	related	to	package	dependencies	and	package	management.	However,
in	instances	where	you	have	knowingly	mixed	incompatible	repositories	or	have
used	incomplete	sources,	there	is	a	risk	that	YUM	will	not	be	able	to	help.

Note

Remember,	in	this	situation,	you	should	consider	the	following	advice	to	be	a
temporary	remedy	only.	A	tendency	to	ignore	any	warnings	provided	by	YUM
will	only	lead	to	bigger	problems	later	on.

If	such	instances	occur,	and	if	the	error	is	RPM-based,	as	a	temporary	fix,	you
can	skip	broken	packages	by	using	the	following	command:

yum	-y	update	--skip-broken

This	command	will	allow	YUM	to	continue	working	by	bypassing	any	packages
with	errors,	but	as	stated	earlier	this	should	be	regarded	as	a	temporary	fix	only.
You	should	always	be	aware	that	a	system	with	broken	dependencies	is	not
considered	to	be	a	healthy	system.	This	situation	is	to	be	avoided	at	all	costs,	and
under	these	circumstances	fixing	such	errors	should	become	your	first	priority.

Knowing	your	priorities
In	this	recipe,	we	will	investigate	the	task	of	preparing	YUM	to	manage
additional	repositories	by	installing	a	plugin	known	as	YUM	priorities.	YUM
has	the	ability	to	search,	remove,	install,	retrieve,	and	update	packages	from
various	remote	locations.	Such	features	make	YUM	a	powerful	tool,	but	if	you
ever	decide	to	add	an	additional	third-party	repository,	there	is	a	chance	that
conflicts	will	render	the	system	unstable.	Stability	is	one	of	the	many	advantages
of	using	the	CentOS	operating	system,	and	it	is	the	purpose	of	this	recipe	to
show	you	how	this	confidence	can	be	maintained	while	simultaneously	allowing
for	the	addition	of	new	repositories.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet	in	order	to	facilitate	the	download	of	additional
packages.

How	to	do	it...
This	recipe	will	show	you	how	to	prepare	YUM	in	order	to	manage	the	process
of	using	one	or	more	third-party	repositories	by	installing	and	configuring	YUM
priorities:

1.	 To	begin	this	recipe,	log	in	as	root	and	type	the	following:

yum	install	yum-plugin-priorities

2.	 Confirm	the	installation,	and	when	complete	type	what	is	shown	here:

vi	etcyum/pluginconf.d/priorities.conf

3.	 You	should	ensure	that	this	file	indicates	that	the	plugin	is	enabled.	It
should	show	the	instruction	enabled	=	1.	It	is	not	expected	that	you	will
need	to	change	anything	in	this	file,	but	if	you	have	made	any	changes,
simply	save	and	close	the	file	before	proceeding.

4.	 We	now	need	to	establish	a	priority	value	for	each	repository.	This	is	a
numeric	value	in	ascending	order,	where	the	highest	priority	is	given	the
lowest	number.	To	do	this,	open	the	following	file	as	shown	next:

vi	etcyum.repos.d/CentOS-Base.repo

5.	 Add	the	following	line	at	the	end	of	the	[base]	section:

priority=1

6.	 Now,	add	the	following	line	at	the	end	of	the	[updates]	section:

priority=1

7.	 And	finally,	add	the	following	line	at	the	end	of	the	[extras]	section:

priority=1

8.	 When	complete,	save	and	close	the	file	before	running	a	package	update:

yum	update

How	it	works...
YUM	priorities	is	a	simple	plugin	that	enables	YUM	to	decide	what	repositories
will	assume	the	highest	priority	when	installing	and	updating	new	packages.
Using	this	plugin	will	reduce	the	chance	of	package	confusion	by	ensuring	that
any	particular	package	will	always	be	installed	or	updated	from	the	same
repository.	In	this	way,	you	can	add	an	unlimited	number	of	repositories	and
enable	YUM	to	stay	in	control	of	package	management.

So,	what	did	we	learn	from	this	experience?

Enhancing	YUM	with	this	plugin	was	simply	a	matter	of	installing	the	yum-
plugin-priorities	package	and	ensuring	that	it	was	enabled	in	its
configuration	file.	We	then	discovered	that	the	priority	is	set	in	ascending	order,
where	the	lowest	values	are	given	precedence	over	all	others.	This,	of	course,
serves	to	simplify	the	overall	process,	and	for	this	reason,	we	ensured	that	the
default	repositories	were	given	a	value	of	1	(priority=1).	This	will	ensure	that
the	default	repositories	maintain	the	highest	priority,	so	when	you	do	decide	to
add	additional	repositories	you	could	assign	them	a	priority	value	of	2,	3,	4…
and	10,	or	more.	On	the	other	hand,	it	should	be	noted	that	we	only	set	this	value
across	three	main	sections:	[base],	[updates],	and	[extras].	In	simple	terms,
this	was	only	because	the	other	sections	are	shown	to	be	disabled.	For	example,
you	may	have	noticed	that	the	[centosplus]	section	in
etcyum.repos.d/CentOS-Base.repo	include	the	following	line:	enabled=0,
whereas	the	[updates]	and	[extras]	sections	show	this	value	as	enabled=1.	Of
course,	if	you	intend	to	activate	this	repository,	you	will	need	to	set	a	priority
value	for	it,	but	for	the	purpose	of	this	recipe	such	an	action	was	not	required.
Finally,	we	ran	a	simple	YUM	package	update	in	order	to	activate	our	revised
settings.

So,	as	we	can	see,	YUM	priorities	is	an	extremely	flexible	package	that	enables
you	to	determine	what	repositories	take	priority	when	you	want	to	expand	your
installation	options.	However,	you	should	always	be	aware	that	YUM	priorities
may	not	be	appropriate	for	your	system,	as	you	are	giving	it	the	power	to	decide
what	packages	are	to	be	ignored,	what	packages	are	installed,	what	packages	are
updated,	and	in	what	order	and	from	which	repository	you	will	get	them.	For
most	users	who	tend	not	to	stay	away	from	the	typical	server	functions,	this	may

not	be	an	immediate	concern;	you	may	even	safely	ignore	this	warning.	But	if
stability	and	security	are	an	overriding	concern,	and	you	do	intend	to	use
additional	packages	from	external	repositories,	then	you	should	give	careful
consideration	to	the	use	of	this	plugin	or	at	least	consider	and	research	the
integrity	of	the	third-party	repositories	used.

Using	a	third-party	repository
In	this	recipe,	we	will	investigate	the	desire	to	take	full	advantage	of	the
packages	that	are	available	to	CentOS	by	installing	both	the	EPEL	and	Remi
repositories.	CentOS	is	an	enterprise-based	operating	system	that	prides	itself	on
stability,	and	during	the	lifetime	of	your	server,	it	is	possible	that	not	every	piece
of	software	you	need	can	be	found	in	the	default	repositories.	It	is	also	possible
that	you	may	require	updated	packages	of	current	software,	and	for	these	reasons
many	server	administrators	choose	to	install	both	the	EPEL	and	Remi
repositories.	These	are	not	the	only	repositories	available,	but	because	they
represent	one	of	the	most	popular	combinations,	it	is	the	purpose	of	this	recipe	to
show	you	how	both	the	EPEL	and	Remi	repositories	can	be	added	to	your
system.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet	in	order	to	facilitate	the	download	of	additional
packages.

How	to	do	it...
Before	we	start,	it	is	assumed	that	you	have	followed	the	previous	recipe	that
showed	you	how	to	install	and	activate	YUM	priorities.

1.	 To	begin,	log	in	as	root	and	install	the	EPEL	release	repository	using	YUM:

yum	install	epel-release

2.	 Next,	from	your	home	directory,	type	the	following	commands	to	download
the	remi	release	rpm	package:

curl	-O	http://rpms.famillecollet.com/enterprise/remi-release-

7.rpm

Note

Please	note	that,	while	you	are	reading	this,	this	URL	may	have	changed;	if
so,	please	do	some	Internet	research	to	find	out	if	there	is	a	new	URL
available.

3.	 The	preceding	file	should	now	be	located	in	your	home	folder.	To	proceed,
type	the	following	command:

rpm	-Uvh	remi-release-7.rpm

4.	 After	the	installation	is	done,	open	the	Remi	repository	file	with	your
favorite	text	editor:

vi	etcyum.repos.d/remi.repo

5.	 Change	enabled=0	to	enabled=1	and	add	the	line	priority=10	to	the	end
of	the	[remi]	section.

6.	 Now,	open	the	EPEL	repository	file	with	your	favorite	text	editor:

vi	etcyum.repos.d/epel.repo

7.	 Again,	change	enabled=0	to	enabled=1	if	not	set	automatically	and	add	the
line	priority=10	in	the	[epel]	section.

8.	 To	finish,	update	YUM	as	shown	here:

yum	update

9.	 If	updates	are	available,	choose	Y	to	proceed.	Having	completed	the	update
process,	you	will	now	be	able	to	download	and	install	packages	from	both

the	Remi	and	EPEL	repositories	as	an	addition	to	those	that	are	used	by
default.

How	it	works...
In	order	to	use	and	enjoy	the	benefits	of	a	third-party	repository,	you	are
required	to	install	and	enable	it	first	using	the	YUM	and	RPM	package	manager.

So,	what	did	we	learn	from	this	experience?

Having	started	the	recipe,	the	task	of	installing	both	the	Remi	and	EPEL
repositories	is	a	remarkably	smooth	process.	While	the	installation	of	the	EPEL
repository	using	YUM	is	very	safe	to	changes,	the	preceding	URL	for	Remi	is
maintained	at	the	discretion	of	the	repository	owners,	so	you	should	always
ensure	that	they	are	the	most	current.	However,	having	obtained	the	necessary
repository	setup	file,	it	was	then	a	matter	of	applying	an	RPM-based	command
in	order	to	install	all	necessary	repository	files	on	your	system.	Having	done	this,
we	were	then	required	to	open	the	relevant	configuration	files	of	each	of	the
installed	repositories	and	enable	them	(by	changing	enabled=0	to	enabled=1)
and	setting	a	priority	value	(priority=10).	While	the	former	value	will	merely
switch	the	repository	on,	the	latter	one	will	be	used	by	YUM	to	correctly	identify
which	repositories	were	the	most	appropriate	when	we	called	the	update
command.	As	it	was	discussed	in	the	previous	recipe	regarding	YUM	priorities,
the	simple	rule	of	thumb	is	based	on	remembering	the	phrase	"the	lower	the
number,	the	higher	the	priority."	This,	in	itself	(depending	on	your	reasons),	may
not	be	a	bad	thing	to	do,	but	for	the	purpose	of	this	recipe,	it	is	shown	that	the
default	CentOS	repositories	should	take	priority	over	all	others.	Of	course,	you
may	disagree	with	this,	and	yes,	there	is	nothing	stopping	you	from	applying	the
same	priority	rule	to	a	third-party	supplier,	but	I	do	caution	you	before	diving	in,
and	this	is	particularly	the	case	if	this	is	for	a	mission-critical	production	server.
Remember,	if	all	the	priority	values	are	the	same,	then	YUM	will	attempt	to
download	the	latest	version	by	default.

The	reason	for	setting	both	Remi	and	EPEL	to	a	higher	value	than	the	existing
CentOS-based	repositories	is	based	on	the	need	to	consider	security	updates.
Unless	you	have	determined	otherwise,	it	is	always	advised	that	the	base	files
should	come	from	CentOS	first.	This	includes,	but	it	is	not	limited	to,	Kernel
updates,	SELinux,	and	related	packages.	Third-party	repositories	should	be	used
for	additional	packages	that	cannot	be	obtained	from	the	original	sources,	or	for
access	to	particular	updates	that	may	not	be	available	to	the	base	release	of

CentOS.	This	may	include	packages	such	as	Apache,	MariaDB,	or	PHP.	As	a
final	footnote,	you	will	have	noticed	that	both	Remi	and	EPEL	repositories
shared	the	same	priority	value.	This	is	by	design	as	these	repositories	are	often
viewed	as	partners.	However,	if	you	decide	to	begin	mixing	repositories,	or	use
this	recipe	as	a	gateway	to	installing	other	repositories	not	mentioned	here,	then
you	should	always	do	your	research	and	evaluate	every	third-party	on	a	case-by-
case	basis.	The	Remi	and	EPEL	repositories	are	very	popular,	so	if	you	do	intend
to	add	more	third-party	resources,	read	around	the	subject,	choose	your
repositories	carefully,	and	stay	loyal.

There's	more...
There	are	many	other	interesting	repositories	available	for	CentOS	7,	such	as
ELRepo,	which	focuses	on	hardware-related	packages	such	as	filesystem
drivers,	graphics	drivers,	network	drivers,	sound	drivers,	and	webcam	or	video
drivers.	Go	to	http://elrepo.org	to	learn	how	to	install	and	access	it.

http://elrepo.org

Creating	a	YUM	repository
If	you	maintain	multiple	CentOS	servers	in	your	local	network	and	want	to	save
Internet	bandwidth	or	speed	up	the	downloading	of	the	same	remote	repository
packages	over	and	over	again,	or	are	within	a	very	restrictive	network
environment	where	access	to	any	remote	CentOS	repository	is	blocked	for	your
clients,	you	might	want	to	consider	running	your	own	YUM	repository.	Having
your	own	repository	is	also	an	excellent	solution	if	you	want	to	rollout	a	few
custom	or	unofficial	RPM	packages	(for	example	in-house	configuration	files	or
programs)	to	your	local	crowd	or	if	you	just	want	to	create	an	official	CentOS	7
repository	mirror	site.	Here	in	this	recipe	we	will	show	you	how	to	set	up	your
own	first	YUM	CentOS	7	repository	and	how	to	serve	it	to	your	local	network.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet	to	facilitate	the	download	of	additional
packages.	For	this	recipe	to	work,	you	will	also	need	to	place	the	CentOS	7
Everything	DVD	iso	file	image	in	your	server's	root	home	directory,	if	you
haven't	downloaded	it	yet,	refer	to	a	detailed	description	in	the	first	recipe	in
Chapter	1,	Installing	CentOS	(but	download	the	latest	CentOS-7-x86_64-
Everything-XXXX.iso	file	instead	of	the	minimal	iso	file).	Also,	we	need	a
running	Apache	web	server	to	share	our	YUM	repository	to	our	local	network;
please	read	the	first	recipe	in	Chapter	12,	Providing	Web	Services	in	order	to
learn	how	to	set	it	up.

How	to	do	it...
To	create	our	own	YUM	repository,	we	need	the	createrepo	program,	which	is
not	installed	on	CentOS	7	by	default.	Let's	begin	our	journey	by	installing	it.	In
this	example,	we	will	use	the	IP	address,	192.168.1.7,	for	our	YUM	repository
server:

1.	 Log	in	as	root	on	your	server	and	install	the	following	package:

yum	install	createrepo

2.	 Next,	for	every	repository	you	want	to	share,	create	a	subfolder	beneath	the
Apache	web	root	folder	under	varwww/html/repository/,	which	will	be
publicly	available	when	Apache	is	running;	for	example,	to	share	the
complete	CentOS	7	Everything	repository	packages,	you	could	use:

mkdir	-p	varwww/html/repository/centos/7.1

3.	 Now,	put	all	your	RPM	package	files	of	choice	into	the	repository	folders
created	here.	In	our	example,	we	will	put	all	RPM	packages	from	the
Everything	iso	image	file	into	our	new	local	repository	location	after	we
have	mounted	the	content	of	the	iso	file	to	the	filesystem:

mount	~/CentOS-7-x86_64-Everything-1503-01.iso	mnt

cp	-r	mntPackages/*	varwww/html/repository/centos/7.1/

4.	 Afterwards,	we	need	to	update	the	SELinux	security	contexts	for	all	the
new	files	copied	into	the	Apache	web	root	directory:

restorecon	-v	-R	varwww/html

5.	 Now,	for	every	repository	we	want	to	set	up,	run	the	following	command:

createrepo	--database	varwww/html/repository/centos/7.1

6.	 Congratulations,	you	now	have	successfully	created	your	first	YUM
repository,	which	can	be	accessed	from	any	computer	in	the	same	network
through	the	running	Apache	web	server.	In	order	to	test	it,	log	in	as	root	to
any	other	CentOS	7-based	system	that	can	ping	our	repository	server	and
add	our	new	repository	to	its	YUM	repository	configuration	directory:

vi	etcyum.repos.d/myCentosMirror.repo

7.	 Add	the	following	content	to	this	empty	file	(change	the	baseurl

appropriately	to	fit	your	own	needs):

[myCentosMirror]

name=my	CentOS	7.1	mirror

baseurl=http://192.168.1.7/repository/centos/7.1

gpgcheck=1

gpgkey=http://mirror.centos.org/centos/RPM-GPG-KEY-CentOS-7

8.	 Save	and	close	the	file,	then	test	if	your	new	repository	is	available	(it
should	appear	on	the	list)	on	your	client:

yum	repolist	|	grep	myCentosMirror

9.	 Now,	to	test	our	new	YUM	repository,	we	can	try	the	following	command:

yum	--disablerepo="*"	--enablerepo="myCentosMirror"	list	

available

How	it	works...
In	this	recipe,	we	have	shown	you	how	easy	it	is	to	install	and	set	up	a	local
YUM	repository.	However,	we	have	only	shown	you	how	to	create	a	mirror	site
of	all	the	CentOS	7	Everything	iso	RPM	packages,	but	you	can	repeat	this
process	for	creating	YUM	repositories	of	every	kind	of	package	that	you	want	to
share	with	your	network.

So,	what	did	we	learn	from	this	experience?

Setting	up	your	own	YUM	repository	was	simply	a	matter	of	installing	the
createrepo	package	and	copying	all	the	RPM	packages	that	you	want	to	share
into	a	subfolder	of	your	choice	beneath	your	Apache's	document	root	directory
(In	our	example,	we	had	to	mount	the	CentOS	7	Everything	iso	file	to	the
filesystem,	in	order	to	access	its	included	RPM	package	files	that	we	want	to
share).	As	the	Apache's	document	root	directory	is	under	the	control	of	SELinux,
afterwards	we	needed	to	set	the	security	context	for	all	the	new	RPM	files	in	this
directory	to	the	httpd_sys_content_t	type	label;	otherwise,	no	access	through
the	web	server	would	be	possible.	Finally,	we	needed	to	run	the	createrepo
command	on	our	new	repository	folder,	which	will	create	our	new	repository's
metadata	that	is	needed	for	any	YUM	client	that	wants	to	connect	to	the
repository	later	to	make	queries	to	it.

Afterwards,	to	test	our	new	repository,	we	created	a	new	repository	definition
file	on	another	CentOS	7	system	that	wants	to	use	this	new	service	and	that	must
be	in	the	same	network	as	our	YUM	repository	server.	In	this	custom	.repo
configuration	file,	we	put	the	correct	URL	path	to	the	repository,	enabled	gpg
checks,	and	took	the	standard	CentOS	7	gpgkey	so	that	our	YUM	client	can
proof	the	validity	of	the	RPM	packages	official	repository	packages.	Finally,	we
used	the	yum	command	with	the	--disablerepo="*"	and	--
enablerepo="myCentosMirror"	parameters,	which	will	make	sure	to	only	use
our	new	custom	repository	as	a	source.	You	can	use	these	two	parameters	in
combination	with	any	other	yum	command	such	as	install,	search,	info,	list,
and	so	on.	This	was	just	for	testing;	if	you	want	to	combine	your	new	repository
with	the	existing	ones,	please	use	YUM	priorities	for	it	(as	shown	in	another
recipe	in	this	chapter).

There's	more...
Now,	before	we	announce	our	new	centralized	YUM	repository	to	our	network,
we	should	first	make	an	update	of	all	the	RPM	packages	that	have	changed	since
the	release	of	the	CentOS	Everything	iso.	In	order	to	do	this,	visit
http://www.centos.org	and	choose	a	rsync://	mirror	link	that	is	geographically
near	your	current	location.	For	example,	if	you	are	located	in	Germany	one
option	could	be	rsync://ftp.hosteurope.de/centos/	(for	more	detailed	instructions
on	navigating	the	CentOS	website,	read	the	first	recipe	in	Chapter	1,	Installing
CentOS).	Also,	before	we	can	use	the	rsync	protocol,	we	need	to	install	the
rsync	package	(yum	install	rsync),	if	not	done	already.	Now,	open	the
following	empty	script	file	vi	~/update-myCentosMirror-repo.sh	file	and	put
in	the	following	content	(replacing	the	rsync://	location	accordingly,	if
needed):

rsync	-avz	rsync://ftp.hosteurope.de/centos/7/os/x86_64/Packages/	

varwww/html/repository/centos/7.1

restorecon	-v	-R	varwww/html

Now,	make	the	file	executable	using	chmod	+x	~/update-myCentosMirror-
repo.sh,	and	run	it	with	~/update-myCentosMirror-repo.sh.	This	should
update	your	repository	to	the	latest	version.	Finally,	to	automate	this	process,
let's	create	a	cron	job	that	will	update	our	repository	packages	with	the	other
mirror	site	every	night	at	2:30	am	(open	crontab	-e):

30	2			*	rootupdate-myCentosMirror-repo.sh

http://www.centos.org
http://rsync://ftp.hosteurope.de/centos/

Working	with	the	RPM	package
manager
All	software	on	a	CentOS	7	system	is	distributed	through	RPM	packages.	Most
of	the	time	the	YUM	package	manager	is	the	first	choice	of	any	system
administrator,	performing	software	installation	and	maintenance,	and	is	highly
recommended	whenever	possible	as	it	provides	system	integrity	checks	and	has
excellent	package	dependency	resolution.	In	this	recipe,	we	will	show	you	an
alternative	way	to	manage	your	packages.	We	will	be	exploring	the	RPM
package	manager,	which	is	a	powerful	tool	used	to	build,	install,	query,	verify,
update,	and	erase	individual	RPM	software	packages.	Though	it	is	not	as
intelligent	as	YUM,	as	it	cannot	resolve	package	dependencies	or	work	with
repositories,	it	can	be	still	relevant	today	since	it	provides	very	useful	querying
options	that	are	not	available	in	YUM,	and	it	can	be	used	to	install	single
software	packages	manually.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet	in	order	to	facilitate	the	download	of	additional
RPM	packages.

How	to	do	it...
We	start	this	recipe	by	downloading	a	rpm	package	from	the	Internet,	which	we
will	use	to	show	you	an	example	of	how	the	rpm	command	works:

1.	 We	will	begin	by	logging	in	as	root	into	the	root's	home	directory	and
downloading	the	pipe	view	program	from	the	EPEL	repository,	which
cannot	be	found	in	the	official	CentOS	repository:

Note
cd	~;curl	-O	

http://dl.fedoraproject.org/pub/epel/7/x86_64/p/pv-1.4.6-

1.el7.x86_64.rpm

Please	note	that	while	you	are	reading	this,	the	package	URL	may	have
changed.

2.	 After	the	download	has	been	completed,	we	will	install	this	package	using
the	following	rpm	command:

rpm	-Uvh	~/pv-1.4.6-1.el7.x86_64.rpm

3.	 If	the	installation	has	finished,	let's	check	if	the	installation	of	the	package
was	successful	by	querying	the	RPM	database:

rpm	-qa	|	grep	"pv-"

4.	 You	can	also	test	the	pv	program	directly	(press	Ctrl+C	keys	to	quit):

dd	if=/dev/urandom	|	pv	|	dd	of=/dev/null

5.	 We	can	now	use	the	rpm	command's	rich	querying	options	to	show	useful
information	of	the	installed	package:

rpm	-qi	pv

rpm	-ql	pv

rpm	-qd	pv

6.	 Finally,	let's	remove	the	package	if	you	don't	like	or	need	it	anymore:

rpm	-e	pv

How	it	works...
Here,	in	this	recipe,	we	introduced	you	to	the	RPM	package	manager,	which	is
the	original	program	to	manage	RPM	packages.	The	RPM	package	is	a
packaging	standard	for	the	distribution	of	software,	and	contains	useful	metadata
in	the	file	to	verify	the	authorship	(for	example,	using	signature	verification	with
PGP)	and	integrity	of	the	software	included.	The	installation	of	packages
containing	binary	programs	instead	of	manually	compiling	and	building	them
from	scratch	is	much	easier	and	more	consistent,	but	RPM	packages	can	also
contain	any	type	of	file,	such	as	source	code	or	just	documentation	files.	As	said
in	the	introduction,	the	rpm	command	has	six	different	modes	of	operation:
building,	installing,	uninstalling,	updating,	querying,	and	verifying	rpm
packages.	Here,	in	this	recipe,	we	showed	you	how	to	use	the	most	important
five	operations	(we	don't	show	building	RPM's).

So,	what	have	we	learned	from	this	experience?

We	started	by	logging	in	as	root	and	downloading	the	pv	(pipe	viewer)	rpm
package	example	from	the	non-official	EPEL	CentOS	repository	(EPEL	contains
high-quality	add-on	packages,	thoroughly	checked	and	officially	conformed;	see
the	Using	a	third-party	repository	recipe	to	learn	more	about	the	EPEL
repository)	manually	using	curl,	because	it	is	not	available	in	the	official
repository	but	can	be	a	very	useful	tool.

Note

Although	there	are	many	RPM	repositories	and	download	sources	on	the
Internet,	for	security	and	compatibility	reasons,	on	productive	systems	you
should	consider	installing	only	official	CentOS	7	RPM	packages	from	valid	and
reputable	repositories	and	sources.	In	general,	the	packages	contained	are	best
tested	and	reviewed	by	many	experts	and	users.

The	downloaded	package	file's	name	can	be	read	the	following	way,	which
follows	the	following	non-mandatory	naming	convention	for	RHEL/CentOS
packages:

pv-1.4.6-1.x86_64.rpm		=	package	name	(pv)-version	number	(1.4.6)-

release(1)-CPU	architecture	(x86_64)

Next,	we	installed	the	downloaded	pv	package	using	the	RPM	package	manager,
which	can	be	executed	using	the	rpm	command	on	the	command	line.	We	used	it
with	the	-Uvh	command	parameters	together	with	the	full	name	of	the
downloaded	package	rpm	file.

Note

If	using	the	rpm	command	for	installing	or	upgrading	rpm	software	packages,
you	should	always	use	-Uvh	with	one	exception;	which	are	kernel	packages.	-U
will	remove	old	packages	while	updating,	and	this	is	not	what	you	want	if	you
install	a	new	kernel.	Use	-i	(for	installing)	here	instead,	as	this	will	keep	the	old
kernel	files	so	that	you	can	go	back	to	an	earlier	version	if	you	run	into	some
problems.

-U	is	the	parameter	for	installing	or	upgrading	a	package.	If	the	package	is	not
installed	on	the	system,	it	will	get	installed;	otherwise	rpm	tries	to	upgrade	it	if	it
the	RPM	package	version	is	newer	than	the	one	installed.	The	-v	parameter
prints	a	more	verbose	output,	while	-h	displays	a	nice	progress	bar.	Installing	the
pv	package	when	you	have	not	enabled	the	EPEL	repository	on	your	system	will
get	the	following	warning	message:

pv-1.6.0-1.x86_64.rpm:	Header	V3	DSA/SHA1	Signature,	key	ID	

3fc56f51:	NOKEY

RPM	will	automatically	check	the	validity	of	the	package's	signature	before
installing	to	make	sure	that	the	package's	content	has	not	been	modified	since	it
has	been	signed.	Also,	it	checks	that	an	RPM	package	is	trustworthy,	as	it	should
be	signed	by	an	official	third-party	authority	vendor	using	an	encrypted	key.
You	can	ignore	this	message,	as	packages	from	the	EPEL	repository	are	from	a
secure	source.	To	permanently	trust	EPEL	sources,	you	can	install	its	gpg	public
key	on	your	system	using	the	following	command	and	getting	rid	of	all	future
signature	warning	messages:

rpm	--import	https://dl.fedoraproject.org/pub/epel/RPM-GPG-KEY-

EPEL-7

Having	successfully	installed	the	package,	we	now	have	a	nice	command	line
tool	called	pv	to	show	the	progress	of	data	going	through	a	Unix	pipe,	which	can
be	useful	if	you	are	transferring	huge	amounts	of	data	through	pipelines	where
you	normally	never	know	the	current	state	of	progress.	Afterwards,	we	queried

the	RPM	database	that	stores	information	about	all	installed	packages	on	a
CentOS	7	system,	using	the	rpm	command	with	the	-q	flag.	Working	on	the
RPM	database,	we	must	use	the	true	package	name	(pv)	instead	of	the	filename
(pv-1.4.6-1.x86_64.rpm)	that	we	used	when	we	installed	the	packages	in	the
first	place.	The	same	is	true	when	removing	an	installed	package;	please	specify
the	package	name	and	not	the	version	number	or	full	filename.

To	get	detailed	information	about	the	installed	package,	pv,	we	used	-qi	(i	for
information),	with	the	-ql	parameter;	we	showed	the	full	filename	and	path	of
all	files	in	the	package.	-qd	showed	all	the	files	in	the	package	containing
documentation.	To	read	about	more	querying	options,	type	man	rpm	and	look
under	the	PACKAGE	QUERY	OPTIONS	section.

In	summary,	we	can	say	that	there	are	situations	in	a	system	administrator's	life
where	one	needs	to	install	a	piece	of	software	that	is	not	distributed	through	an
official	repository	(for	example,	non-open-source,	cutting-edge	program	or	beta
versions,	software	that	have	a	license	disallowing	the	ability	to	put	it	into	a
repository	such	as	Java,	or	software	from	independent	developers),	and	where
one	will	have	to	download	individual	RPM	packages	and	install	them	manually.
Under	the	hood,	YUM	also	depends	and	uses	the	RPM	package	manager	in	the
background,	so	you	are	also	able	to	use	the	YUM	program	to	install	rpm	files
(yum	install	<filename.rpm>).	However,	when	it	comes	to	querying	your
downloaded	rpm	files	or	installed	packages	on	your	system,	there	are	situations
where	it's	better	to	use	the	older	rpm	command	without	having	to	install
additional	YUM-based	software	such	as	yum-utils.

The	biggest	weakness	of	RPM	is	that	it	does	not	support	repositories	and	is
missing	a	dependency	management	system.	If	you	work	with	RPM	alone	to
install	all	your	software	on	a	CentOS	system,	you	will	easily	run	into	package
dependency	problems	where	you	cannot	install	a	specific	package	because	it
relies	on	some	other	packages.	Often,	when	you	try	to	install	the	dependent
packages,	you	need	other	packages	that	they	depend	on	and	so	on.	This	can	be
very	tedious	work	and	should	always	be	avoided	by	using	YUM	instead.

There's	more...
The	rpm	command	can	not	only	be	used	to	query	the	rpm	database	for
information	about	installed	packages,	you	can	also	use	it	to	query	rpm	files	that
you	downloaded.	For	example,	use	the	-qlp	parameter	to	show	all	files	in	a	local
rpm	package	file:

rpm	-qlp	~/pv-1.4.6-1.el7.x86_64.rpm

To	get	detailed	information	about	the	package	from	the	rpm	file,	use	the	-qip
parameter,	as	shown	here:

rpm	-qip	~/pv-1.4.6-1.el7.x86_64.rpm

If	you	want	to	install	an	RPM	package	that	you	have	downloaded	locally	and
that	has	dependencies,	you	can	use	the	yum	localinstall	command.	This	will
install	the	local	package	once	supplied	with	its	filename,	and	will	try	to	resolve
all	the	dependencies	from	remote	sources,	for	example:

wget	http://location/to/a/rpm/package_name.rpm

yum	localinstall	package_name.rpm

Chapter	5.	Administering	the
Filesystem
In	this	chapter,	we	will	cover	the	following	topics:

Creating	a	virtual	block	device
Formatting	and	mounting	a	filesystem
Using	disk	quotas
Maintaining	a	filesystem
Extending	the	capacity	of	the	filesystem

Introduction
This	chapter	is	a	collection	of	recipes	that	provides	for	the	need	to	drive	a
CentOS-based	server	solution.	From	formatting	and	mounting	disks	to	extending
a	logical	volume	and	maintaining	your	filesystem	and	disk	quotas,	the	purpose
of	this	chapter	is	to	show	you	how	quickly	and	easily	you	can	get	to	grips	with
the	task	of	managing	the	needs	of	its	users	in	today's	most	demanding
environments.

Creating	a	virtual	block	device
In	this	recipe,	we	will	create	a	virtual	block	device	that	we	will	use	to	simulate
real	devices	and	partitions	so	that	we	can	test-drive	concepts	and	commands
used	in	all	later	recipes	in	this	chapter.	Working	with	real	disks	and	partitions
often	involves	the	risk	of	losing	important	data	or	even	having	to	re-install	your
complete	system.	A	virtual	block	device	is	ideal	to	learn	the	techniques	and	try
things	out	before	switching	to	"production	mode".	Later,	if	you	have	gained
enough	experience	and	feel	safe,	you	can	easily	replace	it	with	"real"	hardware
devices,	partitions,	and	logical	volumes	(which	is	a	part	of	LVM;	see	the	later
recipe).	All	you	need	to	do	is	substitute	your	virtual	device	with	"real"	block
device	names.

Getting	ready
To	complete	this	recipe,	you	will	require	a	minimal	installation	of	the	CentOS	7
operating	system	with	root	access.	To	create	a	virtual	block	device,	you	should
have	at	least	one	gigabyte	of	free	hard	disk	space	that	we	will	use	temporarily	to
create	and	make.	You	can	delete	this	reserved	space	later	(or	it	will	be
automatically	deleted	on	reboot).	It's	just	for	testing.

How	to	do	it...
1.	 To	begin,	log	in	as	root	and	create	an	empty	file	with	the	exact	size	of	1

gigabyte:

dd	if=devzero	of=tmptest-image.dd	bs=1M	count=1000

2.	 Now,	let's	create	a	loop	device	from	the	file	we	just	created:

losetup	-fP		tmptest-image.dd

3.	 Next,	print	the	generated	loop	device	name:

losetup	-a

4.	 As	this	will	be	the	first	loop	device	created	in	the	current	system,	the	output
will	be	as	follows	(loop0	can	be	a	different	number	if	you	have	created	a
loop	device	before):

devloop0:	[0035]:3714186	(tmptest-image.dd)

5.	 To	get	a	list	of	all	the	block	devices	currently	attached	to	the	system,	as
well	as	important	details,	type	the	following:

lsblk	-io	NAME,TYPE,SIZE,MOUNTPOINT,FSTYPE,MODEL

6.	 Now,	let's	create	a	new	partition	table	of	the	type	gpt	on	our	new	loop
device	(confirm	the	deletion	of	any	data):

parted	devloop0	mklabel	gpt

7.	 Finally,	create	device	maps	from	your	loop	device	to	make	it	more	similar
to	real	hard	disk	partitions:

kpartx	-a	devloop0

How	it	works...
In	this	recipe,	we	have	learned	how	to	create	a	virtual	block	device	that	acts	as	a
starting	point	for	testing	out	how	to	create	partitions,	logical	volumes,	and
filesystems	in	later	recipes	in	this	chapter.

So,	what	did	we	learn	from	this	experience?

We	started	this	recipe	by	creating	a	new	empty	file,	which	was	one	gigabyte	in
size,	in	the	/tmp	directory	using	the	dd	utility.	dd	is	used	to	make	exact	copies	of
files	(which	is	sometimes	called	cloning)	and	expects	two	parameters:	an	input
file	(the	if	parameter)	and	an	output	file	(the	of	parameter).	We	used	the	zero
device	(devzero)	as	our	input	file	that	returns	an	endless	stream	of	bytes
containing	zero.	We	then	limited	the	stream	by	defining	a	blocksize	(bs)	and
count	parameter.	The	bs	defines	the	amount	of	data	in	bytes	read	at	a	time,
while	the	count	parameter	counts	how	many	repetitions	of	bs	will	be	allowed.
So,	these	arguments	can	be	read	as	stop	the	copying	process	when	we	reach	a
blocksize	times	count	data	received.	In	our	example,	we	used	a	blocksize	of	1
Megabyte	times	1000	=	1	Gigabyte.	This	zero	byte	data	was	written	to	our
output	file	(of)	called	tmptest-image.dd.

After	we	created	this	empty	file,	we	created	a	temporary	loop	device	with	it.	A
loop	device	is	just	a	pseudo-device	that	makes	it	possible	to	use	a	file	as	a	block
device.	Often,	such	a	file	is	a	CD	ISO	image,	and	using	it	as	a	loop	device	will
make	it	accessible	as	if	it	were	a	normal	hardware	drive.	Any	device	that	allows
reading	or	writing	data	in	blocks	can	be	called	a	block	device;	in	order	to	get	a
list	of	all	available	block	devices	in	your	system,	we	used	the	lsblk	command,
and	as	you	can	see,	this	includes	our	loop	device	as	well.	Standard	loop	device
names	start	with	the	number	zero,	as	in	devloop0.

Afterwards,	we	created	a	new	partition	table	on	our	loop	device	using	the
parted	command.	A	partition	table	is	a	table	maintained	on	a	disk	by	the
operating	system	describing	the	partitions	on	it,	and	it	must	be	created	before	we
can	create	them.	We	used	the	partition	table	type	gpt,	but	you	can	also	use	the
old	msdos	type	here	instead.

Normally,	when	creating	a	partition	table	on	a	virtual	block	device,	we	cannot

access	individual	partitions	or	make	filesystems	for	different	partitions	on	it,
because	the	partitions	cannot	be	addressed	individually.	Here	we	used	the
kpartx	command	to	create	device	mappings	from	partition	tables,	which	allows
us	later	to	access	single	partitions	for	creating	filesystems	using	the	notation,
devloop0p1,	for	partition	1	on	loop	device	0	and	devloop0p2	for	partition	2	on
loop	device	0.

Congratulations,	you	have	now	created	a	brand	new	virtual	block	device	with	a
standard	partition	table,	which	can	be	used	and	accessed	as	if	it	were	a	normal
disk	device.

There's	more...
If	we	want	to	remove	a	virtual	block	device,	we	first	have	to	unmount	it	from	the
filesystem	if	it	is	currently	mounted	(for	example,	umount	devloo0p1).	Next,	we
need	to	detach	the	virtual	block	device	file	from	the	loop	device	using	the	-d
parameter	like	so:	losetup	-d	devloop0.	Afterwards,	we	can	delete	the	block
file	if	we	want	to:	rm	tmptest-image.dd.

Formatting	and	mounting	a
filesystem
In	this	recipe,	you	will	be	introduced	to	the	standard	CentOS	filesystems	XFS,
Ext4,	and	Btrfs.	Filesystems	form	one	of	the	most	fundamental	parts	of	any
operating	system	and	nearly	everything	depends	on	them.	Here,	you	will	learn
how	to	create	different	types	of	standard	filesystems	available	in	CentOS	7,	and
how	to	link	them	to	your	system	so	that	we	can	access	them	afterwards	for
reading	and	writing.	These	two	techniques	are	called	formatting	and	mounting
filesystems;	while	you	do	not	do	this	very	often,	it	remains	one	of	the	most
fundamental	Linux	system	administrator	tasks.

Getting	ready
To	complete	this	recipe,	you	will	require	a	minimal	installation	of	the	CentOS	7
operating	system	with	root	access.	We	will	also	use	virtual	block	devices	instead
of	real	disk	devices	because	it's	better	to	demonstrate	the	usage	of	creating
filesystems	and	formatting	disks	using	"dummy"	devices,	instead	of	erasing	your
real	hard	disk	contents.	Therefore,	you	should	have	applied	the	Creating	a
virtual	block	device	recipe	and	created	a	1	Gigabyte	virtual	block	device,	which
will	be	named	devloop0	in	this	example.

If	you	want	to	apply	this	recipe	for	real	disk	devices,	all	you	have	to	do	is
replace	devloop0	with	your	correct	partition—for	logical	volumes	(lv)	for
example,	devmapper/myServer/data,	for	a	SATA	device	devsdX,	or	for	an	IDE-
based	hard	disk	name	devhdX	(where	X	is	a	character	a-z).

How	to	do	it...
In	our	example,	this	block	device	is	labeled	at	devloop0.	Please	note	that,	if	you
have	created	more	than	one	block	device,	your	number	could	be	different,	so
please	change	the	name	accordingly:

1.	 First,	let's	log	in	as	root	and	show	information	about	all	currently	available
block	devices:

lsblk	-io	NAME,TYPE,SIZE,MOUNTPOINT,FSTYPE,MODEL

2.	 Now,	recheck	that	we	have	a	valid	partition	table	installed	on	the	device:

parted	devloop0	print

3.	 The	preceding	line	should	print	out	the	following	content:	Partition
Table:	gpt.	If	this	is	not	the	case,	let's	create	a	new	partition	table	(confirm
the	deletion	of	any	data):

parted	devloop0	mklabel	gpt

4.	 Now,	we	will	create	a	new	partition	spanning	the	complete	disk	space	with
an	ext4	filesystem	label	(no	filesystem	will	be	installed	yet;	it's	just	a
label):

parted	-a	optimal	devloop0	mkpart	primary	ext4	2048KiB	100%

5.	 Print	the	partition	table	again	to	show	the	new	partition	we	just	created:

parted	devloop0	print

6.	 Now,	let's	remove	the	partition:

parted	devloop0	rm	1

7.	 We	can	also	create	a	btrfs-labeled	partition:

parted	-a	optimal	devloop0	unit	MB	mkpart	primary	btrfs	2048KiB	

100%

8.	 Afterwards,	let's	create	an	XFS-labeled	partition	spanning	the	whole	disk:

parted	devloop0	rm	1

parted	-a	optimal	devloop0	mkpart	primary	xfs	2048KiB	100%

9.	 Now,	show	the	block	table	again	to	see	what	we	have	changed:

lsblk	-io	NAME,TYPE,SIZE,MOUNTPOINT,FSTYPE,MODEL

10.	 As	we	have	only	defined	the	partition	type	label,	we	still	don't	have	a	valid
filesystem	on	our	partition;	so,	in	the	next	step,	we	format	our	disk	using
the	correct	type.	We	use	XFS	in	our	example.	Please	change	mkfs	-t
<type>	if	you	use	ext4	or	btrfs	instead:

mkfs	-t	xfs	devloop0p1

11.	 Next,	let's	mount	our	virtual	block	device	partition	on	the	system,	into	the
directory	mediavbd-1,	and	please	change	-t	<type>	if	you	use	ext4	or
btrfs	instead:

mkdir	mediavbd-1

mount	-t	xfs	devloop0p1		mediavbd-1

12.	 Finally,	test	if	we	can	read	and	write	to	the	new	filesystem:

echo	"this	is	a	test"	>	mediavbd-1/testfile.txt

cat	mediavbd-1/testfile.txt

How	it	works…
Here,	in	this	recipe,	we	showed	the	user	how	to	create	CentOS	7	standard
partitions	spanning	the	whole	disk,	and	then	we	created	some	filesystems	on
them,	which	is	called	formatting,	using	different	filesystem	types.	The	standard
filesystem	available	in	CentOS	7	is	XFS,	but	as	we	have	learned	in	this	recipe,
there	are	lots	of	other	ones	available	as	well,	including	the	popular	ext4	and
btrfs.	XFS	is	a	very	robust	and	high-performing	file	system	for	large	storage
configurations;	it	is	considered	very	mature	and	stable.	Before	CentOS	7,	the
standard	file	system	was	ext4,	but	it	had	some	limitations	and	not	the	best
performance	when	working	with	millions	of	files	and	is	considered	barely
suitable	for	today's	very	large	filesystems.	btrfs	is	a	relatively	new	filesystem
and	is	included	in	CentOS	7,	but	at	the	time	of	writing	it	is	still	under
development	and	should	not	be	used	for	production	systems.	It	is	considered	to
be	fully	supported	in	later	CentOS	7	minor	releases	and	is	likely	to	replace	XFS
as	the	standard	CentOS	filesystem	type	in	the	future,	as	it	has	a	list	of	very
promising	features	and	enhancements,	such	as	copy-on-write,	which	copies	files
each	time	you	write	to	them,	and	which	makes	it	possible	to	go	back	to	former
file	versions.

So,	what	have	we	learned	from	this	experience?

We	started	this	recipe	by	using	the	lsblk	command	to	print	a	list	of	all	available
block	devices	currently	attached	to	the	system.	We	used	this	command	to	check
if	our	target	block	device	that	we	want	to	use	for	installing	partitions	and
filesystems	on	is	available.	In	our	example	we	will	use	the	devloop0	device,
please	change	this	name	if	it's	different	on	your	system	(as	said	before,	you
could	also	use	a	"real"	disk	block	device,	such	as	devsda,	but	always	be
careful!).	After	confirming	that	we	have	our	device	ready,	we	used	the	parted
command	to	check	the	partition	table	of	the	disk.	A	partition	table	is	mandatory
for	any	hard	disk	to	keep	track	of	the	partition	information	on	it.	As	you	have
seen,	our	primary	tool	for	creating	partition	tables	and	partitions	is	parted,	as	it	is
the	officially	recommended	CentOS	7	tool	for	these	tasks,	but	there	are	other
programs	that	do	the	same	as	well,	such	as	fdisk	or	gdisk.	If	there	is	no
partition	table	available,	we	must	create	one	of	type	gpt	using	parted's	mklabel
gpt	parameter.

Next,	after	we	created	the	partition	table,	we	put	some	partitions	on	it.	Therefore,
we	issued	parted's	mkpart	command	with	the	-a	optimal	primary	ext4
2048KiB	100%	options.

Note

Be	careful	with	the	parted	command	all	the	time	and	recheck	everything	before
executing,	as	most	of	its	commands	will	completely	destroy	all	the	data	currently
stored	on	the	disk.

This	will	create	a	new	partition	starting	at	2,048	kilobytes	(kb)	until	the	end	of
the	disk.	We	did	not	start	at	the	very	beginning	of	the	disk	(0%)	as	2,048	kb	is
the	start	of	the	first	sector	on	the	disk	to	leave	some	space	left	to	store	some
additional	data.	-a	optimal	aligns	the	partition	to	a	multiple	of	the	physical
block	size	that	will	guarantee	optimal	performance.	Next,	we	removed	the
partition	again	using	the	rm	option	and	number	1,	which	refers	to	the	first
partition	we	just	created.	We	recreated	new	partitions	of	type	btrfs	and	finally
xfs.	After	the	disk	is	partitioned,	we	need	an	actual	filesystem	on	it,	as	parted
only	labels	the	partition	to	a	specific	type,	but	does	not	do	the	actual	formatting.
To	make	the	filesystem,	we	use	the	mkfs	utility.	You	can	either	run	it	with	the	-t
flag,	as	we	did,	or	use	a	dot	notation,	such	as	mkfs.xfs,	to	specify	the	type	you
want	to	format	it	to.	The	mkfs	command	gives	us	a	detailed	output	of	what	it	has
done,	such	as	how	many	blocks	have	been	written	and	so	on.

Finally,	after	we	have	created	the	filesystem	on	our	disk	partition,	we	can	use	the
mount	command	to	make	it	available	and	work	with	it	in	our	current	system.
mount	either	attaches	or	detaches	a	device's	filesystem	to	our	system's	root
filesystem.	Therefore,	we	need	to	first	create	a	directory	to	define	where	we	want
to	attach	it	to.	We	use	the	directory,	mediavbd-1,	as	a	parameter	for	the	actual
mount	command	with	the	syntax,	mount	-t	<file	system	type>	<device>
<dir>.	For	almost	all	standard	filesystems,	you	can	skip	the	-t	parameter	as	it
will	automatically	detect	the	right	type.	To	detach	a	filesystem	from	your
system,	you	can	use	the	umount	command	with	the	argument	of	the	device	you
want	to	remove	(you	can	also	use	the	folder	it's	mounted	to;	both	do	work!).	In
our	example,	to	unmount	our	loop	device's	first	partition,	type	umount
devloop0p1.

After	mounting	our	formatted	partition	device,	we	can	access	it	like	any	other
component	beneath	the	root	folder.

component	beneath	the	root	folder.

There's	more...
In	this	recipe,	we	always	use	one	partition	spanning	the	complete	available	disk
space.	Often,	you	have	more	than	one	partition	on	a	disk,	so	let's	create	this	kind
of	layout	instead.	In	this	example,	we	create	three	100	MB	partitions	on
devloop0:

1.	 First,	let's	delete	our	partition	once	again	using	the	rm	parameter	so	that	we
can	add	new	ones:

parted	devloop0	rm	1

2.	 Now,	let's	create	three	equal	partitions:

parted	-a	optimal	devloop0	unit	MiB	mkpart	primary	ext4	2048KiB	

100

parted	-a	optimal	devloop0	unit	MiB	mkpart	primary	ext4	100	200

parted	-a	optimal	devloop0	unit	MiB	mkpart	primary	ext4	300	400

3.	 Let's	review	our	layout:

parted	devloop0	print

Note

Using	the	gpt	partition	table,	we	can	create	up	to	128	primary	partitions	on
any	disk;	when	using	the	older	msdos	partition	type,	there	is	a	maximum	of
four	primary	partitions.	If	you	need	more,	you	have	to	create	extended
partitions	out	of	primary	ones.

Using	disk	quotas
When	administering	a	Linux	multiuser	system	with	many	system	users,	it	is	wise
to	set	some	kind	of	restrictions	or	limits	to	the	resources	shared	by	the	system.
On	a	filesystem	level,	you	can	either	restrict	the	available	hard	disk	space	or	the
total	file	number	to	a	fixed	size	at	a	user,	group,	or	directory	level.	The
introduction	of	such	rules	can	prevent	people	from	"spamming"	the	system,
filling	up	its	free	space,	and	generally	your	users	will	get	more	aware	of	the
differentiation	between	important	and	unimportant	data	and	will	be	more	likely
to	keep	their	home	directories	tidy	and	clean.	Here	in	this	recipe,	we	will	show
you	how	to	set	up	a	disk	quota	limiting	system	for	XFS	filesystems,	which	puts
restrictions	on	the	amount	of	data	your	system's	user	accounts	are	allowed	to
store.

Getting	ready
To	complete	this	recipe,	you	will	require	a	minimal	installation	of	the	CentOS	7
operating	system	with	root	access	and	a	console-based	text	editor	of	your	choice.
For	this	recipe	to	work,	and	in	order	to	set	quotas,	you	will	need	at	least	one
system	user	account	next	to	your	root	account;	if	you	don't	have	one	yet,	please
refer	to	the	recipe	Managing	users	and	their	groups	in	Chapter	3,	Managing	the
System	to	learn	how	to	create	one.	Also,	in	the	main	recipe,	it	is	expected	that
your	CentOS	7	uses	the	XFS	filesystem,	which	is	standard	on	installation.
Finally,	your	CentOS	7	installation	needs	to	have	been	installed	on	a	disk	with	at
least	64	GB	space,	otherwise	the	installer	will	not	create	a	separate	logical	/home
volume,	which	is	required	in	this	recipe	to	make	quotas	work.

How	to	do	it...
Here,	we	will	learn	how	to	set	up	a	quota	system	for	the	XFS	filesystem	in	two
different	ways:	first,	setting	limits	on	the	user	and	groups,	and	then	on	the
directory	(project)	level.	Disk	quota	systems	have	to	be	set	on	filesystem	mount.

Enabling	user	and	group	quotas
1.	 To	begin,	log	in	as	root	and	open	the	fstab	file,	which	contains	static

mount	information:

vi	etcfstab

2.	 Now,	navigate	the	cursor	to	the	line	containing	/home	(with	the	up	and
down	arrow	keys)	and	move	it	to	the	word	defaults,	and	then	add	the
following	text	after	defaults,	separated	by	commas:

,uquota,gquota

3.	 The	complete	line	will	look	like	the	following	(your	device	name	will	be
different,	depending	on	your	individual	LVM	name;	here,	it	is	myserver):

/dev/mapper/myserver-home	/home		XFS				defaults,uquota,gquota	

0	0

4.	 Save	and	close	the	file,	then	remount	the	/home	partition	to	activate	the
quota	directive:

umount	/home;mount	-a

5.	 Next,	create	a	user	quota	on	the	total	file	size	for	a	specific	user	named
john	(change	appropriately	to	match	a	user	available	on	your	system):

xfs_quota	-x	-c	'limit	bsoft=768m	bhard=1g	john'	home

6.	 Next,	create	a	user	quota	for	the	total	amount	of	files	another	user,	joe,	can
have:

xfs_quota	-x	-c	'limit	isoft=1000	ihard=5000	joe'	home

7.	 Let's	create	a	file	amount	and	size	limit	for	everyone	in	the	user	group
devgrp	(the	filesystem	group	devgrp	must	exist):

xfs_quota	-x	-c	'limit	-g	bsoft=5g	bhard=6g	isoft=10000	

ihard=50000	devgrp'	/home

8.	 Finally,	show	the	whole	quota	report	for	the	home	volume:

xfs_quota	-x	-c	'report	-bi	-h'	/home

Enabling	project	(directory)	quotas

In	order	to	enable	disk	quotas	for	a	single	directory	instead	of	user	or	group
quotas,	we	have	to	add	the	project	quota	directive	called	pquota	to	the	volume
containing	the	directory.	As	we	will	use	a	directory	called	srvdata	for	our
project	quota,	we	need	to	take	the	full	underlying	/	root	partition	under	quota
control.	For	the	root	partition,	we	have	to	set	quota	flags	as	kernel	boot	options:

1.	 To	begin	with,	open	the	following	file	as	root	after	first	making	a	backup	of
it:

cp	etcdefault/grub	etcdefault/grub.BAK

vi	etcdefault/grub

2.	 Add	the	rootflags=pquota	directive	to	the	end	of	the	line	(add	one
whitespace	character	before	it)	starting	with	GRUB_CMDLINE_LINUX=	before
the	closing	double	quote	as	shown	here:

GRUB_CMDLINE_LINUX="rd.lvm.lv=centos/root	rd.lvm.lv=centos/swap	

crashkernel=auto	rhgb	quiet	rootflags=pquota"

3.	 Save	and	close	the	file,	and	then	rebuild	the	grub	configuration	with	our
new	boot	option:

grub2-mkconfig	-o	bootgrub2/grub.cfg

4.	 Now,	add	the	pquota	flag	to	your	root	volume	in	etcfstab	as	well:

vi	etcfstab

5.	 Navigate	the	cursor	to	the	line	containing	the	root	mount	point	/	and	move	it
to	the	word	defaults,	and	then	add	the	following	text,	separated	by	a
comma:

,prjquota

6.	 The	complete	line	will	look	similar	to	the	following:

/dev/mapper/myserver-root	/									XFS				defaults,prjquota	0	

0

7.	 Next,	reboot	your	computer	to	apply	your	changes	to	the	root	volume:

reboot

8.	 After	rebooting,	make	sure	that	the	root	volume	has	project	quota	enabled,
which	is	defined	as	the	prjquota	flag	in	the	volume's	options	(otherwise,	if
it	is	wrong	and	doesn't	work,	it	will	show	as	noquota):

cat	etcmtab		|	grep	root

9.	 Next,	let's	create	our	target	folder	that	we	want	to	set	quotas	for:

mkdir	srvdata

10.	 We	need	to	add	a	project	name	and	an	associated	new,	unique	ID:

echo	"myProject:1400"	>>	etcprojid

11.	 Now,	define	that	srvdata	will	use	quota	rules	from	our	project	ID:

echo	"1400:srvdata"	>>	etcprojects

12.	 Next,	initialize	the	project	quota	for	the	root	volume:

xfs_quota	-xc	'project	-s	myProject'	/

13.	 Finally,	apply	the	following	rule	to	create	specific	directory	limits:

xfs_quota	-x	-c	'limit	-p	bsoft=1000m	bhard=1200m	myProject'	/

14.	 Print	out	our	quota	rules	for	this	device:

xfs_quota	-x	-c	'report	-bi	-h'	/

How	it	works...
In	this	recipe,	you	learned	how	easy	it	is	to	set	up	a	quota	system	on	a	user,
group,	or	directory	(project)	level.	Also,	you	have	learned	that	there	are	two
basic	ways	of	defining	quotas:	either	put	a	restriction	on	the	total	file	size	(called
blocks),	or	a	limit	on	the	number	of	files	(called	inodes).

So,	what	have	we	learned	from	this	experience?

We	began	this	recipe	by	setting	user	and	group	quotas.	As	you	have	seen,	a
quota	system	can	easily	be	enabled	by	adding	associated	directives	to	the
partition	of	choice	in	the	etcfstab	file.	Therefore,	we	began	this	recipe	by
opening	this	file	and	adding	the	special	quota	keywords	for	the	XFS	user,	and
group	quotas	to	our	/home	partition.	In	order	to	apply	these	changes,	we	had	to
remount	the	filesystem	using	the	mount	command.	As	the	quota	system	had	been
successfully	started,	we	used	the	xfs_quota	-x	-c	command	line	to	set	some
quota	limits	on	our	enabled	filesystem	/home.	-x	enables	expert	mode	while	-c
lets	us	run	commands	as	arguments	on	the	command	line.	When	running
xfs_quota	without	the	-c	option,	you	will	get	to	an	interactive	prompt	instead.
First,	we	set	some	user	limits	for	the	users,	john	and	joe.	We	did	this	by
defining	the	following	parameters	with	numbers:	bsoft,	bhard,	isoft,	ihard.
As	you	can	see,	there	are	both	soft	and	hard	limits	for	file	size	(blocks)	and	file
amount	(inodes).	Block	quotas	can	be	given	in	the	typical	metrics	such	as
kilobyte	(k),	megabyte	(m),	and	gigabyte	(g),	whereas	an	inode	is	a	number.	A
soft	limit	is	a	threshold	that,	when	crossed,	prints	out	a	warning	message	to	the
command	line,	whereas	a	hard	limit	will	stop	the	user	from	adding	any	more
data	or	files	to	the	filesystem	under	quota	protection.	Afterwards,	we	set	a
group-based	quota.	If	you	use	the	-g	flag,	the	limit	will	be	defined	for	a	group
instead	of	the	user.	Using	group	rules	can	be	very	helpful	to	separate	your	users
into	different	groups	depending	on	the	amount	of	files	or	total	file	size	they
should	be	allowed	to	have.	Finally,	we	generated	a	report	for	all	our	current
quota	limits.	The	command	we	used	there	was	'report	-bi	-h',	which
generates	reports	for	used	filespace	(-b	for	blocks)	and	the	total	amount	of	files
(-i	for	inodes).	-h	specified	that	we	want	the	output	to	be	human-readable	in
megabytes	or	gigabytes.

To	test	that	quotas	work,	let's	create	the	following	block	and	inode	quotas	for	the

user	jack:

xfs_quota	-x	-c	'limit	bhard=20m	jack'	home

xfs_quota	-x	-c	'limit	ihard=1000	jack'	home

Log	in	as	the	user	jack	(su	-	jack)	and	run	the	following	command:

dd	if=/dev/urandom	of=~/test.dd	bs=1M	count=21

With	this	command,	the	user	john	will	try	to	create	a	21	megabyte	size	file,	but
when	starting	to	write	the	twentieth	megabyte,	the	following	error	message	will
appear:

dd:	error	writing	'homejack/test.dd':	Disk	quota	exceeded

Now,	delete	the	~/test.dd	file	so	that	we	can	start	another	test.	The	same
happens	if	you	exceed	your	file	amount	limit.	Test	the	following	quota	limit	by
trying	to	create	2,000	multiple	files	while	the	quota	is	limited	to	1,000;	do	this
by	adding	a	lot	of	new	files:	for	i	in	{1..2000};	do	touch	~/test$i.txt;
done.	This	results	in	the	following	error	message:

touch:	cannot	touch	'homejack/test1001.txt':	Disk	quota	exceeded

To	temporarily	turn	off	user	and	group	quota	checking	for	a	specific	filesystem,
you	can	run	xfs_quota	-x	-c	'off	-u	-g'	home	(-u	for	user,	-g	for	group)	as
root	user.	This	is	only	temporary;	to	re-enable	it,	you	need	to	remount	the
filesystem	of	interest,	which	is	umount	/home;mount	-a.	To	remove	a	specific
quota	rule,	just	set	its	limit	to	zero,	for	example:

xfs_quota	-x	-c	'limit	bhard=0	john'	/home

Next,	we	set	up	quota	on	a	directory,	instead	of	the	user/group	level.	This	is	a
feature	only	XFS	file	systems	are	capable	of;	all	other	filesystems	can	only	set
quotas	on	a	disk	or	partition	level.	Being	able	to	control	the	disk	usage	of	a
directory	hierarchy	is	useful	if	you	do	not	otherwise	want	to	set	quota	limits	for	a
privileged	user	or	groups.	To	activate	directory	quota,	we	first	had	to	enable	this
as	a	kernel	boot	option	because,	by	default,	the	root	volume	is	flagged	as
noquota.	Also,	we	added	the	prjquota	directive	in	etcfstab	to	the	root	partition
to	make	it	work.	If	you	want	to	learn	more	about	kernel	boot	options,	read	the
boot	loader	recipe	in	Chapter	1,	Installing	CentOS.	To	set	file	system	flags	for
the	root	partition,	we	needed	to	reboot	the	system.	After	doing	this,	we	made

sure	that	the	boot	option	has	been	set	successfully	by	looking	into	the	mtab	file,
which	is	a	file	that	lists	all	currently	mounted	filesystems.	Next,	we	set	up	a
project	name	with	an	associated	unique	project	ID	(we	randomly	choose	1400)	in
the	etcprojid	file.	In	the	next	step,	we	applied	this	new	project	ID	(1400)	to	a
directory	in	the	etcprojects	file	called	srvdata.	This	system	allows	the
application	of	specific	project	quota	rules	to	many	different	directories.
Afterwards,	we	initialized	project	quota	for	the	root	partition	using	the	project
option	with	the	xfs_quota	command,	and	then	created	a	limit	quota	rule	for
this	project	name.	All	directories	that	are	defined	in	the	etcprojects	file	under
the	corresponding	project	id	are	affected	by	this	rule.	This	type	of	system	can	be
used	for	fine-grain	multiple	folder	quota	rules.	For	every	directory,	you	can	set
up	a	new	project	name	or	reuse	a	specific	one,	making	this	system	very	flexible.

In	this	recipe,	we	have	created	a	block	size	hard	limit	of	1,200	megabytes	for	our
project	name,	which	is	myProject.	To	test	this	quota,	type	the	following:

dd	if=/dev/zero	of=srvdata/dd.img	bs=1M	count=1201

This	should	stop	dd,	exactly	after	writing	1200	megabytes,	with	the	following
command	line	error	message:

dd:	error	writing	'srvdata/dd.img':	No	space	left	on	device

There's	more...
As	the	name	implies,	the	xfs_quota	program	shown	in	this	recipe	only	works
for	XFS	filesystems.	If	you	want	to	use	disk	quotas	on	a	user	or	group	level	for
other	file	systems	such	as	ext4	or	btrfs,	you	have	to	install	the	quota	package
(yum	install	quota).	Setting	quotas	works	in	a	similar	way	to	the	steps	shown
in	this	recipe;	please	read	the	manual	man	quota	to	get	you	started.

Maintaining	a	filesystem
In	this	recipe,	we	will	learn	how	to	check	the	consistency	and	optionally	repair
CentOS	7	filesystems.	Filesystem	inconsistencies	are	rare	events	and	filesystem
checks	normally	are	running	automatically	at	boot	time.	But	system
administrators	should	also	know	how	to	run	such	tests	manually,	if	they	believe
there	is	a	problem	with	the	filesystem.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges.	We	will	use	virtual	block	devices	instead
of	real	disk	devices	because	we	cannot	apply	any	file	system	check	on	a
mounted	disk.	Therefore,	you	should	have	applied	the	Formatting	and	mounting
a	filesystem	recipe	and	created	a	1	gigabyte	virtual	block	device	with	two
partitions	of	half	the	total	size:	first,	a	partition	with	an	XFS,	and	then	another
one	with	an	ext4	filesystem.	We	will	use	the	virtual	block	device	named
devloop0	in	this	example.

As	said	before,	these	can	be	easily	exchanged	with	real	disk	names.

How	to	do	it...
1.	 To	begin	with,	log	in	as	root	and	show	information	about	the	current	block

devices	attached	to	the	system:

lsblk	-io	NAME,TYPE,SIZE,MOUNTPOINT,FSTYPE,MODEL

2.	 Here,	you	should	see	two	partitions	on	the	loop0	device:	devloop0p1	and
devloop0p2.	If	you	see	that	they	are	currently	mounted	to	the	system,
unmount	them	now:

umount	devloop0p1

umount	devloop0p2

3.	 Now,	let's	check	the	XFS	filesystem	which	in	our	example	is	loop0p1
(change	appropriately):

xfs_repair	-n	devloop0p1

4.	 For	the	second	partition	on	the	disk	that	is	ext4,	we	will	use	the	following
line:

fsck	-f	devloop0p2

How	it	works...
In	this	recipe,	we	have	learned	how	easy	it	is	to	run	a	filesystem	check	on	a	XFS
or	ext4	filesystem.	The	most	important	lesson	you	should	have	learned	here	is
that	you	always	have	to	unmount	your	disk	partitions	before	running	any
filesystem	checks!

So,	what	did	we	learn	from	this	experience?

Since	we	cannot	run	any	filesystem	checks	on	any	mounted	device,	if	you	want
to	check	your	system's	disks	and	partitions,	often	you	have	to	run	such	checks	in
the	rescue	mode	where	your	filesystems	are	not	mounted	(for	example,	you
cannot	unmount	the	root	partition	to	check	because	it's	needed	by	the	system	all
the	time,	whereas,	for	a	separate	home	partition,	it	would	be	possible).

For	the	XFS	file	system,	we	use	the	xfs_repair	tool,	and	for	all	others	we	will
use	the	fsck	program	with	the	-f	parameter	(force)	to	check	our	filesystem.

It	is	important	to	note	that	we	always	need	to	run	fsck	instead	of	the	specific
fsck.<file	system	type>	(such	as	fsck.ext4,	fsck.btrfs),	because	it	auto-
detects	the	right	tool	for	you.	This	is	necessary	because	if	you	run	the	wrong
specific	fsck.<file	system	type>	tool	on	the	wrong	filesystem	(let's	say
running	fsck.ext4	on	a	btrfs	filesystem),	it	can	completely	destroy	it!

There's	more...
So	far,	we	have	only	showed	you	how	to	check	a	filesystem	using	xfs_repair
and	fsck.	If	some	errors	occur	during	the	"checking"	run	on	an	XFS	filesystem,
run	xfs_repair	without	the	-n	option—for	example,	use	xfs_repair
devloop0p1.	On	a	non-XFS	partition,	such	as	ext4,	you	would	run	fsck	with	the
-a	option	(a	for	auto	repair)—for	example,	fsck	-a	devloop0p2.	For	fsck,	if
you	got	a	lot	of	errors,	it's	best	to	use	-y	as	well	so	that	you	do	not	have	to
confirm	every	error	fix.

Now,	let's	simulate	what	would	happen	if	we	got	a	corrupted	XFS	filesystem
using	our	virtual	block	device	(never	do	this	on	any	real	disk	partition!):

1.	 First,	mount	the	devloop0p1	partition	to	your	root	filesystem:

mkdir	mediavbd-1

mount	-t	xfs	devloop0p1		mediavbd-1

2.	 Next,	create	a	large	number	of	files	on	this	mounted	filesystem—for
example,	2000	files:

for	i	in	{1..2000};	do	dd	if=devurandom	bs=16	count=1	

of=mediavbd-1/file$i;	done

3.	 Now,	unmount	the	device	and	corrupt	the	filesystem	using	dd:

umount	devloop0p1

dd	bs=512	count=10	seek=100	if=devurandom	of=devloop0p1

4.	 Now,	run	a	filesystem	check:

xfs_repair	-n	devloop0p1

5.	 This	will	most	likely	show	you	a	list	of	corrupted	files;	in	order	to	fix	it,	use
the	following	line:

xfs_repair	devloop0p1

You	can	also	simulate	such	a	filesystem	corruption	on	your	ext4	virtual	block
device,	and	then	repair	it	using	fsck	-ay	devloop0p2.

Extending	the	capacity	of	the
filesystem
CentOS	7	uses	the	Logical	Volume	Manager	(LVM)	to	organize	the	structure
and	available	capacity	of	your	partitions.	It	is	a	very	dynamic	and	flexible
system	that	can	be	extended	or	rearranged	over	time,	and	which	is	essential	in
today's	most	demanding	and	ever-changing	environments.	At	the	moment,
buzzwords	such	as	big	data	or	cloud	computing	can	be	heard	everywhere.	Since
massive	amounts	of	data	get	produced	all	the	time,	storage	requirements	and
disk	space	have	to	grow	at	the	same	steady	pace.	In	this	recipe,	you	will	learn
how	to	work	with	the	LVM	system	and	how	to	extend	your	physical	drives,	and
also	how	to	shrink	and	extend	the	capacity	of	your	filesystems.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges.	We	will	use	virtual	block	devices	instead
of	real	disk	devices	to	show	you	from	scratch	how	to	set	up	a	LVM	first,	and
afterwards	how	to	work	with	it.	Please	read	the	Creating	a	virtual	block	device
recipe	and	create	three	1	gigabyte	virtual	block	devices	with	the	GPT	partition
table,	which	will	be	labeled	as	devloop0,	devloop1,	and	devloop2	in	this
example.

Again,	feel	free	to	use	real	disk	devices	if	you	feel	ready	for	it.

How	to	do	it...
First,	we	will	start	by	creating	an	LVM	test	environment	similar	to	the	standard
CentOS	7	LVM	structure,	which	is	set	up	during	the	installation	of	every	server
system:

1.	 First,	let's	log	in	as	root	and	show	information	about	our	virtual	block
devices:

lsblk	-io	NAME,SIZE

Next,	create	new	partitions	spanning	the	whole	disk	on	each	of	the	three
virtual	block	devices	(without	a	filesystem	label):

parted	-a	optimal	devloop0	mkpart	primary		2048KiB	100%

parted	-a	optimal	devloop1	mkpart	primary		2048KiB	100%

parted	-a	optimal	devloop2	mkpart	primary		2048KiB	100%

Now,	let's	create	LVM	physical	volumes	on	each	of	the	loop	devices	(type	yes
to	remove	the	gpt	label):

pvcreate	devloop0p1

pvcreate	devloop1p1

pvcreate	devloop2p1

Next,	show	information	about	our	physical	volumes:

pvdisplay

Next,	we	will	create	a	new	LVM	volume	group	on	our	first	physical	volume:

vgcreate	myVG1	devloop0p1

Now,	show	information	about	the	created	group:

vgdisplay	myVG1

Afterwards,	let's	create	some	logical	volumes	on	our	first	volume	group,
which	will	be	treated	as	virtual	partitions	in	our	Linux	system:

lvcreate	-L	10m		-n	swap	myVG1

lvcreate	-L	100m	-n	home	myVG1

lvcreate	-L	400m	-n	root	myVG1

Next,	show	information	about	the	logical	volumes:

lvdisplay	myVG1

Now,	display	how	much	free	space	our	underlying	volume	group	has	left,
which	becomes	important	if	you	want	to	expand	some	logical	volumes	(see	the
section	Free	PE	/	Size	in	the	output):

vgdisplay	myVG1

Afterwards,	let's	create	the	filesystems	on	those	new	logical	volumes:

mkswap	devmyVG1/swap

mkfs.xfs	devmyVG1/home

mkfs.xfs	devmyVG1/root

Now,	after	we	have	created	our	test	LVM	system	(which	is	very	similar	to	the
real	CentOS	LVM	standard	layout,	but	with	smaller	sizes),	let's	start	working
with	it.
First,	let's	shrink	the	root	partition,	which	is	currently	400	megabytes	(M)	in

size,	by	200	megabytes,	and	afterwards,	let's	increase	the	home	partition	by	500
megabytes	(confirm	the	possible	data	loss):

lvresize	-L	-200m	devmyVG1/root

lvresize	-L	+500m	devmyVG1/home

Use	vgdisplay	myVG1	again	to	see	how	the	volume	group's	free	space	changes
by	running	the	previous	commands	(see	Free	PE	/	Size).
Now,	let's	expand	the	XFS	filesystem	on	the	grown	logical	volume:

mkdir	mediahome-test;mount	devmyVG1/home	mediahome-test

xfs_growfs	devmyVG1/home

Note

It	is	very	important	not	to	use	resize2fs	for	growing	XFS	filesystems,	because
it's	incompatible	and	can	corrupt	them.

Now,	let's	say	that	after	some	time	your	data	has	grown	again,	and	you	need
the	home	partition	to	be	1.5	gigabytes	(G),	but	you	only	have	184.00	MiB	left	on
the	underlying	volume	group.	First,	we	need	to	add	our	two	prepared	physical
volumes	from	the	beginning	of	this	recipe	to	our	volume	group:

vgextend	myVG1	devloop1p1	devloop2p1

vgdisplay	myVG1

Afterwards,	we	have	enough	free	space	in	our	volume	group	(see	Free	PE	/
Size)	to	expand	our	home	logical	volume	(the	volume	must	stay	mounted):

lvresize	-L	+1500m	devmyVG1/home

xfs_growfs	devmyVG1/home

How	it	works...
Here,	in	this	recipe,	we	have	shown	you	how	to	work	with	the	LVM	for	XFS
partitions.	It	has	been	developed	with	the	purpose	of	managing	disk	space	on
several	hard	disks	dynamically.	You	can	easily	merge	many	physical	hard	disks
together	to	make	them	appear	as	a	single	virtual	hard	disk	to	the	system.	This
makes	it	a	flexible	and	very	scalable	system	in	comparison	to	working	with	plain
old	static	partitions.	Traditional	partitions	are	bound	to,	and	cannot	grow	over,
the	total	disk	capacity	they	reside	on,	and	their	static	partition	layout	cannot	be
changed	easily.	Also,	we	have	introduced	some	important	LVM	technical	terms
that	provide	different	abstraction	layers	to	a	hard	disk,	and	which	will	be
explained	in	this	section	so	as	to	understand	the	concepts	behind	it:	physical
volume	(pv),	volume	group	(vg),	and	logical	volume	(lv).

So,	what	did	we	learn	from	this	experience?

We	started	this	recipe	by	creating	three	virtual	block	devices	of	1	gigabyte	(G)
each	and	then	one	partition	spanning	the	whole	device	on	each	of	them.
Afterwards,	we	defined	these	single-partition	devices	as	physical	volumes	(pv)
using	the	pvcreate	command.	A	pv	is	an	LVM	term	that	defines	a	storage	unit
in	the	LVM	world.	It	must	be	defined	on	a	partition,	full	drive,	or	loop	device.	A
pv	is	just	an	abstraction	of	all	the	space	available	in	the	surrounding	partition	so
that	we	can	work	with	it	on	an	LVM	basis.	Next,	we	created	a	volume	group
(vg)	with	the	vgcreate	command,	where	we	also	had	to	define	a	volume	group
name	of	our	choice	and	put	the	first	pv	in	it	as	a	basic	storage	volume.	As	you
can	see,	a	vg	is	a	container	for	at	least	one	pv	(we	add	more	pv's	later).	Adding
or	removing	pv's	to	or	from	a	vg	is	the	heart	of	the	whole	scalability	concept	of
the	LVM	system.	The	pv's	don't	have	to	be	all	the	same	size,	and	it	is	possible	to
grow	your	vg	over	time	by	adding	dozens	of	new	physical	drives	all	defined	as
pv.	You	can	have	more	than	one	vg	on	your	system,	and	you	can	identify	them
by	the	unique	names	you	are	giving	to	them.	So,	in	summary,	to	extend	the	space
of	your	vg,	you	have	to	create	pv's	out	of	physical	drives,	which	you	can	then
add	to.

Finally,	we	created	logical	volumes	(lv)	on	our	vg,	which	can	be	seen	and	used
like	real	physical	partitions	within	a	vg.	Here,	we	created	three	lv's	using	the
lvcreate	command,	by	which	we	need	to	define	the	name	of	the	vg	(remember,

there	can	be	more	than	one	vg	on	your	system)	that	we	want	to	put	our	target	lv
on,	along	with	the	size	of	the	volume,	as	well	as	a	name	for	it	as	the	last
parameter.	You	can	add	multiple	lvs	into	a	vg	and	you	don't	need	to	use	the
whole	allocated	space	from	the	underlying	free	space	of	the	vg.	You	can	be	very
flexible	with	it.	The	best	part	is	that	your	decision	about	your	volumes'	size	and
layout	doesn't	have	to	be	fixed	for	all	time;	you	can	change	them	anytime	later.	It
is	a	very	dynamic	system	that	can	be	extended	and	shrunk,	deleted	and	created,
without	having	to	unmount	the	volume	beforehand.	But	you	have	to	remember
that	all	lvs	are	bound	to	a	vg,	and	it	is	not	possible	to	create	them	without	it	or
outside	its	spacial	boundaries.	If	you	need	to	extend	an	lv's	space	over	the
borders	of	the	underlying	vg,	you	have	to	extend	the	vg,	as	show	in	this	recipe.

Note

As	you	may	have	seen,	for	every	LVM	term,	there	is	a	"display"	and	"create"
command,	so	it's	easy	to	remember:	pvdisplay,	vgdisplay,	lvdisplay,
pvcreate,	vgcreate,	lvcreate.

After	you	have	successfully	created	your	lv's,	you	can	work	with	them	as	you
would	with	every	other	block	device	partition	on	your	system.	The	only
difference	is	that	they	reside	in	special	device	folders:	dev<vg	name>/<lv	name>
or	devmapper/<vg	name>/<lv	name>.	For	example,	the	home	volume	created	in
this	example	has	the	name	devmyVG1/home.	Finally,	in	order	to	use	them	as
normal	mount	points,	we	created	some	test	filesystems	on	them.

In	the	second	part	of	this	recipe,	we	showed	you	how	to	extend	our	vg	and	how
to	shrink	and	expand	our	lv's	test	system.

We	started	by	using	the	vgdisplay	myVG1	command	to	show	the	currently
available	space	on	the	vg.	In	the	command	output,	we	saw	that	our	current
volume	group	has	a	total	of	996M	(VG	Size),	the	allocated	size	from	our	lv's
(swap,	home,	root)	is	512M	(Alloc	PE	/	Size),	and	the	free	size	is	484M	(Free
PE	/Size).	Next,	we	used	the	lvresize	command	to	shrink	and	expand	the
logical	volume's	root	and	home.	The	-L	parameter	sets	the	new	size	of	the
volume,	and	with	the	+	or	-	sign,	the	value	is	added	to	or	subtracted	from	the
actual	size	of	the	logical	volume.	Without	it,	the	value	is	taken	as	an	absolute
one.	Remember	that	we	could	only	increase	the	home	partition	because	the
current	volume	layout	does	not	occupy	the	complete	vg's	total	space.	After

resizing,	if	we	use	the	vgdisplay	command	again,	we	see	that	we	now	occupy
more	space	in	the	vg;	its	free	size	has	been	decreased	to	184M.	Since	we
expanded	the	home	volume	from	100M	to	500M	in	total,	we	need	to	remember	to
expand	its	XFS	filesystem	too,	since	expanding	a	volume	does	not	automatically
expand	its	filesystem.	Therefore,	400M	of	the	current	volume	are	unallocated
without	any	filesystem	information.	We	used	the	command,	xfs_growfs,	which
will,	without	defining	a	limit	parameter,	use	the	complete	unallocated	area	for
the	XFS	filesystem.	If	you	want	to	resize	any	other	filesystem	type,	such	as	ext4,
you	would	use	the	resize2fs	command	instead.

Finally,	we	wanted	to	grow	the	home	volume	by	1.5G,	but	we	only	have	184M
left	on	our	vg	to	expand.	This	is	where	LVM	really	shines,	because	we	can	just
add	some	more	physical	volumes	to	it	(in	the	real	world,	you	would	just	install
new	hard	disks	in	your	server	and	use	them	as	pvs).	We	showed	you	how	to
extend	the	capacity	of	your	vg	by	adding	two	1G-sized	pvs	to	it	using	the
vgextend	command.	Afterwards,	we	used	vgdisplay	to	see	that	our	vg	has	now
grown	to	3G	in	total	size,	so	finally	we	could	extend	our	home	lv	as	it	would
now	fit	into	it.	As	a	last	step,	we	expanded	the	XFS	file	system	once	again	to	fill
up	the	whole	2G	home	volume	size.

Please	remember,	all	the	time,	that	if	you	use	vg's	with	several	physical	hard
disks,	your	data	will	be	distributed	among	these.	An	LVM	is	not	a	RAID	system
and	has	no	redundancy,	so	if	one	hard	disk	fails,	your	complete	vg	will	fail	too
and	your	data	will	be	lost!	In	order	to	deal	with	this	problem,	a	proposed	solution
could	be	to	use	a	physical	RAID	system	for	your	hard	disks	and	create	an	LVM
on	top	of	that.

Chapter	6.	Providing	Security
In	this	chapter,	we	will	cover	the	following	topics:

Locking	down	remote	access	and	hardening	SSH
Installing	and	configuring	fail2ban
Working	with	a	firewall
Forging	the	firewall	rules	by	example
Generating	self-signed	certificates
Using	secure	alternatives	to	FTP

Introduction
This	chapter	is	a	collection	of	recipes	that	provides	a	solid	framework	on	which
a	server	can	be	made	secure	in	almost	any	environment.	Security	is	the
cornerstone	of	a	good	administrator,	and	this	chapter	illustrates	how	quickly	and
easily	you	can	design	and	implement	a	series	of	checkpoints	that	will	deliver	the
protection	you	need.

Locking	down	remote	access	and
hardening	SSH
In	this	recipe,	we	will	learn	how	to	provide	additional	security	measures	in	order
to	harden	the	secure	shell	environment.	The	Secure	Shell	(SSH)	is	the	basic
toolkit	that	provides	remote	access	to	your	server.	The	actual	distance	to	the
remote	machine	is	negligible,	but	the	shell	environment	enables	you	to	perform
maintenance,	upgrades,	the	installation	of	packages	and	file	transfers;	you	can
also	facilitate	whatever	action	you	need	to	carry	out	as	the	administrator	in	a
secure	environment.	It	is	an	important	tool;	as	the	gateway	to	your	system,	it	is
the	purpose	of	this	recipe	to	show	you	how	to	perform	a	few	rudimentary
configuration	changes	that	will	serve	to	protect	your	server	from	unwanted
guests.

Getting	ready
To	complete	this	recipe,	you	will	require	a	minimal	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet	in	order	to	download	additional	packages.	It	is
assumed	that	your	server	already	maintains	at	least	one	non-root-based
administration	account	that	can	use	the	new	features	provided	by	this	recipe.

How	to	do	it...
The	role	of	SSH	will	be	vital	if	you	are	forced	to	administer	your	server	from	a
remote	location,	and	for	this	reason	it	is	essential	that	a	few	basic	steps	are
provided	to	keep	it	safe:

1.	 To	begin,	log	in	as	root	and	create	a	backup	of	the	original	configuration
file	by	typing	the	following	command:

cp	etcssh/sshd_config	etcssh/sshd_config.bak

2.	 Now,	open	the	main	sshd	configuration	file	by	typing	the	following:

vi	etcssh/sshd_config

3.	 We	shall	begin	by	adjusting	the	time	allowed	to	complete	the	login	process,
so	scroll	down	and	find	the	line	that	reads:

#LoginGraceTime	2m

4.	 Uncomment	this	line	and	change	its	value	to	something	more	appropriate
such	as:

LoginGraceTime	30

5.	 Now,	scroll	down	a	couple	of	more	lines	and	find	the	line	that	reads	as
follows:

#PermitRootLogin	yes

6.	 Change	this	to	the	following:

PermitRootLogin	no

7.	 Find	the	following	line:

X11Forwarding	yes

8.	 And	change	it	to	the	following:

X11Forwarding	no

9.	 Save	and	close	the	file	before	restarting	the	SSH	service,	as	shown	here:

systemctl	restart	sshd

10.	 At	this	stage,	you	may	want	to	consider	creating	a	new	SSH	session	using

the	new	settings	before	exiting	the	current	session.	This	is	to	ensure	that
everything	is	working	correctly	and	to	avoid	locking	yourself	out	of	the
server	accidentally.	If	you	have	difficulty	starting	a	new	SSH	session,	then
simply	return	to	the	original	session	window	and	make	the	necessary
adjustments	(followed	by	a	restart	of	the	SSH	service).	However,	if	no
difficulties	have	been	encountered	and	you	are	on	a	successful	secondary
login,	you	may	close	the	original	shell	environment	by	typing	exit.

Note

Remember,	having	followed	this	recipe	you	should	now	find	that	root
access	to	the	shell	is	denied	and	you	must	log	in	using	a	standard	user
account.	Any	further	work	requiring	root	privilege	will	require	the	su	or
sudo	command,	depending	on	your	preferences.

How	it	works...
SSH	is	a	vital	service	that	enables	you	to	access	your	server	remotely.	A	server
administrator	cannot	work	without	it.	In	this	recipe,	you	were	shown	how	to
make	that	service	a	little	more	secure.

So,	what	did	we	learn	from	this	experience?

We	began	the	recipe	by	creating	a	backup	copy	of	our	original	main	sshd
configuration	file.	The	next	step	was	to	open	and	edit	it.	The	configuration	file
for	SSH	maintains	a	long	list	of	settings	that	is	ideal	for	most	internal	needs,	but
for	a	server	in	a	production	environment	it	is	often	advised	that	the	default	SSH
configuration	file	will	need	changing	to	suit	your	particular	needs.	In	this
respect,	the	first	step	was	to	make	a	recommended	change	to	the	login	grace
time,	LoginGraceTime	30.	Instead	of	the	default	two	minutes,	the	preceding
value	will	allow	only	up	to	30	seconds.	This	is	the	period	of	time	where	a	user
may	be	connected	but	will	have	not	begun	the	authentication	process;	the	lower
the	number,	the	fewer	unauthenticated	connections	are	kept	open.	Following
this,	we	then	removed	the	ability	of	a	remote	user	to	log	in	as	the	root	user	by
using	the	PermitRootLogin	no	directive.	In	most	cases,	this	is	a	must	and	a
remote	server	should	not	allow	a	direct	root	login	unless	the	server	is	in	a
controlled	environment.	The	main	reason	behind	this	is	to	reduce	the	risk	of
getting	hacked.	The	first	thing	every	SSH	hacker	tries	to	crack	is	the	password
for	the	user	root.	If	you	disallow	root	login,	an	attacker	needs	to	guess	the	user
name	as	well,	which	is	far	more	complex.	The	next	setting	simply	disabled
X11Forwarding.	In	situations	like	these,	it	is	often	a	good	idea	to	apply	the
phrase	"if	you	do	not	use	it,	disable	it".	To	complete	the	recipe,	you	were
required	to	restart	the	SSH	server	in	order	to	allow	the	changes	to	take
immediate	effect	and	start	a	new	SSH	session	with	the	intention	of	making	sure
that	the	modifications	did	indeed	work	as	expected.	No	system	is	ever	safe,	but
having	done	this	you	can	now	relax,	safe	in	the	knowledge	of	having	made	the
SSH	server	a	little	bit	safer.

There's	more...
There	are	a	few	more	topics	to	cover	to	make	your	SSH	server	even	more
secure:	we	should	change	the	SSH	port	number	and	show	you	how	to	limit	SSH
access	to	specific	system	users.

Changing	the	SSH	port	number	of	your	server

Port	22	is	the	default	port	used	by	all	SSH	servers,	and	changing	the	port	number
used	can	go	a	small	way	to	increase	the	overall	security	of	your	server.	Again,
open	the	main	SSH	daemon	configuration	file,	sshd_config.	Now,	scroll	down
and	locate	the	following	line	that	reads:

#Port	22

Remove	the	leading	#	character	(uncomment)	and	change	the	port	number	to
another	value	by	replacing	XXXX	with	an	appropriate	port	number:

Port	XXXX

You	must	ensure	that	the	new	port	number	is	not	already	in	use,	and	when
complete,	save	the	file	and	close	it.	It	is	important	to	remember	that	any	changes
made	here	are	reflected	in	your	firewall	configuration.	So,	we	need	to	open	the
new	port	in	firewalld	as	well.	Set	the	new	port	via	the	environment	variable
NEWPORT	(replace	XXXX	with	your	new	SSH	port),	then	execute	the	following	sed
command	to	change	the	SSH	firewalld	service	file	and	reload	the	firewalld
daemon	afterwards	(for	details,	read	the	firewall	recipe	in	this	chapter):

NEWPORT=XXXX

sed	"s/port=\"22\"port=\"$NEWPORT\"g"	

usrlib/firewalld/services/ssh.xml	>	etcfirewalld/services/ssh.xml	

firewall-cmd	--reload

Also,	we	have	to	tell	SELinux	(see	Chapter	14,	Working	with	SELinux	to	learn
more	about	it)	about	the	port	change	because	it	is	restricted	to	port	22	by	default.
Make	sure	that	the	SELinux	tools	have	been	installed,	then	create	a	security	label
for	our	custom	port,	replacing	XXXX	with	your	changed	port	number:

yum	install	-y	policycoreutils-python	semanage	port	-a	-t	

ssh_port_t	-p	tcp	XXXX

Finally	restart	the	sshd	service	to	apply	our	port	change.

Finally	restart	the	sshd	service	to	apply	our	port	change.

Limiting	SSH	access	by	user	or	group

By	default,	all	valid	users	on	the	system	are	allowed	to	log	in	and	enjoy	the
benefit	of	SSH.	However,	a	more	secure	policy	is	to	only	allow	a	predetermined
list	of	users	or	groups	to	log	in.	When	henry,	james,	and	helen	represent	valid
SSH	users	on	the	system,	in	the	sshd_config	add	this	line	to	read	as	follows:

AllowUsers	henry	james	helen

Alternatively,	you	can	use	the	following	method	to	enable	any	user	that	is	a
member	of	a	valid	administration	group	to	log	in.	When	admin	represents	a	valid
SSH	group	on	the	system,	add	this	line	to	read	as	follows:

AllowGroups	admin

When	you	have	finished,	save	and	close	the	file	before	restarting	the	SSH
service.

Installing	and	configuring	fail2ban
In	this	recipe,	we	will	learn	how	to	implement	additional	security	measures	for
protecting	the	SSH	server	with	a	package	called	fail2ban.	This	is	a	tool	that
serves	to	protect	a	variety	of	services	including	SSH,	FTP,	SMTP,	Apache,	and
many	more	against	unwanted	visitors.	It	works	by	reading	log	files	for	patterns
based	on	failed	login	attempts	and	deals	with	the	offending	IP	addresses
accordingly.	Of	course,	you	may	have	already	hardened	your	SSH	server	or
another	service	on	a	direct	application	level,	but	it	is	the	purpose	of	this	recipe	to
show	that,	when	faced	with	the	possibility	of	Brute	Force	Attacks,	an	added
layer	of	protection	is	always	useful.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet	in	order	to	download	additional	packages.	In
addition	to	this,	it	will	be	assumed	that	YUM	is	already	configured	to	download
packages	from	the	EPEL	repository	(see	Chapter	4,	Managing	Packages	with
YUM).

How	to	do	it...
Fail2ban	is	not	installed	by	default,	and	for	this	reason	we	will	need	to	invoke
the	YUM	package	manager	and	download	the	necessary	packages:

1.	 To	begin	this	recipe,	log	in	as	root	and	type	the	following	command:

yum	install	fail2ban-firewalld	fail2ban-systemd

2.	 Create	a	new	configuration	file	in	your	favorite	text	editor,	like	so:

vi		etcfail2ban/jail.local

3.	 Put	in	the	following	content:

[DEFAULT]

findtime	=	900

[sshd]

enabled	=	true

4.	 Now,	append	the	following	line	that	defines	the	ban	period.	It	is	calculated
in	seconds,	so	adjust	the	time	period	to	reflect	a	more	suitable	value.	In	this
case,	we	have	chosen	this	to	be	one	hour:

bantime		=	3600

5.	 Then,	append	the	maximum	number	of	login	attempts:

maxretry	=	5

6.	 If	you	are	running	SSH	over	a	custom	port	other	than	22,	you	need	to	tell
this	to	fail2ban	as	well	(replace	XXXX	with	your	port	number	of	choice)
otherwise	skip	this	step:

port=XXXX

7.	 Now,	save	and	close	the	file	in	the	usual	way	before	proceeding	to	enable
the	fail2ban	service	at	boot.	To	do	this,	type	the	following	command:

systemctl	enable	fail2ban

8.	 To	complete	this	recipe,	you	should	now	start	the	service	by	typing:

systemctl	start	fail2ban

How	it	works...
fail2ban	is	designed	to	monitor	users	who	repeatedly	fail	to	log	in	correctly	on
your	server,	and	its	main	purpose	is	to	mitigate	attacks	designed	to	crack
passwords	and	steal	user	credentials.	It	works	by	continuously	reading	your
system's	log	files,	and	if	this	contains	a	pattern	indicating	a	number	of	failed
attempts,	then	it	will	proceed	to	act	against	the	offending	IP	address.	We	all
know	that	servers	do	not	exist	in	isolation,	and	by	using	this	tool,	within	a	few
minutes,	the	server	will	be	running	with	an	additional	blanket	of	protection.

So,	what	did	we	learn	from	this	experience?

fail2ban	is	not	available	from	the	standard	CentOS	repositories,	and	for	this
reason	your	server	will	need	to	have	access	to	the	EPEL	repository.	The
installation	of	the	fail2ban	packages	was	very	simple;	besides	the	main
fail2ban	package,	we	installed	two	other	packages	to	integrate	it	into	CentOS
7's	new	systemd	and	firewalld	server	technologies.	Next,	for	our	local
customization,	we	created	a	new	jail.local	file.	We	started	specifying	the
findtime	parameter	for	all	targets	(specified	within	the	[DEFAULT]	section),
which	is	the	amount	of	time	a	user	has	when	attempting	to	log	in.	This	value	is
measured	in	seconds	and	implies	that,	if	a	user	fails	to	log	in	within	the
maximum	number	of	attempts	during	the	designated	period,	then	they	are
banned.	Next,	we	enabled	fail2ban	for	the	sshd	daemon	by	adding	a	[sshd]
section.	In	this	section,	we	introduced	the	bantime	value,	which	represents	the
total	number	of	seconds	that	a	host	will	be	blocked	from	accessing	the	server	if
they	are	found	to	be	in	violation	of	the	rules.	Based	on	this,	you	were	then	asked
to	determine	the	maximum	number	of	login	attempts	before	blocking.	Also,	if
you	have	changed	your	service's	standard	listening	port,	you	have	to	define	the
custom	port	using	the	port	directive.	To	test	your	settings,	try	to	authenticate	a
user	using	SSH	and	provide	a	wrong	password	five	times.	On	the	sixth	occasion,
you	should	not	be	able	to	get	back	to	the	login	prompt	for	one	hour!

Protecting	the	sshd	service	from	Brute	Force	Attacks	is	just	the	first	step	to	get
you	started,	and	there	is	much	more	to	learn	with	failban.	To	troubleshoot	the
service,	please	look	at	its	log	file	at	varlog/fail2ban.log.	To	get	some	ideas
about	what	can	be	done	with	it,	open	the	following	example	failban	config	file:
less	etcfail2ban/jail.conf.

Working	with	a	firewall
A	firewall	is	a	program	that	monitors	and	controls	your	system's	network
interfaces'	incoming	and	outgoing	network	traffic,	and	can	restrict	the
transmission	to	only	useful	and	non-harmful	data	into	and	out	of	a	computer
system	or	network.	By	default,	CentOS	is	made	available	with	an	extremely
powerful	firewall,	built	right	into	the	kernel,	called	netfilter.	While,	in	older
versions	of	CentOS,	we	used	the	famous	iptables	application	to	control	it,	in
version	7,	the	new	standard	netfilter	management	program	has	changed	to	a
service	called	firewalld,	which	is	already	installed	and	enabled	on	every
CentOS	7	server	by	default.

It	is	a	very	powerful	service	to	take	full	control	over	your	server's	firewall
security,	and	is	much	easier	to	work	with	than	iptables.	Its	main	advantages	are
that	it	features	a	better	structured	and	more	logical	approach	to	managing	and
configuring	every	aspect	of	a	modern	firewall	solution.	Therefore,	it	will	be	the
foundation	of	your	server's	security,	and	for	this	reason	it	is	the	purpose	of	this
recipe	to	get	you	started	on	the	fundamentals	of	firewalld	quickly.

Getting	ready
To	complete	this	recipe,	you	will	require	a	minimal	installation	of	the	CentOS	7
operating	system	with	root	privileges	and	a	console-based	text	editor	of	your
choice.

How	to	do	it...
As	the	firewalld	service	is	running	on	every	CentOS	7	server	by	default,	we
can	start	directly	working	with	the	service	by	logging	in	to	your	server	using	the
root	user.

1.	 Type	the	following	commands	to	query	zone-related	information:

firewall-cmd	--get-zones	|	tr	"	"	"\n"

firewall-cmd	--list-all-zones

firewall-cmd	--get-default-zone

firewall-cmd	--list-all

2.	 We	can	switch	to	a	different	firewall	default	zone	by	using	the	following
line:

firewall-cmd	--set-default-zone=internal

3.	 Add	a	network	interface	to	a	zone	temporarily:

firewall-cmd	--zone=work	--add-interface=enp0s8

4.	 Now,	add	a	service	to	a	zone	temporarily:

firewall-cmd	--zone=work	--add-service=ftp

5.	 Test	if	adding	the	interface	and	service	has	been	successful:

firewall-cmd	--zone=work	--list-all

6.	 Now,	add	the	service	permanently:

firewall-cmd	--permanent	--zone=work	--add-service=ftp

firewall-cmd	--reload

firewall-cmd	--zone=work	--list-all

7.	 Finally,	let's	create	a	new	firewall	zone	by	opening	the	following	file:

vi	etcfirewalld/zones/seccon.xml

8.	 Now	put	in	the	following	content:

<?xml	version="1.0"	encoding="utf-8"?>

<zone>

		<short>security-congress</short>

		<description>For	use	at	the	security	congress.	</description>

		<service	name="ssh">

<zone>

9.	 Save	and	close,	then	reload	the	firewall	config	so	that	we	can	see	the	new
zone:

firewall-cmd	--reload

10.	 Finally,	check	that	the	new	zone	is	available:

firewall-cmd	--get-zones

How	it	works...
In	comparison	to	iptables,	the	new	firewalld	system	hides	away	the	creation	of
sophisticated	networking	rules	and	has	a	very	easy	syntax	that	is	less	error-
prone.	It	can	dynamically	reload	netfilter	settings	at	runtime	without	having	to
restart	the	complete	service	and	we	can	have	more	than	one	firewall
configuration	set	per	system,	which	makes	it	great	for	working	in	changing
network	environments,	such	as	for	mobile	devices	like	laptops.	In	this	recipe,	we
have	given	you	an	introduction	to	the	two	fundamental	building	blocks	of
firewalld:	the	zone	and	the	service.

So,	what	did	we	learn	from	this	experience?

We	started	this	recipe	using	firewall-cmd	to	get	information	about	available
firewall	zones	on	the	system.	Firewalld	introduces	the	new	concept	of	network
or	firewall	zones,	which	assigns	different	levels	of	trust	to	your	server's	network
interfaces	and	their	associated	connections.	In	CentOS	7,	there	already	exist	a
number	of	predefined	firewalld	zones,	and	all	of	these	(for	example,	private,
home,	public,	and	so	on,	with	the	exception	of	the	trusted	zone)	will	block	any
form	of	incoming	network	connection	to	the	server	unless	they	are	explicitly
allowed	using	special	rules	attached	to	the	zone	(these	rules	are	called	firewalld
services,	which	we	will	see	later).	We	queried	zone	information	using	firewall-
cmd	with	--get-zones	or	(more	detailed)	with	the	--list-all-zones	parameter.
Each	of	these	zones	acts	as	a	complete	and	full	firewall	that	you	can	use,
depending	on	your	system's	environment	and	location.	For	example,	as	the	name
implies,	the	home	zone	is	for	use	if	your	computer	is	located	in	home	areas.	If
this	is	selected,	you	mostly	trust	all	other	computers	and	services	on	the
networks	to	not	harm	your	computer,	whereas	the	public	zone	is	more	for	use	in
public	areas	such	as	public	access	points	and	so	on.	Here,	you	do	not	trust	the
other	computers	and	services	on	the	network	to	not	harm	you.	On	CentOS	7,	the
standard	default	zone	configuration	set	after	installation	is	the	public	zone,
which	we	displayed	using	the	command's	--get-default-zone	parameter,	and
in	more	detail	using	--list-all.

Note

Simply	put,	firewalld	zones	are	all	about	controlling	incoming	connections	to	the
server.	Limiting	outgoing	connections	with	firewalld	is	also	possible	but	is
outside	the	scope	of	this	book.

outside	the	scope	of	this	book.

Also,	to	get	more	technical	information	about	all	currently	available	zones,	we
used	the	firewall	client's	--list-all-zones	parameter.	In	the	command's	output,
you	will	notice	that	a	zone	can	have	some	associated	networking	interfaces	and	a
list	of	services	belonging	to	it,	which	are	special	firewall	rules	applied	to
incoming	network	connections.	You	may	also	notice	that,	while	listing	details	of
all	zones	and	their	associated	services	by	default,	all	firewalld	zones	are	very
restrictive	and	barely	allow	anything	to	connect	to	the	server	at	all.	Also,	another
very	important	concept	can	be	seen	in	the	command's	output	from	the	above.
Our	public	zone	is	marked	as	default	and	active.	While	the	active	zone	is
the	one	that	is	directly	associated	with	a	network	interface,	the	default	zone	can
really	get	important	if	you	have	multiple	network	adapters	available.	Here,	it	acts
as	a	standard	minimum	firewall	protection	and	fallback	strategy,	in	case	you
missed	to	assign	some	active	zone	for	every	interface.	For	systems	with	only	one
network	interface	setting,	the	default	zone	will	set	the	active	zone
automatically	as	well.	To	set	a	default	zone,	we	used	the	--set-default-zone
parameter	and,	to	mark	a	zone	as	active	for	an	interface,	we	used	--add-
interface.	Please	note	that,	if	you	don't	specify	the	--zone	parameter,	most
firewall-cmd	commands	will	use	the	default	zone	to	apply	settings.	Firewalld
is	listening	on	every	network	interface	in	your	system,	and	waiting	for	new
network	packets	to	arrive.	In	summary	we	can	say	that	if	there	is	a	new	packet
coming	into	a	specific	interface,	the	next	thing	firewalld	has	to	do	is	find	out
which	zone	is	the	correct	one	associated	with	our	network	interface	(using	its
active	or	if	not	available	its	default	configuration);	after	finding	it,	it	will	apply
all	the	service	rules	against	the	network	packets	belonging	to	it.

Next,	we	showed	you	how	to	work	with	firewalld	services.	Simply	put,	firewalld
services	are	rules	that	open	and	allow	a	certain	connection	within	our	firewall	to
our	server.	Using	such	service	file	definitions	allows	the	reusability	of	the
containing	rules	because	they	can	be	added	or	removed	to	any	zone.	Also,	using
the	predefined	firewalld	services	already	available	in	your	system,	as	opposed	to
manually	finding	out	and	opening	protocols,	ports,	or	port	ranges	using	a
complicated	iptables	syntax	for	your	system	services	of	interest,	can	make	your
administrative	life	much	easier.	We	added	the	ftp	service	to	the	work	zone	by
invoking	--add-service.	Afterwards,	we	printed	out	details	of	the	work	zone
using	--list-all.	Firewalld	is	designed	to	have	a	separated	runtime	and

permanent	configuration.	While	any	change	to	the	runtime	configuration	has
immediate	effect	but	will	be	gone,	the	permanent	configuration	will	survive
reload	or	restart	of	the	firewalld	service.	Some	commands	such	as	switching	the
default	zone	are	writing	the	changes	into	both	configurations	which	mean	they
are	immediately	applied	at	runtime	and	are	persistent	over	service	restart.	Other
configuration	settings	such	as	adding	a	service	to	a	zone	are	only	writing	to	the
runtime	configuration.	If	you	restart	firewalld,	reload	its	configuration,	or	reboot
your	computer,	these	temporary	changes	will	be	lost.	To	make	those	temporary
changes	permanent,	we	can	use	the	--permanent	flag	with	the	firewall-cmd
program	call	to	write	it	to	the	permanent	configuration	file	as	well.

Other	than	with	the	runtime	options,	here	the	changes	are	not	effective
immediately,	but	only	after	a	service	restart/reload	or	system	reboot.	Therefore,
the	most	common	approach	to	apply	permanent	settings	for	such	runtime-only
commands	is	to	first	apply	the	setting	with	the	--permanent	parameter,	and
afterwards	reload	the	firewall's	configuration	file	to	actually	activate	them.

Finally,	we	showed	you	how	to	create	your	own	zone,	which	is	just	a	XML	file
you	have	to	create	in	the	etcfirewalld/zones/	directory,	and	where	we
specified	a	name,	description,	and	all	the	services	that	you	want	to	activate.	If
you	change	something	in	any	firewall	configuration	file,	don't	forget	to	reload
the	firewall	config	afterwards.

To	finish	this	recipe,	we	will	revert	our	permanent	changes	made	to	the	work
zone	and	reload	firewalld	to	reset	all	the	non-permanent	changes	we	applied	in
this	recipe:

firewall-cmd	--permanent	--zone=work	--remove-service=ftp

firewall-cmd	--reload

There's	more...
To	troubleshoot	blocking	services,	instead	of	turning	off	the	firewall	completely,
you	should	just	switch	zone	to	trusted,	which	will	open	all	the	incoming	ports
to	the	firewall:

firewall-cmd	--set-default-zone=trusted

Once	you	have	finished	your	tests,	just	switch	back	to	the	zone	that	you	were	in
before,	for	example:

firewall-cmd	--set-default-zone=public

Forging	the	firewall	rules	by	example
In	this	recipe,	we	want	to	show	you	how	to	create	your	own	firewalld	service
definitions	or	how	to	change	existing	ones,	which	any	CentOS	7	system
administrator	should	know	if	the	predefined	service	files	don't	fit	your	system's
need.

Getting	ready
To	complete	this	recipe,	you	will	require	a	minimal	installation	of	the	CentOS	7
operating	system	with	root	privileges	and	a	console-based	text	editor	of	your
choice.	We	will	be	changing	the	SSH	service's	port	number	in	firewalld,	so	make
sure	that	you	have	configured	the	new	port	as	shown	in	the	recipe	Locking	down
remote	access	and	hardening	SSH.	Here,	in	our	example,	we	have	changed	the
port	to	2223.	Also,	we	will	create	a	new	firewalld	service	for	a	small	Python-
based	web	server	that	we	will	use	to	demonstrate	the	integration	of	new	system
service's	into	firewalld.	It's	advantageous	to	grasp	the	basics	of	firewalld	by
working	through	the	Working	with	a	firewall	recipe	before	starting	here.

How	to	do	it...
Here	in	this	recipe,	we	will	show	you	how	to	change	and	how	to	create	new
firewalld	service	definitions.	In	this	recipe,	it	is	considered	that	we	are	in	the
default	public	zone.

To	change	an	existing	firewalld	service	(ssh)
1.	 First,	log	in	as	root	and	copy	the	ssh	service	to	the	right	place	to	edit	it:

cp	usrlib/firewalld/services/ssh.xml	etcfirewalld/services

2.	 Next,	open	the	ssh	service	definition	file:

vi	etcfirewalld/services/ssh.xml

3.	 Change	the	port	from	22	to	2223,	then	save	the	file	and	close	it:

<port	protocol="tcp"	port="2223"/>

4.	 Finally,	reload	the	firewall:

firewall-cmd	--reload

To	create	your	own	new	service

Perform	the	following	steps	to	create	your	own	new	service:

1.	 Open	a	new	file:

vi	etcfirewalld/services/python-webserver.xml

2.	 Put	in	the	following	service	definition:

<?xml	version="1.0"	encoding="utf-8"?>

<service>

		<short>Python	Webserver</short>

		<description>For	pythons	webservers</description>

		<port	port="8000"	protocol="tcp">

<service>

3.	 Save	and	close	the	file,	and	then	finally	reload	the	firewall:

firewall-cmd	--reload

4.	 Now,	add	this	new	service	to	our	default	zone:

firewall-cmd	--add-service=python-webserver

5.	 Afterwards,	run	the	following	command	to	start	a	simple	Python	web	server
in	the	foreground	on	port	8000	(press	the	key	combination	Ctrl	+	C	to	stop
it):

python	-m	SimpleHTTPServer	8000

6.	 Congratulations!	Your	new	web	server	sitting	at	port	8000	can	now	be
reached	from	other	computers	in	your	network:

http://<ip	address	of	your	computer>:8000/

How	it	works...
Here	in	this	recipe,	we	have	shown	how	easy	it	is	to	customize	or	define	new
firewalld	services	if	the	predefined	needs	to	be	changed,	or	for	new	system
services	that	are	not	defined	at	all.	Service	definition	files	are	simple	XML	files
where	you	define	rules	for	a	given	system	service	or	program.	There	are	two
distinct	directories	where	our	firewalld	service	files	live:
usrlib/firewalld/services	for	all	predefined	services	available	from	the
system	installation,	and	etcfirewalld/services	for	all	custom	and	user-created
services.

So,	what	did	we	learn	from	this	experience?

We	started	this	recipe	by	making	a	working	copy	of	the	SSH	firewalld	service
file	in	the	right	place	at	etcfirewalld/services.	We	could	just	copy	the
original	file	because	all	files	in	this	directory	will	overload	the	default
configuration	files	from	usrlib/firewalld/services.	In	the	next	step,	we	then
modified	it	by	opening	it	and	changing	the	default	port	from	22	to	2223.	We
have	to	do	this	every	time	we	change	a	system's	service	standard	listening	port	to
make	the	firewall	aware	that	it	should	allow	network	traffic	to	flow	through	the
changed	port.	As	you	can	see	when	opening	this	file,	service	files	are	simple
XML	text	files	with	some	mandatory	and	some	optional	tags	and	attributes.
They	contain	a	list	of	one	or	more	ports	and	protocols	that	defines	exactly	what
firewalld	should	enable	if	the	service	is	connected	to	a	zone.	There	can	be
another	important	setting	in	the	XML	file:	helper	modules.	For	example,	if	you
open	the	SAMBA	service	file	at	usrlib/firewalld/services/samba.xml,	you
will	see	the	tag,	<module	name="nf_conntrack_netbios_ns"/>.	These	are
special	kernel	netfilter	helper	modules	that	can	be	dynamically	loaded	into	the
underlying	kernel-based	firewall,	and	which	are	needed	for	some	system
services,	such	as	Samba	or	FTP,	which	create	dynamic	connections	on
temporary	TCP	or	UDP	ports	instead	of	using	static	ports.	After	reloading	the
firewall	configuration,	we	should	now	be	able	to	test	the	connection	from
another	computer	in	our	network	using	the	altered	port.

In	the	second	part	of	this	recipe,	we	created	a	brand-new	service	file	for	a	new
system	service,	which	is	a	simple	Python	web	server	listening	on	port	8000
displaying	a	simple	directory	content	listing.	Therefore,	we	created	a	simple

XML	service	file	for	the	Python	web	server	including	the	right	port	8000,
restarted	the	firewall,	and	afterwards	added	this	new	service	to	our	default	public
zone	so	that	we	can	actually	open	connections	through	this	service.	You	should
now	be	able	to	browse	to	our	web	server's	start	page	using	another	computer	in
the	same	network.	However,	as	we	did	not	use	the	--permanent	flag,	if	you
restart	the	firewalld	daemon,	the	python-webserver	service	will	be	gone	from
the	public	zone	(or	you	can	also	use	the	parameter,	--remove-service=python-
webserver).

In	summary,	we	can	say	that	the	recommended	firewall	choice	in	CentOS	7	is
firewalld,	as	all	important	system	services	have	already	been	set	up	to	use	it	via
predefined	service	rules.	You	should	remember	that	Linux	firewalls	are	a	very
complex	topic	that	can	easily	fill	up	a	whole	book,	and	you	can	do	a	lot	more
with	the	firewall-cmd	that	cannot	be	covered	here	in	this	book.

There's	more...
Often,	you	just	want	to	quickly	open	a	specific	port	to	test	out	things	before
writing	your	own	custom-made	service	definition.	In	order	to	do	this,	you	can
use	the	following	command	line,	which	will	open	port	2888	using	the	tcp
protocol	temporarily	on	the	default	zone:

firewall-cmd	--add-port=2888/tcp

Once	you	have	finished	your	tests,	just	reload	the	firewall	configuration	to
remove	and	close	the	specific	port	again.

Generating	self-signed	certificates
In	this	recipe,	we	will	learn	how	to	create	self-signed	Secure	Sockets	Layer
(SSL)	certificates	using	the	OpenSSL	toolkit.	SSL	is	a	technology	used	to
encrypt	messages	between	two	ends	of	a	communication	(for	example,	a	server
and	client)	so	that	a	third-party	cannot	read	the	messages	sent	between	them.
Certificates	are	not	used	for	encrypting	the	data,	but	they	are	very	important	in
this	communication	process	to	ensure	that	the	party	you	are	communicating	with
is	exactly	the	one	you	suppose	it	to	be.	Without	them,	impersonation	attacks
would	be	much	more	common.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges	and	a	console-based	text	editor	of	your
choice.

Note

Generally	speaking,	if	you	are	intending	to	use	an	SSL	Certificate	on	a
production	server,	you	will	probably	want	to	purchase	a	SSL	Certificate	from	a
trusted	Certificate	Authority.	There	are	many	options	open	to	you	regarding
what	certificate	best	suits	your	requirements	and	your	budget,	but	for	the
purpose	of	this	recipe	we	will	confine	our	discussion	to	a	self-signed	certificate
that	is	more	than	adequate	for	any	development	server	or	internal	network.

How	to	do	it...
1.	 To	begin,	log	in	as	root	and	go	to	the	following	directory	so	that	we	can

use	the	Makefile	to	generate	our	intended	certificates	and	keyfiles:

cd	etcpki/tls/certs

2.	 Now,	to	create	a	self-signed	certificate	with	an	embedded	public	key	(both
in	the	file,	server.crt)	along	with	its	private	key	for	the	server	(with	the
filename	as	server.key),	type	the	following:

make	server.crt

3.	 You	will	then	be	asked	for	a	password	and	will	receive	a	series	of
questions,	to	which	you	should	respond	with	the	appropriate	values.
Complete	all	the	required	details	by	paying	special	attention	to	the	common
name	value,	which	should	reflect	the	domain	name	of	the	server	or	IP
address	that	you	are	going	to	use	this	certificate	for.	For	example,	you	may
type:

mylocaldomainname.home

4.	 To	create	a	pem	file	that	includes	a	self-signed	certificate	and	a	public	and	a
private	key	in	one	file,	and	is	valid	for	five	years,	type	the	following:

make	server.pem	DAYS=1825

5.	 Now,	let's	create	a	key	pair	(a	private	key	and	self-signed	certificate	that
includes	the	public	key)	for	an	Apache	web	server	that	we	will	need	for
enabling	https,	and	which	will	be	generated	in
etcpki/tls/private/localhost.key	and
etcpki/tls/certs/localhost.crt	(use	a	secure	password	and	repeat	it	in
the	second	command):

make	testcert

6.	 To	create	a	Certificate	Signing	Request	(CSR)	file	instead	of	a	self-signed
certificate,	use	this:

make	server.csr

How	it	works...
Here	in	this	recipe,	we	introduced	you	to	the	SSL	technology	that	uses	public
key	cryptography	(PKI)	(where	two	forms	of	keys	exist:	public	and	private).
On	the	server,	we	store	the	private	key	and	our	clients	get	a	public	key.	Every
message	sent	from	one	end	to	the	other	is	encrypted	by	the	key	belonging	to	one
side	and	can	only	be	decrypted	by	the	corresponding	key	from	the	other.	For
example,	a	message	encrypted	with	the	server's	private	key	can	only	be
decrypted	and	read	by	the	client's	public	key	and	vice	versa.	The	public	key	is
sent	to	the	client	through	a	certificate	file,	where	it	is	part	of	the	file.	As	said
before,	the	public	key	is	encrypting	and	decrypting	the	data	and	the	certificate	is
not	responsible	for	this,	but	rather	for	identifying	a	server	against	a	client	and
making	sure	that	you	are	actually	connected	to	the	same	server	you	are	trying	to
connect.	If	you	want	to	set	up	secure	services	using	SSL	encryption	in	protocols
such	as	FTPS,	HTTPS,	POP3S,	IMAPS,	LDAPS,	SMTPS,	and	so	on,	you	need	a
signed	server	certificate	to	work	with.	If	you	want	to	use	these	services	for	your
business,	and	you	want	them	to	be	trusted	by	the	people	who	are	using	and
working	with	them,	for	example,	on	the	public	Internet,	your	certificate	should
be	signed	from	a	official	certification	authority	(CA).	Certificate	prices	are
paid	by	subscription	and	can	be	very	expensive.	If	you	don't	plan	to	offer	your
certificate	or	SSL-enabled	services	to	a	public	audience,	or	you	want	to	offer
them	only	within	a	company's	intranet	or	just	want	to	test	out	things	before
buying,	here	you	can	also	sign	the	certificate	by	yourselves	(self-signed)	with	the
OpenSSL	toolkit.

Note

The	only	difference	between	a	self-signed	certificate	and	one	coming	from	an
official	CA	is	that	most	programs	using	the	certificate	for	communication	will
give	you	a	warning	that	it	does	not	know	about	the	CA	and	that	you	should	not
trust	it.	After	confirming	the	security	risk,	you	can	work	with	the	service
normally.

So,	what	did	we	learn	from	this	experience?

We	started	this	recipe	by	going	to	the	standard	location	where	all	the	system's
certificates	can	be	found	in	CentOS	7:	etcpki/tls/certs.	Here,	we	can	find	a
Makefile,	which	is	a	helper	script	for	conveniently	generating	public/private	key

pairs,	SSL	CSRs,	and	self-signed	SSL	test	certificates.	It	works	by	hiding	away
from	you	complicated	command	line	parameters	for	the	OpenSSL	program.	It	is
very	easy	to	use	and	will	automatically	recognize	your	target	through	the	file
extension	of	your	file	name	parameter.	So,	it	was	a	simple	process	to	generate	an
SSL	key	pair	by	providing	an	output	filename	with	the	.crt	extension.	As	said
before,	you	will	be	asked	for	a	password	and	a	list	of	questions	regarding	the
ownership	of	the	certificate,	with	the	most	important	question	being	the	common
name.	This	should	reflect	the	domain	name	of	the	server	you	are	planning	to	use
this	certificate	for,	because	most	programs,	such	as	web	browsers	or	email
clients,	will	check	the	domain	names	to	see	if	they	are	valid.	The	result	of
running	this	command	was	the	certificate	with	its	embedded	public	key	in	file
server.crt,	as	well	as	the	corresponding	private	key	for	the	server	called
server.key.

Next,	we	created	a	.pem	file	and	provided	a	DAYS	parameter	to	make	the
certificate	valid	for	five	years	instead	of	the	default	one	year	when	you	are
running	without	it.	A	pem	file	is	a	container	file	that	contains	both	parts	of	the
key	pair:	the	private	keys	and	the	self-signed	certificate	(with	its	embedded
public	key).	This	file	format	is	sometimes	required	by	some	programs,	such	as
vsftpd,	to	enable	SSL	encryption	instead	of	providing	the	key-pair	in	two
separated	files.	Next,	we	ran	the	Makefile	target	testcert,	which	generates	a
private	key	as	well	as	public	key,	plus	the	certificate	in	the	correct	location,
where	the	Apache	web	server	is	expecting	them	for	setting	up	HTTPS.	Please
note	that,	if	you	need	to	repeat	any	Makefile	run	later,	you	need	to	delete	the
generated	output	files;	for	example,	for	Apache,	you	need	to	delete	the	following
files	before	you	can	build	the	output	files	again:

rm	etcpki/tls/certs/localhost.crt	etcpki/tls/private/localhost.key

make	testcert

Finally,	we	showed	you	how	to	generate	a	CSR	file,	which	will	be	needed	if	you
plan	to	purchase	an	SSL	certificate	from	a	trusted	certificate	authority.

There's	more...
We	did	not	cover	all	the	possibilities	that	the	Makefile	script	has	to	offer	to
generate	certificates.	If	you	run	the	command,	make,	without	giving	any	target
parameter,	the	program	will	print	out	a	usage	help	text	with	all	possible	options.

As	we	have	learned,	the	public	and	private	keys	are	generated	in	pairs,	and	will
encrypt	and	decrypt	each	partner's	messages.	You	can	verify	that	your	key	pairs
are	valid	and	belong	together	by	comparing	the	output	of	the	following	(which
must	be	exactly	the	same):

openssl	x509	-noout	-modulus	-in	server.crt	|	openssl	md5

openssl	rsa	-noout	-modulus	-in	server.key	|	openssl	md5

Using	secure	alternatives	to	FTP
While	using	FTP	is	still	popular	to	share	data	or	to	transfer	files	over	the
network,	you	must	be	aware	that	you	are	using	a	very	unsecure	network	protocol
that	has	no	protection	built	into	it	out-of-the-box.	This	means	that,	during
network	transfer,	your	data	is	fully	exposed	to	potential	attackers.	This	is	not
what	you	want	for	transferring	sensitive	data,	such	as	login	credentials,	at	all.	To
avoid	these	potential	risks,	we	will	show	you	in	this	recipe	how	to	use	and	set	up
two	alternatives	for	securing	FTP	using	FTPS	(FTP	over	SSL	or	FTP/SSL)	or
SFTPS	(SSH-enabled	FTP).

Getting	ready
To	complete	this	recipe,	you	will	require	a	minimal	installation	of	the	CentOS	7
operating	system	with	root	privileges	and	a	console-based	text	editor	of	your
choice.	You	should	already	have	installed	and	configured	a	basic	vsftpd	server
(see	Chapter	12,	Providing	Web	Services	for	how	to	do	it).	Also,	for	setting	up
SFTP,	we	will	need	to	create	some	self-signed	certificates;	if	you	want	to	know
the	details	behind	it,	please	read	the	Generating	self-signed	certificates	recipe	in
this	chapter.

How	to	do	it...
You	have	to	choose	beforehand	if	you	want	to	use	SFTP	or	FTPS.	These	two
methods	cannot	be	applied	together,	so	you	have	to	decide	which	option	to
choose	first.	If	you	switch	between	those	methods,	you	need	to	restore	the
default	configuration	file	state	of	vsftpd.conf	or	sshd_config	first.

Securing	your	vsftpd	server	with	SSL–FTPS

To	secure	your	vsftpd	server	with	SSL-FTPS	perform	the	following	steps:

1.	 Log	in	as	root	and	go	to	the	standard	certificate	location:

cd	etcpki/tls/certs

2.	 Now,	let's	create	a	SSL	key	pair	consisting	of	the	certificate	and	its
embedded	public	key,	as	well	as	the	private	key	in	one	file	for	our	ftp-
server	configuration	(remember	that	the	Common	name	value	should	reflect
the	domain	name	of	your	FTP	server):

make	ftp-server.pem

3.	 Change	to	a	more	secure	file	access	rule:

chmod	400	etcpki/tls/certs/ftp-server.pem

4.	 Now,	before	working	on	it,	first	make	a	backup	of	the	vsftpd.conf	file.

cp	etcvsftpd/vsftpd.conf	etcvsftpd/vsftpd.conf.BAK

5.	 Now,	enable	SSL	and	add	the	key	pair	file	that	we	just	created	to	our
vsftpd	configuration:

echo	"rsa_cert_file=etcpki/tls/certs/ftp-server.pem

ssl_enable=YES

force_local_data_ssl=YES

force_local_logins_ssl=YES

pasv_min_port=40000

pasv_max_port=40100"	>>	etcvsftpd/vsftpd.conf

6.	 Next,	we	need	to	add	a	new	firewalld	service	file,	so	open	the	following:

vi	etcfirewalld/services/ftps.xml

7.	 Put	in	the	following	content:

<?xml	version="1.0"	encoding="utf-8"?>

<service>

		<description>enable	FTPS	ports</description>

		<port	protocol="tcp"	port="40000-40100">

		<port	protocol="tcp"	port="21">

		<module	name="nf_conntrack_ftp">

<service>

8.	 Finally,	reload	the	firewall,	add	the	ftps	service,	and	restart	your	vsftpd
server:

firewall-cmd	--reload;	firewall-cmd	--permanent	--add-

service=ftps;	firewall-cmd	--reload

systemctl	restart	vsftpd

Securing	your	vsftpd	server	using	SSH	–	SFTP

To	secure	your	vsftpd	server	using	SSL-SFTP	perform	the	following	steps:

1.	 First,	create	a	group	for	all	valid	SFTP	users:

groupadd	sshftp

2.	 We	will	work	on	the	sshd	main	config	file,	so	please	make	a	backup	before
making	any	changes:

cp	etcssh/sshd_config		etcssh/sshd_config.BAK

3.	 Now,	open	the	sshd_config	file,	go	to	the	line	containing	the	Subsystem
directive,	disable	it	(which	means	putting	a	#	sign	at	the	beginning	of	the
line),	and	add	the	following	line	to	read	as	shown:

#Subsystem							sftp				usrlibexec/openssh/sftp-server

Subsystem	sftp	internal-sftp

4.	 Next,	add	the	following	lines	to	the	end	of	the	file	to	enable	SFTP:

Match	Group	sshftp

ChrootDirectory	/home

ForceCommand	internal-sftp

5.	 Finally,	restart	the	sshd	daemon.

systemctl	restart	sshd

How	it	works...
Here	in	this	recipe,	you	have	learned	how	to	make	your	file	sharing	more	secure
by	switching	from	the	standard	FTP	protocol	to	using	FTP	over	SSL,	or	FTP
over	SSH.	Regardless	of	which	option	you	prefer,	SSL	is	used	to	encrypt	the
data	during	transmitting,	which	helps	you	keep	your	privacy.	Which	variant	you
choose	is	up	to	you,	but	remember	that	SFTP	is	a	bit	easier	to	set	up	as	you	do
not	have	to	configure	additional	ports	or	certificates	in	your	firewall,	because
everything	runs	over	SSH	and	this	should	be	enabled	by	default	on	most
systems.

So,	what	did	we	learn	from	this	experience?

We	began	the	recipe	by	configuring	FTPS.	We	went	into	a	special	directory
called	etcpki/tls/certs,	where	CentOS	stores	all	its	certificates.	In	it,	there	is
a	Makefile,	which	we	used	to	create	a	.pem	file	that	contains	the	public/private
key	pair	and	a	self-signed	certificate	that	we	needed	for	our	FTP	server's
configuration.	Afterwards,	we	used	chmod	to	ensure	that	only	the	root	user	can
read	this	file.	Then,	we	appended	six	lines	of	code	to	our	main	vsftpd
configuration	file	(first,	we	made	a	backup	of	the	original	file);	they	are	pretty
self-explanatory:	enable	the	SSL	protocol,	use	the	self-signed	certificate,
disallow	any	non-SSL	communication,	and	use	a	static	range	of	passive	control
ports.	Also,	we	created	a	new	firewall	service	that	will	open	these	passive
control	ports	that	are	needed	for	FTPS.

Afterwards,	we	configured	SFTP	using	a	chroot	jail.	If	setting	up	SFTP	without
it,	every	login	user	can	view	the	root	filesystem,	which	is	very	unsecure.
Configuring	SFTP	is	done	completely	in	the	main	sshd	config	file.	After	making
a	backup	of	the	original	file,	we	changed	the	FTP	subsystem	to	internal-sftp,
which	is	a	newer	ftp	server	version,	has	better	performance,	and	runs	in	the	same
process.	Next,	we	added	three	lines	to	the	vsftpd	configuration	file;	only	users
in	the	sshftp	group	are	using	SFTP	and	are	put	into	a	chroot	jail	and	can	only
view	files	up	to	their	home	directory.	ForceCommand	ignores	all	local	settings	by
the	users	and	enforces	these	rules	here	instead.	To	add	new	chrooted	SFTP	users,
all	you	have	to	do	is	create	a	standard	Linux	user	account	and	add	them	to	the
sshftp	user	group.

There's	more...
If	you	want	to	test	your	enabled	FTPS	server,	you	need	an	FTP	client	that
supports	"FTP	over	TLS."	You	have	to	find	and	enable	this	option	in	your	FTP
client's	settings.	Under	Linux,	you	can	install	the	lftp	client	to	test	if	you	can
connect	to	our	FTPS	server.	First,	install	the	lftp	package	(for	example,	yum
install	lftp).	Then,	configure	the	client	using	TLS:

echo	"set	ftp:ssl-auth	TLS

set	ftp:ssl-force	true

set	ftp:ssl-protect-list	yes

set	ftp:ssl-protect-data	yes

set	ftp:ssl-protect-fxp	yes

set	ssl:verify-certificate	no"	>~/.lftprc

Now,	you	can	connect	and	test	your	FTPS	server	using	the	following:

lftp	-u	username	<server	name>

If	you	want	to	test	your	enabled	SFTP	server,	you	need	the	program	called	sftp:

sftp	john@<server	name	or	ip	address>	-p	22

Note

You	have	to	remember	that	all	the	changes	to	sshd_config	will	be	reflected	in
SFTP	as	well.	So,	if	you	disabled	root	login	or	ran	SSH	over	a	different	port	than
22,	you	have	to	take	it	into	consideration	when	you	try	to	log	in	to	SFTP.

Chapter	7.	Building	a	Network
In	this	chapter,	we	will	cover	the	following	topics:

Printing	with	CUPS
Running	a	DHCP	server
Using	WebDAV	for	file	sharing
Installing	and	configuring	NFS
Working	with	NFS
Securely	sharing	resources	with	Samba

Introduction
This	chapter	is	a	collection	of	recipes	that	covers	the	many	facets	of	today's
working	environment.	From	printing	and	file	sharing	across	different	types	of
office	computer	systems	to	keeping	your	computers	online,	this	chapter	provides
the	necessary	details	on	how	quickly	you	can	use	CentOS	to	implement	the
necessary	tools	that	will	maximize	efficiencies	within	your	networking
environment.

Printing	with	CUPS
Print	servers	allow	local	printing	devices	to	be	connected	to	a	network	and	be
shared	among	several	users	and	departments.	There	are	many	advantages	using
such	a	system,	including	the	lack	of	a	need	to	buy	dedicated	printer	hardware	for
each	user,	room,	or	department.	The	Common	Unix	Printing	System	(CUPS)
is	the	de-facto	standard	for	print	servers	on	Linux,	as	well	as	Unix	distributions
including	OS	X.	It	is	built	with	a	typical	client/server	architecture,	where	clients
in	the	network	send	print	jobs	to	the	centralized	print	server	that	schedules	these
tasks,	then	delegates	and	executes	the	actual	printing	on	a	printer	that	is	locally
connected	to	our	printer	server	or	sends	the	print	job	remotely	to	the	computer
that	has	the	physical	connection	to	the	requested	printer	or	to	a	standalone
network	printer.	If	you	set	up	your	printers	within	the	CUPS	system,	almost	all
Linux	and	OS	X	printing	application	on	any	client	in	your	network	will	be
automatically	configured	to	use	them	out-of-the	box,	without	the	need	to	install
additional	drivers.	Here,	in	this	recipe,	we	will	show	you	how	to	get	started	with
the	CUPS	printing	server	system.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet	in	order	to	download	additional	packages.	In	this
recipe,	we	will	use	the	network	interface	with	the	IP	address,	192.168.1.8,	and
the	corresponding	network	address	of	192.168.1.0/24	to	serve	the	CUPS
printer	server	to	our	network.

How	to	do	it...
We	begin	this	recipe	by	installing	the	CUPS	printing	server	software,	which	is
not	available	by	default	on	a	fresh	CentOS	7	minimal	system:

1.	 To	do	this,	log	in	as	root	and	install	the	following	package:

yum	install	cups

2.	 Next,	create	an	SSL	certificate	for	the	CUPS	server,	which	we	will	need	for
secure	authentication	to	the	CUPS	web	application	(add	a	secure	password
when	asked):

cd	etcpki/tls/certs

make	cups-server.key

3.	 Now,	let's	open	the	CUPS	main	configuration	file	to	customize	the	server
(backup	first):

cp	etccups/cupsd.conf	etccups/cupsd.conf.BAK

vi	etccups/cupsd.conf

4.	 First,	to	make	CUPS	available	on	the	entire	network,	find	the	following
line:	Listen	localhost:631,	than	change	it	to:

Listen	631

5.	 Next,	we	want	to	configure	access	to	all	normal	web	pages	of	the	web-
based	CUPS	frontend.	Search	for	the	<Location	/>	directive	(don't	confuse
this	with	other	directives	such	as	<Location	/admin>)	and	change	the
complete	block	by	adding	your	network	address.	After	changing,	the
complete	block	looks	like	this:

<Location	>

	Order	allow,deny

	Allow	192.168.1.024

</Location>

6.	 Next,	set	access	permissions	for	the	/admin	and	adminconf	Location
directives,	granting	access	to	the	local	server	only:

<Location	admin>

			Order	allow,deny

			Allow	localhost

<Location>

<Location	adminconf>

			AuthType	Default

			Require	user	@SYSTEM

			Order	allow,deny

			Allow	localhost

</Location>

7.	 Finally,	add	our	SSL	certificate	information	to	the	end	of	the	configuration
file:

ServerCertificate	etcpki/tls/certs/cups-server.crt

ServerKey	etcpki/tls/certs/cups-server.key

8.	 Close	and	save	the	file,	then	restart	the	CUPS	server	and	enable	it	on	boot:

systemctl	restart	cups.service	systemctl	enable	cups.service

9.	 Now,	we	have	to	open	the	CUPS	server	ports	in	firewalld	so	that	other
computers	in	the	network	can	connect	to	it:

firewall-cmd	--permanent	--add-service=ipp	firewall-cmd	--

reload

10.	 You	can	test	the	accessibility	of	your	CUPS	server	from	another	computer
in	your	192.168.1.0/24	network	by	browsing	to	the	following	location
(allow	a	security	exception	in	the	browser	when	asked):

https://<IP	address	of	your	CUPS	server>:631

11.	 To	access	the	administration	area	within	the	CUPS	frontend,	you	need	to	be
on	the	same	server	as	CUPS	is	running	(on	a	CentOS	7	minimal
installation,	please	install	a	window	manager	and	browser),	and	then	use	the
system	user,	root,	with	the	appropriate	password	to	login.

How	it	works...
In	this	recipe,	we	showed	you	how	easy	it	is	to	install	and	set	up	a	CUPS
printing	server.

So,	what	did	we	learn	from	this	experience?

We	began	our	journey	by	installing	the	CUPS	server	package	on	our	server
because	it	is	not	available	on	the	CentOS	7	system	by	default.	Afterwards,	we
generated	a	SSL	key-pair,	which	we	will	need	later	in	the	process	(to	learn	more,
read	the	Generating	self-signed	certificates	recipe	in	Chapter	6,	Providing
Security).	It	is	used	to	allow	the	encrypted	submission	of	your	login	credentials
to	the	CUPS	administration	web	frontend	(over	secure	HTTPS	connections).
Next,	we	opened	CUPS's	main	configuration	file,	etccups/cupsd.conf,	with	the
text	editor	of	our	choice.	As	you	may	notice,	the	configuration	format	is	very
similar	to	the	Apache	configuration	file	format.	We	started	changing	the	Listen
address	by	removing	the	localhost	name,	therefore	allowing	all	clients	from
everywhere	in	your	network	(192.168.1.0/24)	to	access	our	CUPS	server	at
port	631	instead	of	allowing	only	the	local	interface	to	connect	to	the	printer
server.

Note

By	default,	the	CUPS	server	has	Browsing	On	enabled,	which	will	broadcast,
every	30	seconds,	an	updated	list	of	all	printers	that	are	being	shared	in	the
system	to	all	client	computers	on	the	same	subnet.	If	you	want	to	broadcast	to
other	subnets	as	well,	use	the	BrowseRelay	directive.

Next,	we	configured	access	to	the	CUPS	web	interface.	This	frontend	can	be
used	to	conveniently	browse	all	available	printers	on	the	network,	or	even	install
new	printers	or	configure	them	if	you	log	in	with	an	administrator	account.	As
there	are	different	tasks	in	the	user	interface,	there	are	three	different	directives
that	can	be	used	to	fine-grain	its	access.	Access	to	all	normal	web	pages	can	be
set	using	the	<Location	/>	directive,	whereas	all	administration	pages	can	be
managed	with	<Location	/admin>	and	more	specifically	to	change	the
configuration	within	the	<Location	adminconf>	tag.	In	each	of	these	Location
tags,	we	added	different	Allow	directives,	thus	granting	normal	CUPS	web	pages
(such	as,	browsing	all	available	network	printers)	from	your	complete	network

(for	example,	192.168.1.0/24)	while	accessing	the	special	administration	pages
is	restricted	to	the	server	that	runs	the	CUPS	service	(localhost).	Remember,	if
this	is	too	restrictive	for	your	environment,	you	can	always	adjust	these	Allow
settings.	Also,	there	are	various	other	Location	types	available,	such	as	one	that
is	used	for	activating	our	service	in	additional	subnets.	Please	read	the	CUPS
configuration	manual	using	man	cupsd.conf.	Next,	we	configured	SSL
encryption,	thus	activating	secure	https://	addresses	for	the	web	interface.
Then,	we	started	the	CUPS	server	for	the	first	time	and	enabled	it	to	start
automatically	when	the	server	boots	up.	Finally,	we	added	the	ipp	firewalld
service,	thus	allowing	incoming	CUPS	client	connections	to	the	server.

There's	more...
Now	that	we	have	successfully	set	up	and	configured	our	CUPS	server,	it's	time
to	add	some	printers	to	it	and	print	a	test	page.	Here,	we	will	show	you	how	to
add	two	different	types	of	printers	to	the	system	using	the	command	line.

Note

Adding	or	configuring	printers	can	also	be	done	using	the	graphical	web-based
CUPS	interface.

First,	we	will	install	a	true	network	printer	that	is	already	available	in	the	same
network	(in	our	case,	the	192.168.1.0/24	network)	as	our	CUPS	server	and
afterwards	a	locally	connected	printer	(for	example,	via	USB	to	our	CUPS	server
or	any	other	computer	in	the	same	network).

Note

Why	should	you	want	to	install	an	already	connected	network	printer	to	our
CUPS	server?	CUPS	can	do	much	more	than	just	printing:	it	is	a	centralized
printer	server,	thus	managing	scheduling	and	queuing	of	printers	and	their	jobs,
serving	printers	in	different	subnets,	and	providing	unified	printing	protocols	and
standards	for	convenient	access	on	any	Linux	or	Mac	client.

How	to	add	a	network	printer	to	the	CUPS	server

To	start	adding	a	network	printer	to	our	CUPS	server,	we	will	use	the	command
lpinfo	-v	to	list	all	the	available	printing	devices	or	drivers	known	to	the	CUPS
server.	Normally,	the	CUPS	server	will	automatically	identify	all	locally	(USB,
parallel,	serial,	and	so	on)	and	remotely	available	(network	protocols	such	as
socket,	http,	ipp,	lpd,	and	so	on)	printers	from	most	common	printing
protocols	without	any	problems.	In	our	example,	the	following	network	printer
has	been	successfully	identified	(the	output	has	been	truncated):

network	dnssd://Photosmart%20C5100%20series%20%5BF8B652%5D._pdl-

datastream._tcp.local/

Next,	we	will	install	this	printer	on	the	CUPS	server	to	put	it	under	its	control.
First,	we	need	to	look	for	the	correct	printer	driver.	As	we	can	see	in	the	last
output,	it	is	an	HP	Photosmart	C5100	series	printer.	So,	let's	search	for	the	driver
in	the	list	of	all	currently	installed	drivers	on	our	CUPS	server:

in	the	list	of	all	currently	installed	drivers	on	our	CUPS	server:

lpinfo	--make-and-model	HP	-m	|	grep	Photosmart

The	list	does	not	contain	our	model	C5100,	so	we	have	to	install	an	additional
HP	driver	package	using:

yum	install	hplip

Now,	if	we	issue	our	command	again,	we	can	find	the	correct	driver:

lpinfo	--make-and-model	HP	-m	|	grep	Photosmart	|	grep	c5100

Note

For	other	printer	models	and	manufacturers,	there	are	other	driver	packages
available	as	well,	for	example,	the	gutenprint-cups	RPM	package.

The	correct	driver	for	this	printer	will	be	shown	as	follows:

drv:///hp/hpcups.drv/hp-photosmart_c5100_series.ppd

Now,	we	have	everything	ready	to	install	the	printer	using	the	following	syntax:

lpadmin	-p	<printer-name>	-v	<device-uri>	-m	<model>	-L	<location>	

-E

In	our	example,	we	installed	it	using:

lpadmin	-p	hp-photosmart	-v	

"dnssd://Photosmart%20C5100%20series%20%5BF8B652%5D._pdl-

datastream._tcp.local/"	-m	"drv:///hp/hpcups.drv/hp-

photosmart_c5100_series.ppd"	-L	room123	-E

Now,	the	printer	should	be	under	our	CUPS	server's	control	and	should
immediately	be	shared	and	seen	in	the	entire	network	from	any	Linux	or	OS	X
computer	(on	a	CentOS	7	minimal	client,	you	will	first	need	to	install	the	cups
package	as	well	and	enable	incoming	ipp	connections	using	firewalld's	ipp-
client	service	before	any	shared	network	printer	information	from	our	CUPS
server	will	become	available).

You	can	later	change	the	configuration	of	this	printer	by	opening	and	changing
the	file	at	etccups/printers.conf.	To	actually	print	a	test	page,	you	should

now	be	able	to	access	the	printer	using	its	name,	hp-photosmart,	from	any	client
(on	a	CentOS	7	minimal	client,	you	would	need	to	install	the	package	cups-
client):

echo	"Hello	printing	world"	|	lpr	-P	hp-photosmart		-H	

192.168.1.8:631

How	to	share	a	local	printer	to	the	CUPS	server

If	you	want	to	share	a	local	printer	physically	connected	to	our	CUPS	server,	just
plug	in	the	printer	to	the	system	(for	example,	via	USB)	and	follow	the	previous
recipe,	How	to	add	a	network	printer	to	the	CUPS	server.	In	the	step	lpinfo	-v,
you	should	see	it	appear	as	a	usb://	address,	so	you	need	to	take	this	address
and	follow	the	rest	of	the	steps.

If	you	want	to	connect	and	share	a	printer	on	your	centralized	CUPS	server,
which	is	physically	connected	to	any	other	computer	on	your	CUPS	network,
install	the	cups	daemon	on	this	other	machine	(follow	all	the	steps	in	the	main
recipe)	and	then	install	the	printer	driver	for	it	as	shown	here	in	this	section.	This
will	make	sure	that	the	local	CUPS	daemon	will	make	the	printer	available	on
the	network,	as	it	would	be	on	our	centralized	CUPS	server.	Now	that	it	is
available	on	the	network,	you	can	easily	add	it	to	our	main	CUPS	server	to	enjoy
all	the	benefits	of	a	centralized	printing	server.

Here	in	this	recipe,	we	have	only	scratched	the	surface	and	introduced	you	to	the
basics	of	setting	up	a	CUPS	server	for	your	network.	There	is	always	more	to
learn,	and	you	can	build	very	complex	CUPS	server	systems	managing	hundreds
of	printers	in	the	corporate	environment,	which	is	outside	the	scope	of	this
recipe.

Running	a	DHCP	server
If	a	connection	to	a	network	needs	to	be	made,	every	computer	needs	a	correct
Internet	Protocol	(IP)	configuration	installed	on	their	system	to	communicate.
Assigning	IP	client	configurations	automatically	from	a	central	point	using	the
Dynamic	Host	Control	Protocol	(DHCP)	can	make	the	administrator's	life
easier	and	simplify	the	process	of	adding	new	machines	to	a	network	in
comparison	to	the	tedious	work	of	manually	setting	up	static	IP	information	on
each	computer	system	in	your	network.	In	small	home-based	networks,	people
often	use	DHCP	servers	directly	installed	in	silico	on	their	Internet	routers,	but
such	devices	often	lack	advanced	features	and	have	only	a	basic	set	of
configuration	options	available.	Most	of	the	time,	this	is	not	sufficient	for	bigger
networks	or	in	the	corporate	environment,	where	you	are	more	likely	to	find
dedicated	DCHP	servers	for	more	complex	scenarios	and	better	control.	In	this
recipe,	we	will	show	you	how	to	install	and	configure	a	DHCP	server	on	a
CentOS	7	system.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet	in	order	to	facilitate	the	download	of	additional
packages.	It	is	expected	that	your	DHCP	server	will	be	using	a	static	IP	address;
if	you	do	not	have	one,	refer	to	the	recipe	Building	a	static	network	connection
in	Chapter	2,	Configuring	the	System.	If	you	plan	to	send	DNS	information	to
the	clients	through	DHCP	as	well,	you	should	have	already	applied	the	recipe
Installing	and	configuring	a	simple	nameserver	in	Chapter	8,	Working	with	FTP.

How	to	do	it...
Here	in	this	example,	we	will	configure	a	DHCP	server	for	a	static	network
interface	serving	a	single	network	with	all	its	available	IP	addresses	to	all	the
computers	connected	directly	to	it	(they	are	all	in	the	same	subnet).

1.	 First,	log	in	as	root	and	type	the	following	command	in	order	to	install	the
DHCP	server	packages:

yum	install	dhcp

In	our	example,	we	will	use	a	network	interface	with	the	name,	ifcfg-
enp5s0f1,	to	serve	our	DHCP	requests.	Next,	we	need	to	collect	some	very
important	network	information,	which	we	will	use	later	for	configuring	the
DHCP	server	(change	the	network	interface	name	to	fit	your	own	needs):

cat	etcsysconfig/network-scripts/ifcfg-enp5s0f1

From	this	output,	we	need	the	following	information,	so	please	write	it	down
(most	likely,	your	output	will	be	different):

BOOTPROTO="static"

IPADDR="192.168.1.8"

NETMASK="255.255.255.0"

GATEWAY="192.168.1.254"

We	also	need	the	subnet	network	address,	which	can	be	calculated	using	the
following	line:

ipcalc	-n	192.168.1.8/24

This	will	print	the	following	output	(write	it	down	for	later):

NETWORK=192.168.1.0

Now,	we	will	open	our	main	DHCP	configuration	file,	after	we	make	a	backup
of	the	original	file:

cp	etcdhcp/dhcpd.conf	etcdhcp/dhcpd.conf.BAK

vi	etcdhcp/dhcpd.conf

Append	the	following	lines	to	the	end	of	the	file,	taking	into	account	your
individual	network	interface's	configuration	from	the	preceding	steps	(routers
=	GATEWAY,	subnet	=	NETWORK):

authoriative;

authoriative;

default-lease-time	28800;

max-lease-time	86400;

shared-network	MyNetwork	{

				option	domain-name											"example.com";

				option	domain-name-servers						8.8.8.8,	8.8.4.4;

				option	routers																		192.168.1.254;

				subnet	192.168.1.0	netmask	255.255.255.0	{

								range	192.168.1.10	192.168.1.160;

				}

}

Finally,	start	and	enable	the	DHCP	service:

systemctl	start	dhcpd

systemctl	enable	dhcpd

How	it	works...
Here	in	this	recipe,	we	showed	you	how	easy	it	is	to	set	up	a	DHCP	server	for	a
single	network.	With	this,	every	time	a	new	machine	gets	added	to	the	network,
the	computer	gets	the	correct	IP	information	automatically,	which	it	needs	in
order	to	connect	to	the	network	without	any	further	human	action.

So,	what	did	we	learn	from	this	experience?

We	started	this	recipe	by	installing	the	DHCP	server	package	because	it	does	not
come	with	CentOS	7	out-of-the-box.	Since	our	DHCP	daemon	communicates
with	its	clients	to	assign	IP	information	over	a	network	interface,	in	the	next	step
we	had	to	choose	a	network	device	that	would	be	used	for	the	service.	In	our
example,	we	selected	the	device	named	enp5s0f1.	By	default,	the	DHCP	server
can	manage	all	available	IP	addresses	from	the	same	subnet	as	the	associated
network	interface.	Remember	that	your	primary	DHCP	server's	network
interface	must	be	configured	to	get	its	own	IP	information	statically	and	not
through	(another)	DHCP	server!	Next,	we	used	the	cat	command	to	print	out	all
the	interesting	lines	from	our	enp5s0f1	network	interface	configuration	file,
which	we	will	need	for	configuring	the	DHCP	server.	Afterwards,	we	used	the
ipcalc	tool	to	calculate	the	(subnet)	network	address	for	our	DHCP	server's
network	interface.	Then,	we	opened	the	main	DHCP	server	configuration,
started	configuring	some	global	settings,	and	defined	a	new	shared	network.	In
the	global	settings,	we	first	set	our	DHCP	server	to	be	authoriative,	which
means	it	is	the	only	and	main	responsible	DHCP	server	in	the	network.	Next,	we
defined	default-lease-time	to	28800	seconds,	which	is	eight	hours,	and	the
max-lease-time	to	86400,	which	is	24	hours.	The	lease	time	is	the	amount	of
time	the	DHCP	server	"rents	out"	an	IP	address	to	a	client	before	it	has	to	sign
up	again	on	the	DHCP	server	asking	for	an	extension	of	the	IP.	If	it	is	not
requesting	a	renewal	of	an	existing	lease	at	that	time,	the	IP	address	will	be
released	from	the	client	and	put	into	the	pool	of	free	IP	addresses	again,	ready	to
be	served	to	new	machines	that	want	to	connect	to	the	network.	The	client	can
define	the	amount	of	time	it	wants	to	lease	an	IP	address	by	itself.	If	no	time
frame	has	been	supplied	from	the	client	to	the	DHCP	server,	the	default	lease
time	will	be	used.

All	subnets	that	share	the	same	physical	network	interface	should	be	defined

within	a	shared-network	declaration,	so	we	defined	this	area	using	square
brackets.	This	is	also	called	a	scope.	In	our	example,	we	only	have	one	network,
so	we	only	need	one	shared-network	scope.	Within	it,	we	first	defined	a	domain-
name	option,	which	will	be	sent	and	can	be	used	by	clients	as	their	base	domain
name.	Next,	we	added	the	domain	name	servers	(DNS)	to	our	configuration.
Sending	DNS	information	to	the	client	is	not	mandatory	for	the	DHCP	server	but
can	be	useful.	The	more	information	a	client	gets	for	a	given	network,	the	better,
because	fewer	manual	configuration	steps	have	to	be	made.

Note

You	can	send	out	a	lot	of	other	useful	information	to	the	client	(using	DHCP)
about	the	network	he	is	connecting	to:	gateway,	time,	WINS,	and	so	on.

Here	in	our	example,	we	used	the	official	Google	DNS	servers;	if	you	have
already	set	up	your	own	DNS	server	(see	Chapter	8,	Working	with	FTP),	you
could	also	use	these	addresses	here.	Next,	we	specified	a	routers	option,	which
is	another	useful	piece	of	information	that	will	be	sent	out	to	the	clients	as	well.
Afterwards,	we	specified	the	most	important	part	of	any	DHCP	server:	the
subnet	scope.	Here,	we	defined	our	network	ranges	for	assigning	IP	addresses
for	clients.	We	need	to	provide	the	subnet	network	address,	its	submask,	and
then	the	starting	and	ending	IP	address	range	that	we	want	to	allow	to	clients.	In
our	example,	we	allow	host	IP	addresses	from	192.168.1.10,	192.168.1.11,
192.168.1.12	...	to	192.168.1.160.	If	you	have	more	than	one	subnet,	you	can
use	multiple	subnet	scope	directives	(called	a	multihomed	DHCP	server).

Next,	we	started	the	DHCP	server	and	enabled	it	on	boot.	Your	clients	should
now	be	able	to	get	IP	addresses	dynamically	from	our	new	system.

In	summary,	we	have	only	showed	you	some	very	basic	DHCP	server
configuration	options	to	get	you	started,	and	there	are	many	more	settings
available,	letting	you	build	very	complex	DHCP	server	solutions.	To	get	a	better
overview	of	its	possibilities,	please	have	a	look	at	the	example	configuration	file
provided	with	the	DHCP	server	documentation	at	less	usrshare/doc/dhcp-
4*/dhcpd.conf.example.

There's	more...
In	the	main	recipe,	we	configured	our	basic	DHCP	server	to	be	able	to	send
complete	IP	network	information	to	our	clients	so	that	they	should	be	able	to	join
our	network.	To	use	this	server,	you	need	to	enable	DHCP	addressing	on	your
client's	network	interfaces.	On	CentOS	clients,	please	do	not	forget	to	use
BOOTPROTO=dhcp	and	remove	all	static	entries	such	as	IPADDR	in	the	appropriate
network-scripts	ifcfg	file	(read	the	recipe,	Building	a	static	network	connection
in	Chapter	2,	Configuring	the	System	to	get	you	started	on	network-scripts	files).
Then,	to	make	a	DHCP	request,	restart	the	network	using	systemctl	restart
network	or	try	to	do	a	reboot	of	the	client	system	(with	the	ONBOOT=yes	option).
Confirm	with	ip	addr	list.

Using	WebDAV	for	file	sharing
The	Web-based	Distributed	Authoring	and	Versioning	(WebDAV)	open
standard	can	be	used	for	sharing	files	over	the	network.	It	is	a	popular	protocol
to	conveniently	access	remote	data	as	an	online	hard	disk.	There	are	a	lot	of
online	storage	and	e-mail	providers	who	offer	online	space	through	WebDAV
accounts.	Most	graphical	Linux	or	Windows	systems	can	access	WebDAV
servers	in	their	file	managers	out-of-the-box.	For	other	operating	systems,	there
are	also	free	options	available.	Another	big	advantage	is	that	WebDAV	is
running	over	normal	HTTP	or	HTTPS	ports,	so	you	can	be	sure	that	it	will	work
in	almost	any	environment,	even	behind	restricted	firewalls.

Here,	we	will	show	you	how	to	install	and	configure	WebDAV	as	an	alternative
for	the	FTP	protocol	for	your	file	sharing	needs.	We	will	use	HTTPS	as	our
communication	protocol	for	secure	connections.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges	and	a	console-based	text	editor	of	your
choice.	You	will	need	a	working	Apache	web	server	with	SSL	encryption
enabled	and	reachable	in	your	network;	see	Chapter	11,	Providing	Mail	Services
for	how	to	install	the	HTTP	daemon,	and	especially	the	recipe	Setting	up	HTTPS
with	SSL.	Also,	some	experience	working	with	the	Apache	config	file	format	is
advantageous.

How	to	do	it…
1.	 Create	a	location	for	sharing	your	data	and	for	a	WebDAV	lock	file:

mkdir	-p	srvwebdav	etchttpd/var/davlock

2.	 Since	WebDAV	is	running	as	an	Apache	module	over	HTTPS,	we	have	to
set	proper	permissions	to	the	standard	httpd	user:

chown	apache:apache	srvwebdav	etchttpd/var/davlock

chmod	770	srvwebdav

3.	 Now,	create	and	open	the	following	Apache	WebDAV	configuration	file:

vi	etchttpd/conf.d/webdav.conf

4.	 Put	in	the	following	content:

DavLockDB	"etchttpd/var/davlock"

Alias	/webdav	srvwebdav

<Location	/webdav>

				DAV	On

				SSLRequireSSL

				Options	None

				AuthType	Basic

				AuthName	webdav

				AuthUserFile	etchttpd/conf/dav_passwords

				Require	valid-user

</Location>

5.	 Save	and	close	the	file.	Now,	to	add	a	new	WebDAV	user	named	john
(enter	a	new	password	for	the	user	as	prompted):

htpasswd	-c	etchttpd/conf/dav_passwords	john

6.	 Finally,	restart	the	Apache2	web	server:

systemctl	restart	httpd

7.	 To	test	if	we	can	connect	to	our	WebDAV	server,	you	can	use	a	graphical
user	interface	(most	Linux	file	managers	support	WebDAV	browsing)	from
any	client	in	your	network,	or	we	can	mount	the	drive	using	the	command
line.

8.	 Log	in	on	any	client	machine	as	root	in	the	same	network	as	our	WebDAV
server	(on	CentOS,	you	need	the	davfs2	filesystem	driver	package	to	be
installed	from	the	EPEL	repository,	and	the	usage	of	file	locks	must	be

disabled	as	the	current	version	is	not	capable	of	working	with	file	locks),
enter	the	password	for	our	DAV	user	account	named	john,	and	confirm	the
self-signed	certificate	when	asked:

yum	install	davfs2

echo	"use_locks	0"	>>	etcdavfs2/davfs2.conf

mkdir	mntwebdav

mount	-t	davfs	https://<WebDAV	Server	IP>webdav	mnt/webdav

9.	 Now,	to	see	if	we	can	write	to	the	new	network	storage	type:

touch	mntwebdav/testfile.txt

10.	 If	you've	got	connection	problems,	check	the	firewall	settings	on	your
WebDAV	server	for	the	services	http	and	https,	as	well	as	on	your	client.

How	it	works…
Here	in	this	recipe,	we	showed	you	how	easy	it	is	to	set	up	a	WebDAV	server
for	easy	file	sharing.

So,	what	did	we	learn	from	this	experience?

We	started	our	journey	by	creating	two	directories:	one,	where	all	the	shared
files	of	our	WebDAV	server	will	live,	and	one	for	creating	a	lock	file	database
for	the	WebDAV	server	process.	The	latter	is	needed	so	that	users	can	block
access	to	documents	to	avoid	collisions	with	others	if	files	are	currently	modified
by	them.	As	WebDAV	runs	as	a	native	Apache	module	(mod_dav)	that	is	already
enabled	by	default	in	CentOS	7,	all	we	need	to	do	is	create	a	new	Apache	virtual
host	configuration	file,	where	we	can	set	up	all	our	WebDAV	settings.	First,	we
have	to	link	our	WebDAV	host	to	the	full	path	of	the	lock	database	that	is	used
to	track	user	locks.	Next,	we	defined	an	alias	for	our	WebDAV	sharing	folder,
which	we	then	configured	using	a	Location	directive.	This	will	be	activated	if
someone	is	using	specific	HTTP	methods	on	the	/webdav	path	URL.	Within	this
area,	we	specified	that	this	URL	will	be	a	DAV-enabled	share,	enabled	SSL
encryption	for	it,	and	specified	basic	user-based	password	authentication.	The
user	account's	passwords	will	be	stored	in	a	user	account	database	called
etchttpd/conf/dav_passwords.	To	create	valid	accounts	in	this	database	file,
we	then	used	the	Apache2	htpasswd	utility	on	the	command	line.	Finally,	we
restarted	the	service	to	apply	our	changes.

For	testing,	we	used	the	davfs	filesystem	driver,	which	you	need	to	install	on
CentOS	7	using	the	davfs2	package	from	the	EPEL	repository.	There	are	many
other	options	available,	such	as	the	cadaver	WebDAV	command-line	client
(also	from	the	EPEL	repository);	alternatively,	you	can	access	it	directly	using
integrated	WebDAV	support	in	a	graphical	user	interface	such	as	GNOME,
KDE,	or	Xfce.

Installing	and	configuring	NFS
The	Network	File	System	(NFS)	protocol	enables	remote	access	to	filesystems
over	a	network	connection.	It	is	based	on	a	client-server	architecture,	allowing	a
centralized	server	to	share	files	with	other	computers.	A	client	can	attach	those
exported	shares	in	their	own	file	system	to	access	it	conveniently,	as	they	will	be
located	on	a	local	storage.	While	Samba	and	AFP	are	more	common	distributed
filesystems	on	Windows	and	OS	X,	NFS	is	now	the	de-facto	standard	and	a	key
element	of	any	Linux	server	system.	Here	in	this	recipe,	we	will	show	you	how
easy	it	is	to	set	up	an	NFS	server	for	file	sharing	over	the	network.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet	in	order	to	facilitate	the	download	of	additional
packages.	It	is	expected	that	your	NFS	server	and	all	the	clients	will	be	able	to
ping	each	other	and	are	connected	to	each	other	by	a	static	IP	address	(see	the
recipe,	Building	a	static	network	connection,	in	Chapter	2,	Configuring	the
System).	In	our	example,	the	NFS	server	is	running	with	IP	192.168.1.10	and
two	clients	with	the	IPs	192.168.1.11	and	192.168.1.12	and	the	network's
domain	name	example.com.

How	to	do	it...
In	this	particular	section,	we	are	going	to	learn	how	to	install	and	configure	the
NFS	server,	and	create	and	export	a	share	on	a	client.

Installing	and	configuring	the	NFS	server

NFSv4	is	not	installed	by	default,	and	for	this	reason	we	will	begin	by
downloading	and	installing	the	required	packages:

1.	 To	do	this,	log	in	as	root	on	the	server	that	you	want	to	run	the	NFS
daemon	on	and	type	the	following	command	in	order	to	install	the	required
packages:

yum	install	nfs-utils

2.	 For	NFSv4	to	work,	we	need	the	same	base	domain	for	all	clients	and	the
NFS	server.	So,	let's	define	subdomain	names	for	our	NFS	server	and	the
clients,	if	you	haven't	set	up	a	domain	name	using	DNS	(see	Chapter	9,
Working	with	Domains),	we	will	set	up	a	new	hostname	for	our	computers
in	the	etchosts	file:

echo	"192.168.1.10	myServer.example.com"	>>	etchosts

echo	"192.168.1.11	myClient1.example.com"	>>	etchosts

echo	"192.168.1.12	myClient2.example.com"	>>	etchosts

3.	 Now,	open	the	etcidmapd.conf	file	and	put	in	the	base	domain	name	(not
the	full	domain	name)	of	your	NFS	server;	search	for	the	line	that	reads
#Domain	=	local.domain.edu,	and	replace	it	with	the	following:

Domain	=	example.com

4.	 Next,	we	need	to	open	some	firewall	ports	for	the	server	to	have	proper
NFS	access:

for	s	in	{nfs,mountd,rpcbind};	do	firewall-cmd	--permanent	--

add-service	$s;	done;	firewall-cmd	--reload

5.	 Finally,	let's	start	the	NFS	server	service	and	enable	it	on	reboot:

systemctl	start	rpcbind	nfs-server	systemctl	enable	rpcbind	

nfs-server	systemctl	status	nfs-server

Creating	an	export	share

Now	that	our	NFS	server	is	configured	and	up-and-running,	it's	time	to	create
some	file	shares	that	we	can	export	to	our	clients:

1.	 First,	let's	create	a	folder	for	our	shares	and	change	its	permissions:

mkdir	srvnfs-data

2.	 Create	a	new	group	with	a	specific	GID	and	associate	it	with	the	export,
and	then	change	permissions:

groupadd	-g	50000	nfs-share;chown	root:nfs-share	srv	-R;chmod	

775	srv	-R

3.	 Open	the	following	file:

vi	etcexports

4.	 Now,	enter	the	following	text,	but	be	very	focussed	while	typing:

srvnfs-data	(ro)	192.168.1.11(rw)	192.168.1.12(rw)	/home	

.example.com(rw)

5.	 Save	and	close	the	file,	then	re-export	all	entries	from	etcexports	using	the
following:

exportfs	-ra

How	it	works...
On	CentOS	7,	you	can	install	version	4	of	the	NFS,	which	has	some
enhancements	over	former	versions,	such	as	more	flexible	authentication	options
and	being	fully	backward	compatible	with	older	NFS	versions.	Here,	we	showed
you	how	easy	it	is	to	install	and	configure	the	NFS	server	and	create	some
shared	exports	for	our	clients	to	use.

So,	what	did	we	learn	from	this	experience?

We	started	this	recipe	by	installing	the	nfs-utils	package,	since	the	NFS	server
functionality	is	not	available	on	CentOS	7	by	default.	Next,	we	configured	our
server's	domain	name	using	the	etchosts	file,	as	in	our	example,	no	DNS	server
of	our	own	has	been	configured.	If	you	have	set	up	a	DNS	server,	you	should
follow	a	similar	domain	name	schema	as	shown	here,	because	this	is	very
important	for	NFSv4	to	work,	as	all	clients	and	the	server	should	be	in	the	same
base	domain.	In	our	example,	we	specified	that	they	are	all	subdomains	of
example.com:	myClient1.example.com,	myClient2.example.com,	and
myServer.example.com.	This	is	a	means	of	securing	the	sharing	of	data,	as	the
NFS	server	will	only	allow	access	to	files	from	a	client	to	a	server	if	the	domain
names	match	(in	our	example,	both	server	and	client	are	part	of	the	example.com
domain).	Next,	we	put	this	base	domain	in	the	idmapd.conf	file,	which	takes
care	of	mapping	user	names	and	group	IDs	to	NFSv4	IDs.	Afterwards,	we
enabled	the	nfs,	mountd,	and	rpcbind	firewalld	services	in	our	firewalld
instance,	which	are	all	needed	for	full	support	and	communication	between	our
clients	and	server.	To	finish	our	base	configuration,	we	started	the	rpcbind	and
NFS	servers	and	enabled	them	on	boot.

After	the	NFS	server	was	successfully	set	up,	we	added	some	export	to	it,	to
actually	allow	clients	to	access	some	shared	folders	from	the	server.	Therefore,
we	created	a	special	directory	in	the	filesystem,	which	will	keep	all	our	shared
files.	We	associated	this	sharing	folder,	srvnfs-data,	with	a	new	group,	nfs-
share,	and	gave	it	read/write/execute	permissions.	For	practical	reasons	we	will
control	Linux	file	permissions	for	our	export	on	a	group	level.	The	name	is
unimportant	but	its	group	identifier	(GID)	has	to	be	set	to	a	static	value	(for
example,	50000).	This	new	GID	must	be	the	same	on	the	server	as	well	as	on
every	client	for	every	user	who	wants	to	have	write	permissions	because	NFS

transfers	any	access	permissions	between	server	and	client	on	a	user	(UID)	or
GID	level	over	the	network.	The	whole	sharing	magic	then	happens	in	the
etcexports	file.	It	contains	a	table;	in	it	you	specify	all	the	important
information	about	your	shared	folders	and	their	access	securities	for	the	clients.
Every	line	in	this	file	is	equivalent	to	one	shared	folder	in	your	system,	and	a
whitespaced	list	of	all	the	hosts	allowed	to	access	them	together	with	their
accessing	options	in	brackets.	As	you	can	see,	there	are	different	possibilities	to
define	your	target	clients	using	IP	addresses	or	hostnames.	For	hostnames,	you
can	use	wildcards	such	as	*	and	?	to	keep	the	file	more	compact	and	allow	for
multiple	machines	at	once,	but	you	can	also	define	export	options	for	each	single
host	name.	Explaining	all	the	options	is	outside	the	scope	of	this	book;	if	you
need	more	help,	read	the	exports	manual,	which	can	be	found	using	man
exports.

For	example,	the	line,	srvnfs-data	*(ro)	192.168.1.11(rw)
192.168.1.12(rw),	defines	that	we	want	to	export	the	content	of	the	folder
srvnfs-data	to	all	hostnames	(because	of	the	*	symbol);	read-only	(ro)	means
that	every	client	can	read	the	content	of	the	folder	but	not	write	in	it.	For	clients
with	the	IP	address	192.168.1,	ending	with	11	and	12,	we	allow	reading	and
writing	(rw).	The	second	line	defines	that	we	are	exporting	the	/home	directory	to
all	clients	in	the	subdomain	of	*.example.com	with	read/write	capacity.
Whenever	you	make	a	change	to	the	etcexports	file,	run	the	exportfs	-r
command	to	apply	your	changes	to	the	NFS	server.

Finally,	we	can	say	that	NFSv4	in	CentOS	7	is	very	easy	to	set	up	and	start.	It's
the	perfect	solution	for	sharing	files	between	Linux	systems,	or	for	centralized
home	directories.

Working	with	NFS
Before	a	client	computer	can	use	file	system	exports	shared	by	an	NFS	server,	it
has	to	be	configured	to	correctly	access	this	system.	Here	in	this	recipe,	we	will
show	you	how	to	set	things	up	and	work	with	NFS	on	the	client	machine.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet	in	order	to	facilitate	the	download	of	additional
packages.	It	is	expected	that	you	have	already	followed	the	Installing	and
configuring	NFS	recipe	and	have	set	up	an	NFS	server,	such	as	in	this	example.
It	is	expected	that	all	the	clients	can	ping	each	other	and	are	connected	to	the
NFS	server,	and	will	be	using	a	static	IP	address	(see	the	recipe,	Building	a	static
network	connection,	in	Chapter	2,	Configuring	the	System).	In	our	example,	the
NFS	server	is	running	with	the	IP	192.168.1.10	and	two	clients	with	the	IPs
192.168.1.11	and	192.168.1.12.

How	to	do	it...
On	our	client	systems,	we	also	need	the	same	NFS	software	package,	and	a
similar	configuration	to	the	one	on	the	server,	in	order	to	establish	a
communication	between	them:

1.	 To	begin,	log	in	on	your	client	as	root,	and	apply	the	exact	same	steps	as	in
the	Installing	and	configuring	NFS	recipe	until	the	end	of	step	3.	Skip	step
4	because	no	firewalld	service	must	be	opened.	Then,	instead	of	step	5,	use
the	following	commands,	which	will	not	start	and	enable	the	nfs-server,
but	only	the	rpcbind	service	instead:

systemctl	start	rpcbind

systemctl	enable	rpcbind

Stop	there	and	do	not	apply	anything	else	from	the	original	recipe.	To	test	the
connection	to	our	NFS	server,	use	the	following	command:

showmount	-e	myServer.example.com

Now,	to	test	if	attaching	the	NFS	exports	works	you	can	do	so	manually	using
a	new	user,	john.	This	needs	to	be	added	to	the	nfs-share	group	first	in	the
following	way	so	that	we	can	write	on	our	share:

groupadd	-g	50000	nfs-share;useradd	john;passwd	john;usermod	-G	

nfs-share	john

mount	-t	nfs4	myServer.example.com:/srv/nfs-data	/mnt

su	-	john;touch	/mnt/testfile.txt

If	the	creation	of	the	file	in	the	shared	directory	works,	you	can	put	the	import
in	the	fstab	file	so	that	it	will	be	automatically	mounted	on	system	boot:

vi	etcfstab

Append	the	following	line:

myServer.example.com:/srv/nfs-data		/mnt	nfs	defaults	0	0

Finally,	to	remount	everything	from	fstab,	type	the	following:

mount	-a

How	it	works...
In	this	recipe,	we	showed	you	how	easy	it	is	to	use	some	shared	file	system
exports	from	an	existing	NFSv4	server.

So,	what	did	we	learn	from	this	experience?

As	you	have	seen,	to	set	up	an	NFS	client,	you	need	a	very	similar	setup	to	the
one	on	the	NFS	server	itself,	with	the	exception	of	starting	the	rpcbind	service
instead	of	nfs-server	(which,	as	the	name	implies,	is	only	needed	for	the	server
side).	The	rpcbind	service	is	a	port	mapper	and	is	used	for	Remote	Procedure
Calls	(RPC),	which	is	a	communication	standard	needed	for	NFS	to	work.
Another	very	crucial	step	in	the	configuration	that	you	should	remember	was
setting	up	the	domain	name	in	the	etcidmapd.conf	file.	We	will	have	to	use	the
same	base	domain	name	as	on	the	server	(example.com)	in	order	to	make	the
NFSv4	communication	between	server	and	client	work.	After	having	started	and
enabled	the	rpcbind	service,	we	could	then	mount	the	NFS	share	to	a	local
directory,	either	using	the	mount	command	(with	-t	type	nfs4)	directly,	or	via
the	fstab	file.	Remember,	that	every	system	user	who	wants	proper
read/write/execute	permissions	to	a	share	needs	the	same	permissions	on	the
NFS	server;	in	our	example	we	manage	correct	permissions	on	an	identical	GID
level.	We	used	the	default	options	to	mount	the	share;	if	you	need	different	or
advanced	options,	please	refer	to	man	fstab.	In	order	to	apply	changes	to	the
fstab	file,	perform	mount	-a	to	remount	everything	from	that	file.

Securely	sharing	resources	with
Samba
Samba	is	a	software	package	that	enables	you	to	share	files,	printers,	and	other
common	resources	across	a	network.	It	is	an	invaluable	tool	for	any	working
environment.	One	of	the	most	common	ways	to	share	file	resources	across	a
heterogeneous	network	(meaning	different	computer	systems	such	as	Windows
and	Linux)	is	to	install	and	configure	Samba	as	a	standalone	file	server	to
provide	basic	file-sharing	services	through	user	level	security	with	the	use	of	the
system	user's	home	directories.	Standalone	servers	are	configured	to	provide
local	authentication	and	access	control	to	all	the	resources	they	maintain.	All	in
all,	every	administrator	knows	that	Samba	remains	a	very	popular	open	source
distribution,	and	it	is	the	purpose	of	this	recipe	to	show	you	how	to	deliver	an
instant	approach	to	file	sharing	that	provides	the	seamless	integration	of	any
number	of	users	on	any	type	of	modern	computer	across	your	entire	working
environment.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet	in	order	to	facilitate	the	download	of	additional
packages.	It	is	expected	that	your	server	will	use	a	static	IP	address.

How	to	do	it...
Samba	is	not	installed	by	default,	and	for	this	reason	we	will	begin	by
downloading	and	installing	the	required	packages.

1.	 To	do	this,	log	in	as	root	and	type	the	following	command	in	order	to
install	the	required	packages:

yum	install	samba	samba-client	samba-common

2.	 Having	done	this,	the	first	step	is	to	rename	the	original	configuration	file:

mv	etcsamba/smb.conf	etcsamba/smb.conf.BAK

3.	 Now,	create	a	new	configuration	file	in	your	preferred	text	editor	by	typing
the	following:

vi	etcsamba/smb.conf

4.	 Begin	building	your	new	configuration	by	adding	the	following	lines,
replacing	the	values	shown	with	values	that	better	represent	your	own
needs:

[global]

unix	charset	=	UTF-8

dos	charset	=	CP932

workgroup	=	<WORKGROUP_NAME>

server	string	=	<MY_SERVERS_NAME>

netbios	name	=	<MY_SERVERS_NAME>

dns	proxy	=	no

wins	support	=	no

interfaces	=	127.0.0.0/8	XXX.XXX.XXX.XXX/24	<NETWORK_NAME>

bind	interfaces	only	=	no

log	file	=	varlog/samba/log.%m

max	log	size	=	1000

syslog	only	=	no

syslog	=	0

panic	action	=	usrshare/samba/panic-action	%d

Note

WORKGROUP_NAME	is	the	name	of	the	Windows	workgroup.	Use	the	standard
Windows	name	WORKGROUP	if	you	don't	have	this	value.	MY_SERVERS_NAME
refers	to	the	name	of	your	server.	In	most	situations,	this	could	be	in	the
form	of	FILESERVER	or	SERVER1	and	so	on.	XXX.XXX.XXX.XXX/XX	refers	to

the	primary	network	address	that	your	Samba	service	is	operating	at,	for
example,	192.168.1.0/24.	NETWORK_NAME	refers	to	the	name	of	your
Ethernet	interface.	This	could	be	enp0s8.

5.	 We	will	now	configure	Samba	as	a	standalone	server.	To	do	this,	simply
continue	to	add	the	following	lines	to	your	main	configuration	file:

security	=	user

encrypt	passwords	=	true

passdb	backend	=	tdbsam

obey	pam	restrictions	=	yes

unix	password	sync	=	yes

passwd	program	=	usrbin/passwd	%u

passwd	chat	=	Enter\snew\s\spassword:*	%n\n	

Retype\snew\s\spassword:*	%n\n	password\supdated\ssuccessfully	

.

pam	password	change	=	yes

map	to	guest	=	bad	user

usershare	allow	guests	=	no

6.	 For	the	purpose	of	this	recipe,	we	do	not	intend	to	configure	Samba	as	a
domain	master	or	master	browser.	To	do	this,	add	the	following	lines:

domain	master	=	no

local	master	=	no

preferred	master	=	no

os	level	=	8

7.	 We	will	now	add	support	for	home	directory	sharing	by	enabling	valid
users	to	access	their	home	directories.	This	feature	will	support	the
appropriate	read/write	permissions	and	all	folders	will	remain	private	from
other	users.	To	do	this,	add	the	following	new	lines:

[homes]

					comment	=	Home	Directories

					browseable	=	no

					writable	=	yes

					valid	users	=	%S

					create	mask	=0755

					directory	mask	=0755

8.	 Save	and	close	the	file.	To	test	the	syntax	of	the	Samba	configuration	file
we	just	created,	use	the	following:

testparm

9.	 Now,	add	an	existing	system	user,	john,	to	the	Samba	user	management
system	(this	is	for	testing	later;	change	it	appropriately	to	a	user	name	on
your	system):

smbpasswd	-a	john

10.	 Now,	save	the	file	and	close	it;	back	on	the	command	line,	open	the	ports	in
the	firewall:

firewall-cmd	--permanent	--add-service=samba	&&	firewall-cmd	--

reload

11.	 Configure	SELinux	to	use	the	Samba	home	directory:

setsebool	-P	samba_enable_home_dirs	on

12.	 Now,	ensure	that	the	samba	and	nmb	services	will	start	up	during	the	boot
process	and	start	them	right	away:

systemctl	enable	smb	&&	systemctl	enable	nmb	systemctl	start	

smb	&&	systemctl	start	nmb

How	it	works...
It	was	the	purpose	of	this	recipe	to	install	Samba	and	configure	its	file	sharing
services,	thus	providing	full	connectivity	across	all	modern	computer	systems	in
your	network.

So,	what	did	we	learn	from	this	experience?

Having	installed	the	necessary	packages,	we	renamed	the	originally	installed
configuration	file	to	have	a	backup	in	place	if	anything	broke	later,	and	then	we
began	setting	up	Samba	from	scratch,	starting	with	an	empty	smb.conf
configuration	file.	Having	opened	this	new	file,	we	began	with	the	global
configuration	options;	the	first	step	was	to	declare	compatibility	with	Unicode-
based	character	sets.	You	will	need	to	be	aware	that	the	values	can	vary	as	a
result	of	your	circumstances	and	network.	Read	more	at	man	smb.conf.

Having	done	this,	we	then	proceeded	to	confirm	the	name	of	our	workgroup	and
server,	disable	WINS,	establish	a	Samba	log	file,	and	register	the	network
interface.	Then,	we	elected	the	following	standalone	options	by	choosing	a	user-
based	security	option,	password	encryption,	and	a	tdbsam	database	backend.	The
preferred	mode	of	security	is	user-level	security,	and	using	this	approach	implies
that	each	share	can	be	assigned	to	a	specific	user.	Therefore,	when	a	user
requests	a	connection	for	a	share,	Samba	authenticates	this	request	by	validating
the	given	username	and	password	with	the	authorized	users	in	the	configuration
file	and	the	Samba	database.	Next,	we	added	the	master	information.	In	the	case
of	a	mixed	operating	system	environment,	a	known	conflict	will	result	when	a
single	client	attempts	to	become	the	master	browser.	This	situation	may	not
disrupt	the	file-sharing	service	as	a	whole,	but	it	will	give	rise	to	a	potential	issue
being	recorded	by	the	Samba	log	files.	So	by	configuring	the	samba	server	to	not
assert	itself	as	the	master	browser,	you	will	be	able	to	reduce	the	chance	of	such
issues	being	reported.	So,	having	completed	these	steps,	the	recipe	then
considered	the	main	task	of	enabling	the	homes	directory	file-sharing.	Of	course,
you	can	experiment	with	the	options	shown,	but	this	simple	set	of	instructions
not	only	ensures	that	valid	users	will	be	able	to	access	their	home	directory	with
the	relevant	read/write	permissions,	but	also,	by	setting	the	browseable	flag	to
no,	you	will	be	able	to	hide	the	home	directory	from	public	view	and	achieve	a
greater	degree	of	privacy	for	the	user	concerned.	In	our	setup,	Samba	works	with

your	Linux	system	users,	but	you	should	remember	that	any	existing	or	new	user
is	not	added	automatically	to	Samba	and	must	be	added	manually	using
smbpasswd	-a.

So,	having	saved	your	new	configuration	file,	we	tested	its	correctness	using	the
testparm	program	and	opened	the	Samba	related	incoming	ports	in	firewalld
using	the	samba	service.	The	next	step	was	to	ensure	that	Samba	and	its	related
processes	would	be	made	available	during	the	boot	process	using	systemctl.
Samba	requires	two	primary	processes	in	order	to	work	correctly:	smbd	and
nmbd.	Beginning	with	smbd,	it	is	the	role	of	this	service	to	provide	file-sharing,
printing	services,	user	authentication,	and	resource	locking	to	Windows-based
clients	using	the	SMB	(or	CIFS)	protocol.	At	the	same	time,	it	is	the	role	of	the
nmbd	service	to	listen,	understand,	and	reply	to	the	NetBIOS	name	service's
requests.

Note

Samba	often	includes	another	service	call	named	winbindd,	but	it	has	been
largely	ignored	because	the	intention	to	provide	a	Windows	Internet	Naming
Service	(WINS)-based	service	or	Active	Directory	authentication	requires
additional	consideration,	which	is	beyond	the	scope	of	this	recipe.

Consequently,	our	final	task	was	to	start	both	the	Samba	service	(smb)	and	the
associated	NetBIOS	service	(nmb).

You	now	know	how	incredibly	simple	Samba	is	to	install,	configure,	and
maintain.	There	is	always	more	to	learn,	and	yet	this	simple	introduction	has
served	to	illustrate	Samba's	relative	ease	of	use	and	the	simplicity	of	its	syntax.	It
has	delivered	a	solution	that	has	the	ability	to	support	a	wide	variety	of	different
needs	and	a	range	of	different	computer	systems,	one	that	will	fulfill	your	file-
sharing	requirements	for	many	years	to	come.

There's	more...
You	can	test	our	Samba	server	configuration	from	any	client	in	your	network
that	can	ping	the	server.	If	it	is	a	windows-based	client,	open	the	Windows
Explorer	address	bar	and	use	the	following	syntax:	\\<ip	address	of	the
Samba	server>\<linux	username>.	For	example,	we	use
\\192.168.1.10\john	(on	successfully	connecting	to	it,	you	need	to	enter	your
Samba	username's	password).	On	any	Linux	client	system,	(the	package,	samba-
client,	needs	to	be	installed	on	CentOS	7)	to	list	all	the	available	shares	of	an
NFS	server,	use	the	following	line:

smbclient	-L	<hostname	or	IP	address	of	NFS	server>	-U	<username>

In	our	example,	we	would	use	the	following:

smbclient	-L	192.168.1.10	-U	john

To	test,	mount	a	share	(this	requires	the	cifs-utils	package	on	CentOS	7)	with
the	following	syntax:

mount	-t	cifs		//<ip	address	of	the	Samba	server>/<linux	username>	

<local	mount	point>	-o		"username=<linux	username>"

In	our	example,	we	would	use	the	following:

mkdir	mntsamba-share

mount	-t	cifs	//192.168.1.10/john		mntsamba-share	-o	

"username=john"

You	can	also	put	this	import	in	the	etcfstab	file	for	permanent	mounting	using
the	following	syntax:

//<server>/<share>	<mount	point>	cifs	<list	of	options>		0		0

for	example:

For	example,	add	the	following	line	to	the	file:

//192.168.1.10/john	mntsamba-share	cifs	username=john,password=xyz		

0	0

If	you	don't	want	to	use	passwords	in	plaintext	in	this	file,	read	the	section	about

credentials	using	man	mount.cifs,	then	create	a	credentials	file	and	protect	it
with	chmod	600	in	your	home	directory	so	that	no	other	person	can	read	it.

Here	in	this	chapter,	we	showed	you	how	to	configure	Samba	as	a	standalone
server	and	enable	home	directories,	and	how	to	connect	to	it	from	a	client	to	get
you	started.	But	Samba	can	do	so	much	more!	It	can	provide	printing	services	or
act	as	a	complete	domain	controller.	If	you	want	to	learn	more,	feel	free	to	visit
https://www.packtpub.com/	to	learn	more	about	other	available	material.

https://www.packtpub.com/

Chapter	8.	Working	with	FTP
In	this	chapter,	we	will	cover	the	following	topics:

Installing	and	configuring	the	FTP	service
Working	with	virtual	FTP	users
Customizing	the	FTP	service
Troubleshooting	users	and	file	transfers

Introduction
This	chapter	is	a	collection	of	recipes	that	provides	the	steps	to	unmask	one	of
the	most	fundamental	services	in	the	Linux	world	and	also	provides	the
necessary	starting	point	required	to	install,	configure,	and	deliver	the	file	transfer
protocol	without	hesitation.

Installing	and	configuring	the	FTP
service
While	there	are	several	modern	and	very	secure	network	file	sharing
technologies,	the	good	old	File	Transfer	Protocol	(FTP)	remains	one	of	the
most	widely	used	and	popular	protocols	to	share	and	transfer	files	between
computers.	There	are	a	number	of	different	FTP	servers	available	in	the	Linux
world.	In	this	recipe,	you	will	learn	how	to	install	and	configure	very	secure
FTP	daemon	(vsftpd),	which	is	a	well-known	FTP	server	solution	that	supports
a	wide	range	of	features	and	enables	you	to	upload	and	distribute	large	files
across	a	local	network	and	the	Internet.	Here,	we	will	show	how	to	install	the
vsftpd	daemon	and	provide	some	basic	settings	with	the	main	goal	being	to
increase	the	security	of	the	daemon.

Note

After	working	on	this	recipe,	you	are	advised	to	use	SSL/TLS	encryption	to
further	strengthen	your	FTP	server	(refer	Chapter	6,	Providing	Security).

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet	in	order	to	facilitate	the	downloading	of
additional	packages.	It	is	expected	that	your	server	will	be	using	a	static	IP
address	and	that	it	maintains	one	or	more	system	user	accounts.

How	to	do	it...
vsftpd	is	not	installed	by	default.	For	this	reason,	we	must	begin	this	recipe	by
installing	the	relevant	packages	and	associated	dependencies:

1.	 To	do	this,	log	in	as	root	and	type	the	following	command:

yum	install	vsftpd

2.	 After	we	have	created	a	backup	copy	of	it,	open	the	main	configuration	file
in	your	favorite	text	editor	as	follows:

cp	etcvsftpd/vsftpd.conf	etcvsftpd/vsftpd.conf.BAK

vi	etcvsftpd/vsftpd.conf

3.	 To	disable	anonymous	users,	scroll	down	and	find	the	following	line:
anonymous_enable=YES,	and	then	change	this	as	follows:

anonymous_enable=NO

4.	 Uncomment	(remove	#	at	beginning	of	the	line)	the	following	lines	to
enable	the	chroot	environment	for	more	security:

chroot_local_user=YES

chroot_list_enable=YES

5.	 Next,	scroll	down	to	the	bottom	of	the	file	and	add	the	following	line:

use_localtime=YES

6.	 Finally,	add	the	following	line	to	enable	local	users	to	write	to	their	home
directories:

allow_writeable_chroot=YES

7.	 Save	and	close	the	file.	Then	create	the	following	empty	file:

touch	etcvsftpd/chroot_list

8.	 Next,	configure	the	firewall	to	allow	incoming	FTP	connections	to	the
server	on	port	21:

firewall-cmd	--permanent	--add-service=ftp

firewall-cmd	--reload

9.	 Now,	we	allow	SELinux	to	use	the	FTP	home	directory	feature:

setsebool	-P	ftp_home_dir	on

10.	 Enable	vsftpd	at	boot:

systemctl	enable	vsftpd

11.	 To	complete	this	recipe,	type	the	following	command	to	start	the	FTP
service:

systemctl	start	vsftpd

12.	 Now,	we	can	test	the	connection	from	any	client	computer	in	the	same
network	that	our	FTP	server	is	in.	This	computer	needs	a	FTP	client
installed	(if	its	a	CentOS	computer,	install	one	using	yum	install	ftp).
Log	in	to	this	computer	with	any	account	and	by	typing	in	the	following
command	that	replaces	<IPADDRESS>	with	the	IP	address	of	the	server
running	your	vsftpd	service:

ftp	<IPADDRESS>

13.	 On	successful	connection	to	the	server,	the	FTP	client	program	will	ask	you
for	a	username	and	password.	Here,	enter	a	known	system	user	(other	than
root)	from	the	FTP	server.	If	the	login	was	successful,	you	will	get	a	230
login	successful	message	and	a	ftp>	prompt.	Now	to	end	our	test,	type
the	following	FTP	command	to	show	all	the	files	in	your	current	ftp
directory	and	check	whether	you	have	write-access	on	the	remote	server:

ls

mkdir	test-dir

rmdir	test-dir

14.	 Type	the	following	command	to	end	your	FTP	session:

exit

How	it	works...
vsftpd	is	widely	recognized	as	a	fast,	lightweight,	and	reliable	FTP	server.	The
purpose	of	this	recipe	was	to	show	you	how	to	build	a	basic	FTP	service	that	is
optimized	to	provide	excellent	performance	for	any	number	of	valid	system
users.

So	what	did	we	learn	from	this	experience?

We	began	the	recipe	by	installing	the	necessary	YUM	package	called	vsftpd.
We	then	opened	the	main	configuration	file	located	at	etcvsftpd/vsftpd.conf,
after	we	made	a	backup	copy	of	it.	Next,	we	disabled	anonymous	FTP	access
and	thereby	secured	our	FTP	service	against	unknown	users.	We	then	restricted
users	to	their	home	directory	by	enabling	a	chroot	jail.

Note

The	chroot	jail	represents	an	essential	security	feature;	once	this	is	done,	all	the
users	will	be	restricted	to	access	the	files	in	their	own	home	directory	only.

We	then	required	vsftpd	to	use	local	time	for	our	server.	Afterwards,	we	fixed
the	write	permissions	for	our	chrooted	FTP	users	by	enabling	the
allow_writeable_chroot	option.	Having	saved	our	work,	we	created	a	new
empty	etcvsftpd/chroot_list	file,	which	will	hold	all	the	user	names	that	can
leave	their	chroot	jails.	We	have	to	create	this	file;	otherwise,	vsftpd	will	not	let
us	log	in	to	the	system.	However,	you	should	remember	that	you	must	leave	it
empty	all	the	time	because	chroot	jails	are	an	important	protection	mechanism
for	your	FTP	server.

Next,	we	added	the	standard	FTP	protocol's	port	21	to	our	firewall	configuration
to	allow	incoming	connections.	Then,	we	reloaded	the	firewall	to	apply	these
changes.	After	this,	we	activated	our	FTP	home	directories	by	setting	the
appropriate	SELinux	boolean	variable	ftp_home_dir	to	true.	This	will	make	the
directories	valid	for	SELinux.	Please	read	Chapter	14,	Working	with	SELinux	to
learn	more	about	SELinux.	Next,	we	enabled	vsftpd	on	boot	and	started	the
service	within	systemd.	At	this	point,	vsftpd	will	now	be	operational	and	it	can
be	tested	with	any	regular	FTP-based	desktop	software.	Users	can	log	in	using	a
valid	system	username	and	password	by	connecting	to	the	server's	name,

domain,	or	IP	address	(depending	on	the	server's	configuration).

The	purpose	of	this	recipe	was	to	show	you	that	vsftpd	is	not	a	difficult	package
to	install	and	configure.	There	is	always	more	to	do	but,	by	following	this	simple
introduction,	we	have	quickly	enabled	our	server	to	run	a	standard	FTP	service.

There's	more...
Having	installed	and	configured	a	basic	FTP	service,	you	may	wonder	how	to
direct	users	to	a	specific	folder	within	their	home	directory.	To	do	this,	open	the
main	configuration	file	in	an	editor	of	your	choice	using
etcvsftpd/vsftpd.conf.

Scroll	down	to	the	bottom	of	the	file	and	add	the	following	line	by	replacing	the
<users_local_folder_name>	value	with	something	more	applicable	to	your
own	needs:

local_root=<users_local_folder_name>

For	example,	if	this	FTP	server	is	mainly	for	accessing	and	uploading	content	for
an	user's	private	web	pages	hosted	on	the	same	server,	you	may	configure
Apache	to	use	the	user's	home	directories	in	a	folder	called
/home/<username>/public_html.	For	this	reason,	you	may	add	the	following
reference	at	the	bottom	of	your	vsftpd	configuration	file:

local_root=public_html

When	finished,	save	and	close	the	configuration	file	before	restarting	the	vsftpd
service.	When	testing	this	new	feature	make	sure	that	the	local_root	location
exists	in	the	home	directory	of	the	user	you	want	to	login	(for	example,
~/public_html).

Working	with	virtual	FTP	users
In	this	recipe,	you	will	learn	how	to	implement	virtual	users	in	order	to	break
away	from	the	restriction	of	using	local	system	user	accounts.	During	the
lifetime	of	your	server,	there	may	be	occasions	when	you	wish	to	enable	FTP
authentication	for	a	user	that	does	not	have	a	local	system	account.	You	may
also	want	to	consider	implementing	a	solution	that	allows	a	particular	individual
to	maintain	more	than	one	account	in	order	to	allow	access	to	different	locations
on	your	server.	This	type	of	configuration	implies	a	certain	degree	of	flexibility
afforded	by	the	use	of	virtual	users.	Since	you	are	not	using	a	local	system
account,	it	can	be	argued	that	this	approach	gives	improved	security.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges	and	a	console-based	text	editor	of	your
choice.	It	is	expected	that	your	server	will	be	using	a	static	IP	address	and	that
vsftpd	is	already	installed	with	a	chroot	jail	and	is	currently	running.	This	recipe
needs	the	policycoreutils-python	package	installed.

How	to	do	it...
1.	 The	first	step	is	to	login	as	root	on	our	vsftpd	server	and	create	a	plain	text

file	called	virtualusers.txt	that	maintains	a	list	of	usernames	and
passwords	of	the	virtual	users.	To	do	this,	type	the	following	command:

vi	tmpvirtualusers.txt

Now	add	your	usernames	and	corresponding	passwords	in	the	following	way:

virtual-username1

password1

virtual-username2

password2

virtual-username3

password3

Note

Repeat	this	process	as	required	for	every	user	you	need	but,	for	obvious	reasons,
maintain	a	good	password	policy	and	do	not	use	the	same	virtual-username	more
than	once.

When	you	have	finished,	simply	save	and	close	the	file	in	the	usual	way.
Then,	proceed	to	build	the	database	file	by	typing	the	following	command:

db_load	-T	-t	hash	-f	tmpvirtualusers.txt	etcvsftpd/virtualusers.db

Having	done	this,	we	will	now	create	the	PAM	file	that	will	use	this	database
to	validate	the	virtual	users.	To	do	this,	type	the	following	command:

vi	etcpam.d/vsftpd-virtual

Now	add	the	following	lines:

auth	required	pam_userdb.so	db=etcvsftpd/virtualusers

account	required	pam_userdb.so	db=etcvsftpd/virtualusers

When	you	have	finished,	save	and	close	the	file	in	the	usual	way.	Open	the
main	vsftpd	configuration	file	in	your	favorite	text	editor	as	follows:

vi	etcvsftpd/vsftpd.conf

Now,	in	the	opened	file,	search	for	the	line	pam_service_name=vsftpd	and
disable	it	by	adding	a	#	sign	at	the	beginning	of	the	line	so	that	it	reads	as
follows:

#pam_service_name=vsftpd

Scroll	down	to	the	bottom	of	the	file	and	add	the	following	lines	by
customizing	the	value	for	local_root	to	suit	your	own	specific	needs—this	will
be	the	base	directory	in	which	all	your	virtual	users	will	live	in	(for	example,	we
will	use	srvvirtualusers/$USER	as	shown	here):

virtual_use_local_privs=YES

guest_enable=YES

pam_service_name=vsftpd-virtual

user_sub_token=$USER

local_root=srvvirtualusers/$USER

hide_ids=YES

Now	create	a	subfolder	for	each	virtual	user	you	defined	in	a	previous	step	in
your	tmpvirtualusers.txt	file	within	the	directory	that	you	stated	with	the
local_root	directive.	Remember	to	delegate	the	ownership	of	this	folder	to	the
FTP	user.	To	keep	up	with	our	srvvirtualusers	example,	we	will	use	the
following	commands	to	do	this	in	an	automatic	way	(again,	customize	the
srvvirtualusers	directory	if	needed):

for	u	in	`sed	-n	1~2p	tmpvirtualusers.txt`;

do

mkdir	-p	srvvirtualusers/$u

chown	ftp:	srvvirtualusers/$u

done

Now	we	need	to	inform	SELinux	to	allow	read/write	access	to	our	custom
local_root	directory	outside	of	the	typical	/home	directory:

setsebool	-P	allow_ftpd_full_access	on

semanage	fcontext	-a	-t	public_content_rw_t	"srvvirtualusers(/.*)?"

restorecon	-R	-v	srvvirtualusers

Next,	restart	the	FTP	service	as	follows:

systemctl	restart	vsftpd

For	security	reasons,	remove	the	plain	text	file	now	and	protect	the	generated
database	file	with	this:

rm	tmpvirtualusers.txt

chmod	600	etcvsftpd/virtualusers.db

How	it	works...
Having	followed	the	previous	recipe,	you	will	be	now	able	to	invite	an	unlimited
number	of	virtual	users	to	access	your	FTP	service.	The	configuration	of	this
feature	was	very	simple;	your	overall	security	has	been	improved	and	all	access
is	restricted	to	a	defined	local_root	directory	of	your	choice.	Please	note	that
this	usage	of	virtual	users	will	disable	your	system	users'	login	to	the	FTP	server
from	the	first	recipe.

So	what	did	we	learn	from	this	experience?

We	began	this	recipe	by	creating	a	new	temporary	text	file	that	will	contain	all
our	usernames	with	the	corresponding	passwords	in	plain	text.	We	then	added	all
the	required	usernames	and	passwords	one	after	another	sequentially	separated
by	newlines.	Having	done	this	for	each	of	our	virtual	users,	we	then	saved	and
closed	the	file	before	proceeding	to	run	the	db_load	command	that	is	installed
on	CentOS	7	by	default.	This	can	be	used	to	generate	a	BerkeleyDB	database	out
of	our	text	file,	which	will	be	used	for	the	FTP	user	authentication	later	in	this
process.	Having	completed	this	step,	our	next	task	was	to	create	a	Pluggable
Authentication	Modules	(PAM)	file	at	etcpam.d/vsftpd-virtual.	This	reads
the	previous	database	file	to	provide	authentication	from	it	for	our	vsftpd
service	using	a	typical	PAM	configuration	file	syntax	(for	more,	see	man	pam.d).
Then,	we	opened,	modified,	and	added	new	configuration	directives	to	the	main
vsftpd	configuration	file	at	etcvsftpd/vsftpd.conf	in	order	to	make	vsftpd
aware	of	our	virtual	users'	authentication	via	PAM.

The	most	important	setting	was	the	local_root	directive	that	defines	the	base
location	where	all	your	user	directories	will	be	placed	for	your	virtual	users.
Don't	forget	to	put	the	$USER	string	at	the	end	of	your	path.	You	were	then
prompted	to	create	the	relevant	virtual	hosting	folder	for	every	virtual	user	you
have	defined	in	the	text	file	before.

Since	virtual	users	are	not	real	system	users,	we	had	to	assign	the	FTP	system
user	to	take	full	ownership	of	the	files	for	our	new	FTP	users.	We	used	a	bash
for	loop	to	automate	the	process	for	all	our	users	defined	in	the	temporary
tmpvirtualusers.txt	file.	Next,	we	set	the	proper	SELinux	boolean	to	allow
virtual	users	access	to	the	system	and	also	the	right	context	on	our

srvvirtualusers	directory.	Applying	all	these	changes	was	simply	a	matter	of
restarting	the	vsftpd	service	using	the	systemctl	command.

Afterwards,	we	removed	the	temporary	user	text	file	because	it	contains	our
passwords	in	plain	text.	We	protected	the	access	to	the	BerkleyDB	database	file
by	removing	all	access	other	than	root.	If	you	update,	add,	or	remove	FTP	users
on	a	regular	basis,	it's	better	to	not	delete	this	temporary	plain	text
tmpvirtualusers.txt	file	but	rather	put	it	in	a	safe	place	such	as	the	/root
directory.	Then,	you	should	also	protect	this	using	chmod	600.	Then,	you	can
rerun	the	db_load	command	whenever	you	make	a	change	to	this	file	to	keep
your	users	up-to-date.	If	you	need	to	add	new	users	at	a	later	point,	you	have	to
create	new	virtual	user	folders	for	them	as	well	(Please	rerun	the	commands
from	step	9).	Run	the	restorecon	-R	-v	srvvirtualusers	command
afterwards.

You	can	now	test	your	new	virtual	user	accounts	by	logging	in	to	the	FTP	server
using	your	newly	created	accounts	from	this	recipe.

Customizing	the	FTP	service
In	this	recipe,	you	will	learn	how	to	customize	your	vsftpd	installation.	vsftpd
has	a	lot	of	configuration	parameters,	and	here	we	will	show	how	to	create	a
custom	welcome	banner,	change	the	server's	default-time	out,	limit	user
connections,	and	ban	users	from	the	service.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges	and	a	console-based	text	editor	of	your
choice.	It	is	expected	that	your	server	will	be	using	a	static	IP	address	and	that
vsftpd	is	already	installed	with	a	chroot	jail	and	is	currently	running.

How	to	do	it...
1.	 To	begin	with,	log	in	as	root	and	open	the	main	vsftpd	configuration	file:

vi	etcvsftpd/vsftpd.conf

2.	 First	provide	an	alternative	welcome	message,	uncomment	the	following
line,	and	alter	the	message	as	required.	For	example,	you	could	use	this:

ftpd_banner=Welcome	to	my	new	FTP	server

3.	 To	change	the	default	FTP	timeouts,	uncomment	these	lines	and	substitute
the	numeric	values	as	required:

idle_session_timeout=600

data_connection_timeout=120

4.	 Now,	we	will	limit	the	connections:	the	data	transfer	rate	in	bytes	per
second,	the	number	of	clients,	and	the	maximum	parallel	connections	per	IP
address.	Add	the	following	lines	to	the	end	of	the	file:

local_max_rate=1000000

max_clients=50									

max_per_ip=2

5.	 Next,	save	and	close	the	file.	To	ban	a	specific	user,	you	can	use	the
following	commands	while	replacing	the	username	with	an	appropriate
system	user	value	that	fits	your	needs:

echo	"username"	>>	etcvsftpd/user_list

6.	 Now	to	apply	the	changes,	restart	the	FTP	service:

systemctl	restart	vsftpd

How	it	works...
In	this	recipe,	we	have	shown	some	of	the	most	important	vsftpd	settings.
Covering	all	the	configuration	parameters	here	is	outside	the	scope	of	this	recipe.
To	learn	more	about	it,	read	through	the	entire	main	vsftpd	configuration	file	at
etcvsftpd/vsftpd.conf,	as	it	contains	a	lot	of	useful	comments;	alternatively,
you	can	read	the	man	vsftpd.conf	manual.

So	what	did	we	learn	from	this	experience?

We	began	by	opening	the	main	vsftpd	configuration	file	and	then	activated	and
customized	the	welcome	banner	using	the	ftpd_banner	directive.	On	the	next
successful	login,	your	users	should	see	your	new	message.	Next,	when	dealing
with	a	large	number	of	users,	you	may	want	to	consider	changing	the	values	for
a	default	timeout	and	limit	the	connections	in	order	to	improve	the	efficiency	of
your	FTP	service.

First,	we	changed	our	server's	timeout	numbers.	An	idle_session_timeout	of
600	seconds	will	logout	the	user	if	he	is	inactive	(not	executing	FTP	commands)
for	10	minutes,	while	a	data_connection_timeout	of	120	seconds	will	kill	the
connections	when	a	client	data	transfer	is	stalled	(not	progressing)	for	20
minutes.	Then	we	changed	the	connection	limits.	A	local_max_rate	of	1000000
bytes	per	second	will	limit	the	data	transfer	rate	of	a	single	user	to	roughly	one
megabyte	per	second.	A	max_clients	value	of	50	will	tell	the	FTP	server	to	only
allow	50	parallel	users	to	the	system,	while	a	max_per_ip	of	2	allows	only	two
connections	per	IP	address.

Then	we	saved	and	closed	the	file.	Finally,	we	showed	how	to	ban	users	from
using	our	FTP	service.	If	you	wanted	to	ban	a	specific	user	from	using	the	FTP
service	as	a	whole,	the	user's	name	should	be	added	to	the
etcvsftpd/user_list	file.	If	you	ever	need	to	re-enable	the	user	at	any	time,
simply	reverse	the	previous	process	by	removing	the	user	concerned	from
etcvsftpd/user_list.

Troubleshooting	users	and	file
transfers
Analyzing	log	files	is	the	most	important	technique	for	troubleshooting	all	kinds
of	problems	or	improving	services	on	Linux.	In	this	recipe,	you	will	learn	how	to
configure	and	enable	vsftpd's	extensive	logging	features	in	order	to	help	system
administrators	when	problems	arise,	or	simply	to	monitor	usage	with	this
service.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges	and	a	console-based	text	editor	of	your
choice.	It	is	expected	that	your	server	will	be	using	a	static	IP	address	and	that
vsftpd	is	already	installed	with	a	chroot	jail	and	is	currently	running.

How	to	do	it...
1.	 To	do	this,	log	in	as	root	and	type	the	following	command	to	open	the	main

configuration	file	in	your	favorite	text	editor:

vi	etcvsftpd/vsftpd.conf

2.	 Now,	add	the	following	lines	to	the	end	of	the	configuration	file	to	enable
verbose	logging	features:

dual_log_enable=YES

log_ftp_protocol=YES

3.	 Finally,	restart	the	vsftpd	daemon	to	apply	the	changes:

systemctl	restart	vsftpd

How	it	works...
In	this	recipe,	we	have	shown	how	to	enable	two	separate	logging	mechanism:
first,	the	xferlog	log	file	that	will	log	detailed	information	about	user	uploads
and	downloads,	then	the	vsftpd	log	file	that	contains	every	FTP	protocol
transaction	between	the	client	and	the	server	outputting	the	most	detailed
logging	information	possible	for	vsftpd.

So	what	did	we	learn	from	this	experience?

In	this	recipe,	we	opened	the	main	vsftpd	configuration	file	and	added	two
directives	to	the	end	of	the	file.	First,	dual_log_enable	will	make	sure	both	the
xferlog	and	vsftpd	log	files	will	be	used	for	logging.	Afterwards,	we	increased
the	verbosity	of	the	vsftpd	log	file	by	enabling	log_ftp_protocol.

After	restarting	the	service,	the	two	log	files,	varlog/xferlog	and
varlog/vsftdp.log,	will	be	created	and	filled	with	useful	FTP	activity
information.	Now,	before	we	open	the	files,	let's	create	some	FTP	user	activity.
Log	in	with	any	FTP	user	on	the	server	using	the	ftp	command-line	tool	and
issue	the	following	FTP	command	at	the	ftp>	prompt	to	upload	a	random	file
from	the	client	to	the	server:

put	~/.bash_profile	bash_profile_test

Now,	back	on	the	server,	inspect	the	varlog/xferlog	file	to	see	detailed
information	about	the	uploaded	file	and	open	varlog/vsftpd.log	for	all	other
user	activities	(such	as	login	time	or	other	FTP	commands	that	users	issued).

Please	note	that	both	the	log	files	only	keep	track	of	user	and	FTP	activity	and
are	not	meant	to	debug	problems	with	the	vsftpd	service	such	as	configuration
file	errors.	Use	the	systemctl	status	vsftpd	-l	or	journalctl	-xn,	to	debug
general	problems	with	the	service.

Chapter	9.	Working	with	Domains
In	this	chapter,	we	will	cover:

Installing	and	configuring	a	caching-only	nameserver
Setting	up	an	authoritative-only	nameserver
Creating	an	integrated	nameserver	solution
Populating	the	domain
Building	a	secondary	(slave)	DNS	server

Introduction
This	chapter	is	a	collection	of	recipes	that	attempt	to	demystify	a	technology	that
remains	the	key	component	in	making	everything	work	in	the	networking	world.
From	e-mail	to	web	pages	and	remote	logins	to	online	chats,	this	chapter
provides	the	necessary	details	on	how	quickly	you	can	use	CentOS	to	deliver	a
domain	name	service	that	will	power	your	working	environment.

Installing	and	configuring	a	caching-
only	nameserver
Every	network	communication	between	computers	can	only	be	made	through	the
use	of	unique	IP	addresses	to	identify	the	exact	endpoints	of	the	communication.
For	the	human	brain,	numbers	are	always	harder	to	remember	and	work	with
than	assigning	names	to	things.	Therefore,	IT	pioneers	started	in	the	early	70s	to
invent	systems	for	translating	names	to	physical	network	addresses	using	files
and	later	simple	databases.	In	modern	computer	networks	and	on	the	Internet,
the	relationship	between	the	name	of	a	computer	and	an	IP	address	is	defined	in
the	Domain	Name	System	(DNS)	database.	It	is	a	worldwide	distributed	system
and	provides	domain	name	to	IP	address	resolution	and	also	the	reverse,	that	is
IP	address	to	domain	name	resolution.	DNS	is	a	big	subject,	and	it	is	the	purpose
of	this	recipe	to	provide	the	perfect	starting	point	by	showing	you	how	to	install
and	setup	your	own	caching-only	and	forwarding	nameserver.	Here	we	will	use
Unbound,	which	is	a	highly	secure	and	fast	recursive	and	caching	DNS	server
solution,	and	therefore	our	preferred	choice.	But	you	need	to	remember	that
Unbound	cannot	be	used	as	a	fully	authoritative	DNS	server	(which	means	that	it
provides	its	own	domain	name	resolution	records)	we	will	use	the	popular	BIND
server	for	this	in	a	later	recipe.	A	caching-only	DNS	server	will	serve	to	forward
all	the	name	resolution	queries	to	a	remote	DNS	server.	Such	a	system	has	the
intention	of	speeding	up	general	access	to	the	Internet	by	caching	the	results	of
any	domain	resolution	request	made.	When	a	caching	DNS	server	tracks	down
the	answer	to	a	client's	query,	it	returns	the	answer	to	the	client.	However,	it	also
stores	the	answer	in	its	cache	for	a	specific	period	of	time.	The	cache	can	then	be
used	as	a	source	for	subsequent	requests	in	order	to	speed	up	the	total	round-trip
time.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	static	IP	address,	and	a	console-based
text	editor	of	your	choice.	An	Internet	connection	will	be	required	to	download
additional	packages.	In	this	example,	our	DNS	server	runs	in	a	private	network
with	the	network	address	192.168.1.0/24.

How	to	do	it...
In	this	recipe,	we	will	first	configure	a	caching-only	and	then	a	forwarding	only
DNS	server.

Configuring	a	caching-only	Unbound	DNS	server

In	this	section,	we	will	consider	the	role	of	Unbound	as	a	caching-only
nameserver,	handling	recursive	DNS	requests	to	the	other	remote	DNS	servers
and	caching	the	query	for	a	certain	time	period	to	improve	the	response	time
when	the	server	is	asked	for	the	same	name	resolution	again:

1.	 To	begin,	log	in	as	root	and	install	the	required	packages	by	typing:

yum	install	unbound	bind-utils

2.	 Now	make	a	copy	of	the	unbound	configuration	file	so	we	can	revert	our
changes	later,	and	then	open	it	in	your	favorite	text	editor:

cp	etcunbound/unbound.conf	etcunbound/unbound.conf.BAK

vi	etcunbound/unbound.conf

3.	 Scroll	down	to	find	the	following	line:	#	interface:	0.0.0.0	Remove	the
#	sign	to	uncomment	it	(activate	it),	so	it	reads	as	follows:

interface:	0.0.0.0

4.	 Next,	scroll	down	to	find	the	line	#	access-control:	127.0.0.0/8
allow.	Uncomment	the	line	to	activate	it	and	change	the	network	address	to
fit	your	needs:

access-control:	192.168.1.0/24	allow

5.	 Save	and	close	the	file,	and	then	create	an	RSA	keypair	with	certificates	for
secure	DNSSEC	support	before	you	check	the	correctness	of	the	changed
configuration	file:

unbound-control-setup	&&	unbound-checkconf

6.	 Next,	open	the	DNS	service	in	your	firewalld	configuration	on	your	server
because	we	want	to	be	able	to	use	our	new	DNS	service	from	other	clients
in	the	network	for	querying	as	well:

firewall-cmd	--permanent	--add-service	dns	&&		firewall-cmd	--

reload

7.	 Now	ensure	the	service	will	be	available	at	boot	and	start	it	afterwards:

systemctl	enable	unbound	&&	systemctl	start	unbound

8.	 To	test	if	we	can	reach	our	Unbound	DNS	server	and	make	queries,	execute
the	following	command	from	the	same	server	running	our	Unbound	DNS
service	locally,	which	should	give	back	the	IP	address	of
www.packtpub.com:

nslookup	www.packtpub.com	127.0.0.1

9.	 For	a	more	detailed	view	of	the	request	you	can	also	run	locally	on	the	DNS
server:

unbound-host	-d	www.packtpub.com

10.	 From	any	other	client	in	the	network	(needs	bind-utils	installed),	you	can
query	any	public	domain	name	using	our	new	DNS	server	as	well.	For
example,	if	our	DNS	server	has	the	IP	192.168.1.7:

nslookup	www.packtpub.com	192.168.1.7

11.	 Finally,	let	us	use	our	new	nameserver	on	the	server	itself.	To	do	this,	open
the	following	file	with	your	favorite	text	editor	after	you	have	made	a
backup	copy:

cp	etcresolv.conf	etcresolv.conf.BAK;	vi	etcresolv.conf

12.	 Remove	all	the	current	nameserver	references	and	replace	them	with	the
following:

nameserver	127.0.0.1

Note

If	you	have	set	some	DNS	server	information	in	your	network-scripts
interface	(for	example,	when	configuring	a	static	IP	address,	see	Chapter	2,
Configuring	the	System),	you	will	want	to	review	the
etcsysconfig/network-scripts/ifcfg-XXX	file	and	modify	the	current
DNS	reference	to	read	as	DNS1=127.0.0.1	as	well.

Configuring	a	forwarding	only	DNS	server

http://www.packtpub.com

Now	after	we	have	successfully	configured	our	first	caching	BIND	DNS	server,
here	we	will	show	you	how	to	transform	it	into	a	forwarding	DNS	server	which
will	reduce	the	total	bandwidth	for	resolving	hostnames	in	comparison	to	the
caching-only	solution:

1.	 Open	BIND's	main	configuration	file	again:

vi	etcunbound/unbound.conf

2.	 Add	the	following	lines	to	the	end	of	the	file:

forward-zone:

						name:	"."

						forward-addr:	8.8.8.8

3.	 Next,	check	the	correctness	of	your	new	configuration	file	and	restart	the
service:

unbound-checkconf	&&	systemctl	restart	unbound

4.	 Finally,	test	your	new	forwarding	DNS	server	using	the	tests	from	the
preceding	caching	DNS	server	section.

How	it	works...
In	this	recipe,	we	have	installed	a	caching-only	Unbound	DNS	server	with	the
basic	aim	of	improving	the	responsiveness	of	our	overall	network	by	caching	the
answers	to	any	name-based	queries.	Using	such	a	process	will	shorten	the
waiting	time	on	any	subsequent	visit	to	the	same	location.	It	is	a	feature	that	is
particularly	useful	in	saving	bandwidth	if	you	happen	to	be	managing	a	large,
busy,	or	slow	network.	It	does	not	have	its	own	domain	name	resolution	feature
but	uses	its	default	root	domain's	DNS	servers	in	order	to	perform	this	task	(to
learn	more	about	the	root	domain,	see	later).	Also,	as	we	have	seen,	you	can
easily	transform	your	caching	nameserver	into	a	pure	forwarding	system	as	well.
While	a	caching	DNS	server	makes	recursive	requests	to	several	associated	DNS
servers	and	constructs	the	complete	name	resolution	result	from	those	multiple
requests,	a	forwarding	DNS	delegates	the	complete	recursive	DNS	search	to
another	resolving	DNS	server	which	executes	the	complete	search	instead.	This
saves	even	more	bandwidth	for	our	DNS	server	because	only	single	network
requests	to	communicate	with	the	remote	resolving	server	are	made	instead	of
multiple	when	using	the	caching-only	DNS	service.

So	what	did	we	learn	from	this	experience?

We	started	this	recipe	by	installing	the	necessary	packages.	This	included	the
main	DNS	server	program	called	Unbound	and	a	reference	to	bind-utils,	a
small	package	that	enables	you	to	run	many	different	DNS	related	network	tasks,
such	as	dig,	nslookup,	and	host.	The	next	step	was	to	begin	making	the
necessary	configuration	changes	by	editing	Unbound's	main	configuration	after
we	made	a	simple	backup	of	the	original	file.	Since	after	installation	the	default
DNS	server	is	completely	restricted	to	doing	everything	locally	only,	our	main
purpose	was	to	adjust	the	server	to	make	connections	from	the	outside	possible.
We	began	this	process	by	allowing	the	DNS	server	to	listen	to	all	the	available
network	interfaces	using	the	interface	directive	and	afterwards	defined	who	on
the	network	was	allowed	to	make	requests	to	our	DNS	server	by	setting	allow-
query	to	our	local	network.	This	means	we	allowed	anyone	in	our	subnetwork	to
make	DNS	resolution	requests	to	our	server.

At	this	point	we	created	the	RSA	keypair	with	the	unbound-control-setup	tool,
which	is	needed	for	the	unbound-checkconf	command	to	work.	The	generated

keys	and	certificate	are	important	if	we	want	to	use	Unbound's	DNS	Security
Extensions	(DNSSEC)	features	which	help	protect	DNS	data	by	providing
authentication	of	origin	using	digital	signatures	(configuring	DNSSEC	is	outside
the	scope	of	this	chapter.	To	learn	more,	consult	the	Unbound	configuration
manual:	man	unbound.conf).	Afterwards,	we	used	the	unbound-checkconf
command,	which	was	necessary	to	confirm	that	Unbound's	configuration	file
was	syntactically	correct.	If	the	output	of	the	command	is	empty,	there	are	no
errors	in	the	file.	We	then	proceeded	by	adding	the	predefined	dns	firewalld
service	to	our	default	firewall,	thus	allowing	the	other	computer	systems	in	our
local	network	to	access	the	DNS	server	using	port	53.	Finally,	we	activated
Unbound	at	boot	time	and	started	the	service.

Of	course,	to	complete	this	recipe	we	then	tested	if	our	new	DNS	server	worked
as	expected	in	resolving	domain	names	to	IP	addresses.	We	ran	a	simple
nslookup	query	locally	on	the	server	and	also	from	the	other	computers	in	the
same	network	to	see	if	our	new	DNS	service	was	reachable	from	the	outside.
When	using	nslookup	without	any	additional	parameters,	the	program	will	use
the	default	DNS	server	resolver	known	to	the	system	(on	CentOS	7	this	is
defined	in	etcresolv.conf)	to	resolve	our	host	names,	so	we	added	another
parameter	addressing	our	alternative	DNS	server	we	want	to	query	instead
(127.0.0.1).	For	successful	testing,	the	output	must	contain	the	resolved	IP
address	of	the	www.packtpub.com	server.	On	the	DNS	server	you	could	also	use
the	unbound-host	-d	command	to	get	a	more	technical	view	of	the	DNS	query
within	the	Unbound	service.

After	we	successfully	finished	these	tests,	we	updated	the	current	nameserver
resolver	information	on	our	DNS	server	with	our	new	DNS	service	running	on
localhost.

http://www.packtpub.com

There's	more...
Now	we	want	to	see	how	BIND	will	perform	for	caching	DNS	information.	To
do	this,	on	your	DNS	server	simply	select	a	target	website	you	have	not	visited
before	and	use	the	dig	command.	For	example:

dig	www.wikipedia.org

Having	run	this	test,	you	may	see	a	query	time	that	results	in	something	like	the
following:

;;	Query	time:	223	msec

Now	repeat	this	exercise	by	retesting	the	same	URL.	Depending	on	your
networking	environment,	this	may	produce	the	following	result:

;;	Query	time:	0	msec

Now	do	it	again	for	another	website.	On	every	repeat	of	the	preceding	command,
you	should	not	only	see	a	reduced	query	time	but	also	experience	a	faster
response	time	in	delivering	the	output.	This	same	result	will	be	evident	in	the
browser	refresh	rate,	and	as	a	result	we	can	say	that	this	simple	exercise	has	not
only	introduced	you	to	Unbound	but	it	will	ultimately	serve	to	improve	the	speed
of	your	local	network	when	surfing	the	World	Wide	Web.

Setting	up	an	authoritative-only	DNS
server
In	this	recipe,	we	will	learn	how	to	create	an	authoritative-only	DNS	server,
which	can	give	answers	to	queries	about	domains	under	their	control	themselves
instead	of	redirecting	the	query	to	other	DNS	servers	(such	as	our	caching-only
DNS	server	from	the	previous	recipe).	We	will	create	a	DNS	server	to	resolve	all
our	own	hostnames	and	services	in	our	own	private	local	network.

As	said	before,	while	Unbound	should	be	your	first	choice	when	needing	a
caching-only	DNS	server	as	it	is	the	most	secure	DNS	server	solution	available,
it	has	only	limited	authoritative	capabilities	which	often	is	not	enough	for
professional	DNS	server	usage.	Here,	instead	of	name	lookup	of	our	local
servers,	we	will	use	the	popular	authoritative	BIND	DNS	server	package	and
configure	a	new	DNS	zone	to	provide	highly	customizable	name	resolution.
Technically	speaking,	we	will	be	writing	both	a	forward	and	reverse	zone	file	for
our	domain.	Zone	files	are	text	files	that	contain	the	actual	domain	name	to	IP
address	mappings	or	the	other	way	around,	that	is,	IP	address	mappings	to
domain	name	mappings.	While	most	queries	to	any	DNS	server	will	be	the
translation	of	names	to	IP	addresses,	the	reverse	part	is	also	important	to	set	up	if
you	need	the	correct	domain	name	for	any	given	IP	address.	We	will	configure
BIND	to	be	authoritative-only,	which	means	that	the	server	will	only	answer
queries	it	is	authoritative	for	(has	the	matching	records	in	its	zones),	so	if	the
DNS	server	cannot	resolve	a	requested	domain,	it	will	stop	the	request	and	not
contact	other	DNS	servers	using	recursive	requests	to	fetch	and	construct	the
correct	answer.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	static	IP	address,	and	a	console-based
text	editor	of	your	choice.	An	Internet	connection	will	be	required	to	download
additional	packages.	In	this	example,	our	DNS	server	runs	in	the	private	network
with	the	network	address	192.168.1.0/24.	Our	DNS	server	should	manage	a
local	private	domain	we	decide	to	be	centos7.home	(in	the	form
domain.toplevel-domain).	The	IP	address	of	the	new	DNS	server	will	be
192.168.1.7	and	should	get	the	hostname	ns1,	leading	to	the	Fully	Qualified
Domain	Name	(FQDN)	ns1.centos7.home.	(Refer	to	the	Setting	your	hostname
and	resolving	the	network	recipe	in	Chapter	2,	Configuring	the	System	to	learn
more	about	FQDNs).	Our	configured	zone	will	have	an	administrative	e-mail
address	with	the	name	admin@centos7.home,	and	for	simplicity,	all	the	other
computers	in	this	network	will	get	hostnames	such	as	client1,	client2,
client3,	and	so	on.	We	will	also	have	some	mail,	web,	and	FTP	servers	in	our
own	network,	each	running	on	separate	dedicated	servers.	We	will	be	using	the
port	8053	for	our	BIND	service	as	we	already	have	Unbound	running	on	the
same	server	using	the	default	DNS	port	53.

How	to	do	it...
For	security	reasons,	we	will	allow	BIND	to	resolve	internal	LAN	names	only
(authoritative-only)	and	only	allow	localhost	to	make	DNS	queries;	no	other
clients	in	our	network	can	connect	to	it:

1.	 To	begin	with,	log	in	as	root	on	your	Unbound	DNS	server	and	install	the
required	BIND	package	and	enable	the	DNS	server	on	boot:

yum	install	bind	&&	systemctl	enable	named

2.	 The	actual	name	of	the	DNS	server	in	the	BIND	package	is	called	named,	so
let's	open	its	main	configuration	file	to	make	some	adjustments	after
creating	a	backup	copy	of	it	first:

cp	etcnamed.conf	etcnamed.conf.BAK;	vi	etcnamed.conf

3.	 First	find	the	line	listen-on	port	53	{	127.0.0.1;	};	and	then	change
the	port	number	to	the	custom	port	8053,	so	it	reads	as	follows:

listen-on	port	8053	{	127.0.0.1;	};

4.	 Next,	find	the	line	listen-on-v6	port	53	{	::1;	}	and	change	it	to:

listen-on-v6	port	8053	{	none;	};

5.	 Next,	since	we	are	configuring	an	authoritative-only	server,	we	will	disable
contacting	other	remote	DNS	servers,	find	the	line	that	reads	recursion
yes;	and	change	it	to:

recursion	no;

6.	 Save	and	close	the	file,	and	then	validate	the	syntax	of	our	config	changes
(no	output	means	no	errors!):

named-checkconf

7.	 Now	tell	SELinux	about	the	changed	named	DNS	port	(this	needs	package
policycoreutils-python):

semanage	port	-a	-t	dns_port_t	-p	tcp	8053

8.	 Now	type	the	following	command	in	order	to	create	your	forward	zone	file.
Name	the	file	after	the	domain	whose	resource	records	it	will	contain:

vi	varnamed/<domain>.<toplevel	domain>.db

9.	 In	our	example,	for	our	centos7.home	domain,	this	will	be:

vi	varnamed/centos7.home.db

10.	 Now	simply	add	the	following	lines	(be	careful	not	to	forget	typing	the
tailing	dots	in	the	domain	names).	We	will	start	with	the	Start	of	Authority
(SOA)	block:

$TTL	3h

@	IN	SOA	ns1.centos7.home.	admin.centos7.home.(

	2015082400						;	Serial	yyyymmddnn

	3h														;	Refresh	After	3	hours

	1h														;	Retry	Retry	after	1	hour

	1w														;	Expire	after	1	week

	1h)													;	Minimum	negative	caching

11.	 Afterwards,	add	the	rest	of	the	file's	content:

;	add	your	name	servers	here	for	your	domain

								IN						NS						ns1.centos7.home.

;	add	your	mail	server	here	for	the	domain

								IN						MX						10			mailhost.centos7.home.

;	now	follows	the	actual	domain	name	to	IP

;	address	mappings:

	

;	first	add	all	referenced	hostnames	from	above

ns1								IN						A							192.168.1.7

mailhost			IN						A							192.168.1.8

;	add	all	accessible	domain	to	ip	mappings	here

router					IN						A							192.168.1.0

www								IN						A							192.168.1.9

ftp								IN						A							192.168.1.10

;	add	all	the	private	clients	on	the	Lan	here

client1				IN						A							192.168.1.11

client2				IN						A							192.168.1.12

client3				IN						A							192.168.1.13

;	finally	we	can	define	some	aliases	for

;	existing	domain	name	mappings

webserver		IN						CNAME			www

johnny					IN						CNAME			client2

12.	 When	you	have	finished,	simply	save	and	close	the	file	before	proceeding
to	create	the	reverse	zone	file	for	our	private	subnetwork	used	by	our
domain	(the	C-Class	are	the	first	three	numbers	(octets)	which	are
separated	by	dots:	XXX.XXX.XXX.	For	example,	for	the	192.168.1.0/24
subnet	the	C-Class	is	192.168.1:

vi	varnamed/db.<C-Class	of	our	search	IP	in	reverse	order>

13.	 In	our	example,	a	reverse	zone	file	resolving	our	centos7.home's
192.168.1	C-Class	subnet	will	be:

vi	varnamed/db.1.168.192

14.	 First	put	in	the	exact	same	SOA	as	in	step	10,	and	then	append	the
following	content	to	the	end	of	the	file:

;add	your	name	servers	for	your	domain

													IN						NS						ns1.centos7.home.

;	here	add	the	actual	IP	octet	to

;	subdomain	mappings:

7						IN						PTR					ns1.centos7.home.

8						IN						PTR					mailhost.centos7.home.

9						IN						PTR					www.centos7.home.

10					IN						PTR					ftp.centos7.home.

11					IN						PTR					client1.centos7.home.

12					IN						PTR					client2.centos7.home.

13					IN						PTR					client3.centos7.home.

15.	 Save	and	close	the	file,	and	then	add	our	new	zone	pair	to	the	named
configuration.	To	do	this,	open	named.conf	again:

vi	etcnamed.conf

16.	 Now	locate	the	line	including	"etcnamed.rfc1912.zones";.	Immediately
following	this	line,	create	a	space	for	your	work	and	add	the	appropriate
zone	statement	to	enable	your	reverse	zone,	as	follows	(substitute
XXX.XXX.XXX	with	the	reversed	C-Class	of	your	reverse	zone	file	name,	in
our	example	1.168.192):

zone	"XXX.XXX.XXX.in-addr.arpa."	IN	{

		type	master;

		file	"varnamed/db.XXX.XXX.XXX";

		update-policy	local;

};

17.	 Having	done	this,	you	can	now	proceed	to	add	a	zone	statement	for	your
forward	zone	right	afterwards,	as	follows	(replacing	<domain>.<toplevel
domain>.db	with	your	forward	zone	file	name,	in	our	example
centos7.home):

zone	"<domain>.<toplevel	domain>."	IN	{

		type	master;

		file	"varnamed/<domain>.<toplevel	domain>.db";

		update-policy	local;

};

18.	 When	you	have	finished,	simply	save	and	close	the	file,	and	then	restart	the
bind	service	using:

named-checkconf	&&	systemctl	restart	named

How	it	works...
All	DNS	servers	are	configured	to	perform	caching	functions,	but	where	a
caching-only	server	is	restricted	in	its	ability	to	answer	queries	from	remote
DNS	servers	only,	an	authoritative	nameserver	is	a	DNS	server	that	maintains
the	master	zone	for	a	particular	record.

So	what	have	we	learned	from	this	experience?

The	purpose	of	this	recipe	was	to	setup	an	authoritative-only	BIND	DNS	server
and	provide	a	new	zone	for	it.	A	DNS	zone	defines	all	the	available	resources
(hostnames	and	services)	under	a	single	domain.	Any	DNS	zone	should	always
consist	of	both	a	forward	and	reverse	zone	file.	To	understand	zone
configurations,	we	need	to	discuss	DNS	hierarchy	first.	For	example,	take	a
DNS	domain	from	the	example	in	this	recipe	client1.centos7.home.	Every
computer	in	our	private	network	has	a	hostname	(for	example,	client1	or	www)
and	is	a	member	of	a	domain.	A	domain	consists	of	the	Second-level	Domain
(SLD)	(for	example,	centos7)	and	a	Toplevel	Domain	name	(TLD)	(for
example,	home,	org,	com,	and	so	on).	On	top	of	that	TLD	is	the	root	domain
(written	.	dot)	which	often	is	neglected	when	working	with	other	programs	or
configurations.	However,	when	working	or	defining	FQDN	in	zone
configurations,	it	is	very	important	to	never	forget	to	add	this	dot	.	after	the
TLD.	For	example,	a	DNS	domain	for	our	client1	computer	would	be
client1.centos7.home.,	whereas	an	FQDN	for	the	etchosts	file	is	often
written	in	the	format	client1.centos7.home	(technically	this	is	incorrect	but
most	of	the	time	sufficient).	The	root	domain	is	very	important	because	it
contains	the	root	DNS	servers	which	will	be	queried	first	if	an	authoritative	DNS
server	cannot	find	an	existing	entry	for	a	requested	domain	in	its	own	records
(zones)	or	cache.	But	we	have	DNS	servers	in	all	the	other	domain	hierarchies	as
well	and	this	is	how	a	DNS	server	makes	its	recursive	requests.	A	root	DNS
server,	as	any	other	DNS	server,	resolves	all	its	subdomains	(defined	in	its	zone
files)	which	are	the	TLDs.	These	TLDs	themselves	can	resolve	all	the	SLDs
(also	defined	in	their	zone	files).	The	second-level	domains	resolve	all	their
hostnames	(which	are	special	subdomains	as	they	refer	to	individual	computer	or
services	on	your	network).	So	any	DNS	request	traverses	through	the	different
DNS	server	hierarchies	from	the	root	DNS	over	the	TLD	DNS	to	the	SLD	DNS
server.	The	root	and	the	TLD	DNS	servers	cannot	fully	resolve	full	domain	DNS

queries	such	as	www.centos7.home	and	instead	will	resolve	the	correct	address
of	the	next	DNS	hierarchy.	This	system	ensures	that	the	root	DNS	will	always
find	the	correct	TLD	DNS	server	address	and	the	TLD	DNS	server	will	always
send	the	request	to	the	right	SLD	DNS	which	has	the	correct	zone	file	and	is
finally	able	to	answer	the	requested	DNS	query.

So	what	did	we	learn	from	this	experience?

As	we	have	learned,	a	zone	file	is	a	simple	text	file	that	consists	of	directives	and
resource	records	and	can	look	quite	complicated	as	it	contains	a	lot	of	two-letter
abbreviations.	Remember,	you	need	to	set	up	a	zone	file	pair	(forward	and
reverse)	on	a	base	domain	level	(for	example,	centos7.home)	for	all	the
hostnames	and	services	running	under	it	(for	example,	www,	host1,	api,	and	so
on).	After	installing	the	named	DNS	server	(which	is	part	of	the	Berkeley
Internet	Name	Domain	(BIND)	package),	we	made	a	copy	of	the	original	main
configuration	file	and	changed	the	default	listening	port	from	53	to	8053	(as
unbound	is	already	listening	on	port	53)	but	kept	it	listening	to	localhost	only,
and	disabled	IPv6	to	keep	compatibility	with	the	other	major	DNS	servers	(as
IPv6	support	is	still	limited	on	the	Internet).	Also,	here	we	disabled	recursion
because	our	BIND	DNS	server	had	to	be	authoritative-only,	which	means	that	it
is	not	allowed	to	forward	DNS	requests	to	other	remote	DNS	servers	when	it
could	not	resolve	the	query	from	its	own	zone	records.

Then	we	began	creating	and	customizing	our	own	forward	DNS	zone	file	with
the	filename	convention	varnamed/<domain>.<toplevel	domain>.db.	This	file
is	opened	with	the	$TTL	control	statement,	which	stands	for	Time	to	Live	and
which	provides	other	nameservers	with	a	time	value	that	determines	how	long
they	can	cache	the	records	from	this	zone.	This	directive,	as	many	others,	is
defined	using	seconds	as	the	default	time	unit,	but	you	can	also	use	other	units
using	BIND	specific	short	forms	to	indicate	minutes	(m),	hours	(h),	days	(d),	and
weeks	(w),	as	we	did	in	our	example	(3h).	Following	this,	we	then	provided	a
Start	of	Authority	(SOA)	record.	This	record	contains	specific	information
about	the	zone	as	a	whole.	This	begins	with	the	zone	name	(@),	a	specification	of
the	zone	class	(IN),	the	FQDN	of	this	nameserver	in	the	format
hostname.domain.TLD.,	and	an	e-mail	address	of	the	zone	administrator.	This
latter	value	is	typically	in	the	form	hostmaster.hostname.domain.TLD.	and	it	is
formed	by	replacing	the	typical	@	symbol	with	a	dot	(.).	Having	done	this,	it	was
then	a	matter	of	opening	the	brackets	to	assign	the	zone's	serial	number,	refresh

value,	retry	value,	expire	value,	and	negative	caching	time-to-live	value.
These	directives	can	be	summarized	as	follows:

The	serial-number	value	is	a	numeric	value,	typically	taking	the	form	of
the	date	in	reverse	(YYYYMMDD)	with	an	additional	value	(VV),	which	is
incremented	every	time	the	zone	file	is	modified	or	updated,	in	order	to
indicate	that	it	is	time	for	the	named	service	to	reload	the	zone.	The	value
VV	typically	starts	at	00,	and	the	next	time	you	modify	this	file,	simply
increment	it	to	01,	02,	03,	and	so	on.
The	time-to-refresh	value	determines	how	frequently	the	secondary	or
slave	nameservers	will	ask	the	primary	nameserver	if	any	changes	have
been	made	to	the	zone.
The	time-to-retry	value	determines	how	frequently	the	secondary	or
slave	nameservers	should	check	the	primary	server	after	the	serial	number
has	failed.	If	a	failure	has	occurred	during	the	time	frame	specified	by	the
time-to-expire	value	elapses,	the	secondary	nameservers	will	stop
responding	as	an	authority	for	requests.
The	minimum-TTL	value	determines	how	long	the	other	nameservers	can
cache	negative	responses.

Having	completed	this	section	and	having	closed	the	corresponding	bracket,	we
then	proceeded	to	add	the	authoritative	nameserver	information	(NS)	with	the	IN
NS	<FQDN	of	the	nameserver>	definition.	Typically	speaking,	you	will	have	at
least	two,	if	not	three,	nameservers	(put	each	nameserver's	FQDN	in	a	new	IN
NS	line).	However,	it	is	possible	to	set	only	one	nameserver,	which	is	particularly
useful	if	you	are	running	the	server	in	an	office	or	a	home	environment	and
would	like	to	enjoy	the	benefit	of	local	name	resolution,	such	as	.home,	.lan,	or
.dev.	The	next	stage	then	required	us	to	include	a	reference	for	the	Mail
eXchanger	(MX)	records	in	order	for	us	to	specify	a	mail	server	for	the	zone.
The	format	is	IN	MX	<priority>	<FQDN	of	your	mailserver>.	The	priority
becomes	important	if	you	define	more	than	one	mail	server	(each	in	its	separate
IN	MX	line)—the	lower	the	number,	the	higher	the	priority.	In	this	respect,	a
secondary	mail	server	should	have	a	higher	value.

Note

In	the	SOA,	NS	and	MX	lines	we	already	referenced	hostnames	which	aren't	defined
as	an	IP	mapping	yet	(A	record).	We	could	do	this	because	the	zone	file	is	not

processed	sequentially.	But	do	not	forget	to	create	corresponding	A	lines	for	each
hostname	later.

Depending	on	your	needs,	you	may	also	intend	to	use	your	name	server	as	your
mail	server	(then	you	would	write	instead	MX	10	ns1.centos7.home.),	although
you	may	have	another	server	dedicated	to	that	role	as	shown	in	the	example.

Following	this,	it	was	then	a	matter	of	creating	the	appropriate	A	records	(A	for
address)	and	assigning	the	appropriate	IP	address	to	the	values	shown.	This	is
the	heart	of	any	domain	name	resolution	requests	to	the	server.	An	A	record	is
used	for	linking	an	FQDN	to	an	IP	address,	but	much	of	the	preceding	settings
will	be	based	on	your	exact	needs.	Here	you	can	define	all	the	local	host	names
you	want	to	map	in	your	network.	As	we	have	already	used	and	referenced	some
domain	names	before	in	the	zone	file	such	as	the	nameserver	or	mailserver	we
would	begin	with	these.	Afterwards,	we	defined	all	the	hostnames	to	IP	address
mappings	for	all	public	available	and	afterwards	our	internal	clients.	Remember
that	when	using	the	A	records	you	can	have	multiple	mappings	of	the	same	IP
address	to	different	hostnames.	For	example,	if	you	do	not	have	dedicated
servers	for	every	service	in	your	network	but	rather	one	server	running	all	your
DNS,	mail,	web,	and	ftp	services,	you	can	write	the	following	lines	instead:

ns1								IN	A	192.168.1.7

mailhost			IN	A	192.168.1.7

www								IN	A	192.168.1.7

ftp								IN	A	192.168.1.7

You	can	also	use	a	canonical	name	(CNAME)	record	for	this	task,	which	is	used	to
assign	an	alias	to	an	existing	A	record.	Arguably,	the	CNAME	value	make	your
DNS	data	easier	to	manage	by	pointing	back	to	an	A	record.	So	if	you	ever
consider	the	need	to	change	the	IP	address	of	the	A	record,	all	your	CNAME	records
pointed	to	that	record	automatically.	However,	and	as	this	recipe	has	tried	to
show,	the	alternative	solution	is	to	have	multiple	A	records,	which	implies	the
need	for	multiple	updates	in	order	to	change	the	IP	address.

At	this	stage	of	the	recipe,	we	then	turned	our	attention	towards	the	reverse	DNS
zone.	As	with	the	forward	zone	file,	the	reverse	zone	files	also	have	a	special
naming	convention	varnamed/db.<C-Class	of	our	search	IP	in	reverse
order>.	Naming	your	reverse	zone	file	like	db.1.168.192	can	look	strange	first
but	makes	sense	when	you	look	at	how	reverse	lookup	works.	It	starts	from	the

highest	node	(in	our	example	192,	which	corresponds	to	the	root	domain	in	the
forward	zone	file)	and	traverses	its	way	down	from	it.	As	you	see,	the	content
we	put	in	this	file	has	some	similarities	between	the	directives	and	the	resources
used	in	the	forward	zone	file.	However,	it	is	important	to	remember	that	reverse
DNS	is	wholly	separate	and	distinct	from	forward	DNS.

The	reverse	DNS	zone	is	designed	to	assist	in	the	conversion	of	an	IP	address	to
a	domain	name.	This	can	be	done	by	using	the	Pointer	Resource	Record	(PTR)
which	assigns	unique	IP	addresses	to	one	or	more	host	names.	For	this	reason,
you	must	ensure	that	a	unique	PTR	record	exists	for	every	A	record.	Every
reverse	zone	file	collects	IP	to	hostname	translations	for	a	complete	Class	C
address	range	(the	first	three	dotted	numbers,	for	example,	192.168.1).	The	last
octets	of	such	an	IP	range	are	all	the	hostnames	which	can	be	defined	within
such	a	file.	Remember,	the	IP	address	value	for	the	first	column	in	a	PTR	record
should	only	show	this	last	octet.	For	example,	the	line	9	IN	PTR
www.centos7.home.	in	the	reverse	zone	file	db.1.168.192	will	be	able	to
resolve	any	reverse	IP	address	requests	of	192.168.1.9	to	the	domain	value
www.centos7.home.

Having	created	our	forward	and	reverse	zone	files	in	this	recipe,	we	then
completed	the	configuration	of	the	named	service	by	adding	our	new	zones	to
our	BIND	server	in	order	to	start	our	own	domain	name	service	resolving	local
domain	names	of	our	network.	In	these	new	appended	forward	and	reverse	zone
definition	blocks,	we	defined	that	we	are	the	master	zone	holder	and	also
specified	update-policy	local;	because	this	is	needed	if	we	want	to	use	the
nsupdate	command	to	update	our	zones	dynamically	from	the	localhost	(see
later).	You	may	add	unlimited	zone	pairs,	but	remember	that	each	forward	or
reverse	zone	definition	must	be	given	a	single	zone	entry	in	curly	brackets.

In	summary,	we	can	say	that	forward	and	reverse	zone	files	are	defined	on	a
single	base	domain	name	basis,	one	base	domain	gets	one	forward	zone	file.	For
reverse	zone	files,	it's	a	bit	different	because	we	are	working	with	IP	addresses.
We	create	one	zone	file	based	on	the	Class	C	address	range	of	the	network
address	of	our	domain	and	here	the	last	octet	is	called	the	hostname,	for	which
we	define	our	mappings	in	such	a	specific	file.

BIND	is	a	big	subject	and	there	is	a	lot	more	to	learn	as	this	recipe	has	only
served	to	introduce	you	to	the	subject.	In	most	cases,	you	may	even	find	that
your	initial	learning	period	will	become	known	as	a	process	of	trial	and	error,

your	initial	learning	period	will	become	known	as	a	process	of	trial	and	error,
but	it	will	improve.	Remember,	practice	makes	perfect	and	if	you	do	create
additional	forward	zones,	always	reference	them	in	the	reverse	zone	file.

There's	more...
Having	created	and	added	your	zones	to	your	BIND	server,	you	are	now	able	to
test	your	configuration.	To	do	this,	you	can	use	the	host,	dig	or	nslookup
command	to	resolve	internal	hostnames	from	localhost	only.	For	example,	for
testing	forward	DNS	resolution	we	can	use	the	dig	command	by	specifying	that
our	DNS	server	is	running	on	localhost	with	port	8053:	dig	-p	8053
@127.0.0.1	client2.centos7.home.	This	should	finish	DNS	lookup
successfully	and	return	the	following	line	(output	is	truncated):

;;	ANSWER	SECTION:

client2.centos7.home.		10800		IN		A		192.168.1.12

For	reverse	lookup,	you	will	use	an	IP	address	instead	(in	this	instance,	the	IP
address	used	should	correspond	to	a	domain	for	which	you	have	configured
reverse	DNS):	nslookup	-port=8053	192.168.1.12	127.0.0.1.	As	we	have
configured	BIND	as	an	authoritative-only	DNS	server,	any	DNS	request	which
is	outside	the	local	records	of	our	zone	should	not	be	able	to	get	fully	resolved.
To	test	this	use	dig	-p	8053	@127.0.0.1	www.google.com	which	should	return
the	status	REFUSED	and	WARNING:	recursion	requested	but	not	available
message.

For	security	reasons,	we	restricted	our	BIND	server	to	localhost	only	and	did	not
allow	it	to	connect	to	other	DNS	servers.	Therefore	you	cannot	use	it	as	your
only	DNS	solution	for	your	private	network.	Instead,	in	the	next	recipe,	we	will
learn	how	to	combine	Unbound	with	BIND	to	create	an	integrated	and	very
secure	all-in-one	DNS	server	solution.	But	if	you	don't	want	to	do	this	and	use
BIND	as	your	single	and	full	authoritative	DNS	server	solution	(which	is	not
recommended	on	CentOS	7	anymore),	you	can	do	this	by	disabling	or
uninstalling	Unbound,	restoring	the	original	named.conf.BAK	configuration	file,
and	enabling	the	following	directives	in	the	BIND	configuration	file:	allow-
query	{localhost;192.168.1.0/24;};	(which	enables	the	complete
192.168.1.0/24	network	to	make	DNS	requests),	listen-on	port	53	{any;};
(listen	for	requests	on	any	network),	listen-on-v6	port	8053	{	none;	};	(for
disabling	IPv6).	If	you	want	BIND	to	be	forwarding	everything,	which	it	is	not
authoritative	for,	instead	of	using	recursion	to	find	out	the	answer,	add	the
following	directives	as	well	(in	this	example	we	use	the	official	Google	DNS
servers	for	any	forwarding	requests,	but	you	can	change	this	to	fit	your	needs):

forwarders	{	8.8.8.8;};forward	only;.	Then	restart	the	bind	service.

Creating	an	integrated	nameserver
solution
So	far	in	this	chapter,	we	used	Unbound	as	a	caching-only	DNS	server	solution
because	it	is	very	secure	and	fast,	and	BIND	as	our	authoritative-only	DNS
server	because	its	zone	management	is	highly	configurable	and	customizable.
BIND	has	been	around	for	a	long	time	and	is	the	most	used	DNS	software	ever.
However,	a	number	of	critical	bugs	have	been	found	(and	luckily	fixed)	in	the
past.	Here	in	this	recipe,	we	will	combine	Unbound	with	BIND	to	get	the	best	of
both	worlds:	Only	the	very	secure	Unbound	service	will	be	directly	exposed	to
your	private	network	and	can	take	and	serve	DNS	queries	from	your	clients.	The
BIND	service	stays	bound	to	localhost	only	as	it	was	configured	in	a	former
recipe	and	is	only	allowed	to	resolve	internal	hostnames	and	does	not	have	direct
access	to	the	Internet	or	your	clients.	If	a	client	connects	to	your	Unbound
service	and	requests	to	resolve	an	internal	hostname	from	your	private	network,
Unbound	will	query	the	BIND	server	locally	for	the	DNS	resolution	and	cache
the	response.	On	the	other	hand,	if	a	client	requests	to	resolve	an	external
domain	name,	Unbound	itself	will	recursively	query	or	forward	other	remote
DNS	servers	and	cache	the	response.	The	integration	of	both	DNS	server
systems	makes	it	the	perfect	all-round	DNS	server	solution.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	and	a	console-based	text	editor	of	your	choice.	It	is	expected
that	a	caching-only	Unbound	server	(port	53)	and	an	authoritative-only	BIND
server	(port	8053)	have	been	installed	and	are	already	running	using	recipes
found	in	this	chapter.

How	to	do	it...
In	this	recipe,	we	will	show	you	how	to	configure	Unbound	so	it	will	be	able	to
query	our	locally	running	authoritative-only	BIND	service	whenever	a	client
requests	an	internal	hostname.	Any	other	request	should	go	out	as	a	recursive
DNS	request	to	a	remote	root	server	to	construct	an	answer:

1.	 Log	in	as	root	on	our	server	running	the	Unbound	and	BIND	service	and
open	Unbound's	main	configuration	file:

vi	etcunbound/unbound.conf

2.	 First	put	the	following	line	somewhere	in	the	server:	clause:

local-zone:	"168.192.in-addr.arpa."	nodefault

3.	 Next,	we	will	have	to	allow	Unbound	to	connect	to	localhost	which	is
disabled	by	default,	search	for	the	line	that	reads:	#	do-not-query-
localhost:	yes,	then	activate	and	set	it	to	no:

do-not-query-localhost:	no

4.	 Next,	since	our	BIND	server	is	not	configured	using	DNSSEC,	we	need	to
tell	Unbound	to	use	it	anyway	(Unbound	by	default	refuses	to	connect	to
DNS	servers	not	using	DNSSEC).	Search	for	the	line	that	starts	with	#
domain-insecure:	"example.com",	then	activate	it	and	change	it	so	it
reads	as	follows:

domain-insecure:	"centos7.home."

domain-insecure:	"168.192.in-addr.arpa."

5.	 Next,	we	need	to	tell	Unbound	to	forward	all	the	requests	for	our	internal
domain	centos7.home.	to	the	locally	running	BIND	server	(on	port	8053).
Append	the	following	at	the	file's	end:

stub-zone:

						name:	"centos7.home."

						stub-addr:	127.0.0.1@8053

6.	 Also,	we	need	to	tell	Unbound	to	do	the	same	for	any	reverse	lookup	to	our
internal	domain	using	BIND:

stub-zone:

						name:	"1.168.192.in-addr.arpa."

						stub-addr:	127.0.0.1@8053

7.	 Save	and	close	the	file,	and	then	restart	the	Unbound	service:

unbound-checkconf	&&	systemctl	restart	unbound

How	it	works
Congratulations!	You	now	have	a	full	authoritative	and	very	secure	DNS	server
solution	using	an	integrated	approach	combining	all	the	good	parts	from
Unbound	and	BIND.	In	this	recipe,	we	have	shown	you	how	to	configure	the
Unbound	service	using	stub-zones	to	connect	to	an	internally	running	BIND
service	for	both	forward	and	reverse	requests.	A	stub-zone	is	a	special	Unbound
feature	to	configure	authoritative	data	to	be	used	that	cannot	be	accessed	using
the	public	Internet	servers.	Its	name	field	defines	the	zone	name	for	which
Unbound	will	forward	any	incoming	DNS	requests	and	the	stub-addr	field
configures	the	location	(IP	address	and	a	port)	of	the	DNS	server	to	access;	in
our	example,	this	is	the	locally	running	BIND	server	on	port	8053.	For	Unbound
to	be	able	to	connect	to	the	localhost,	we	first	had	to	allow	this	using	the	do-
not-query-localhost:	no	directive,	had	to	mark	our	forward	and	reverse
domain	as	being	insecure,	and	also	had	to	define	a	new	local-zone,	which	is
necessary	that	Unbound	knows	that	clients	can	send	queries	to	a	stub-zone
authoritative	server.

There's	more...
In	order	to	test	our	new	Unbound/BIND	DNS	cluster,	make	one	public	and	one
internal	hostname	DNS	request	to	the	Unbound	service	from	another	computer
in	the	same	network	(you	can	also	run	similar	tests	locally	on	the	DNS	server
itself).	If	our	Unbound/BIND	DNS	cluster	has	the	IP	192.168.1.7,	you	should
be	able	to	get	correct	answers	for	both	dig	@192.168.1.7	www.packtpub.com
and	dig	@192.168.1.7	client1.centos7.home	from	any	other	computer	in
your	network.

If	you	have	to	troubleshoot	service	problems	or	need	to	monitor	the	DNS	queries
of	your	new	Unbound/BIND	DNS	server,	you	can	configure	logging	parameters.
For	BIND,	in	the	main	configuration	file	named.conf	you	can	set	the	verbosity
of	the	logging	output	(or	log	level).	This	parameter	is	called	severity	and	can
be	found	within	the	logging	directive.	It	is	already	set	to	dynamic;	which	gives
the	highest	amount	of	logging	messages	possible.	You	can	then	read	your
current	log	using	tail	-f	varnamed/data/named.run.	For	Unbound,	you	can
set	the	level	of	verbosity	in	its	main	configuration	file	unbound.conf	using	the
verbosity	directive	which	is	set	to	the	lowest	level	of	1	but	can	be	increased	to
5.	To	learn	more	about	the	different	levels,	use	man	unbound.conf.	Use
journald	to	read	the	Unbound	logging	information	using	the	command
journalctl	-f	-u	unbound.service	(press	Ctrl+c	key	to	exit	the	command).

We	can	not	only	log	the	system	and	service	information	but	can	also	enable
query	logs.	For	Unbound	just	use	a	verbosity	of	3	or	above	to	record	query
information.	For	BIND,	in	order	to	activate	the	query	log	(query	output	will	go
to	the	log	file	named.run),	use	the	command	rndc	querylog	on	(to	turn	it	off,
use	rndc	querylog	off).	Remember	to	turn	off	any	excessive	logging
information,	such	as	the	query	log,	when	configuring	your	DNS	server	on	a
productive	system	as	it	can	decrease	your	service's	performance.	You	can	also
install	other	third-party	tools	such	as	dnstop	(from	the	EPEL	repository)	to
monitor	your	DNS	activity.

Populating	the	domain
In	this	recipe,	we	will	show	you	how	you	can	quickly	add	new	local	domain
record	entries	to	your	authoritative	BIND	server	which	are	currently	unknown	to
your	nameserver.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	and	a	console-based	text	editor	of	your	choice.	It	is	expected
that	Unbound	and	BIND	have	both	been	installed	and	are	already	running,	and
that	you	have	read	and	applied	the	zone	recipes	in	this	chapter	and	have	prepared
the	required	forward	and	reverse	zone	files	for	resolving	hostnames	of	your
private	network.

How	to	do	it...
If	you	want	to	add	new	domain	names	to	the	IP	address	mappings	to	your	DNS
server,	for	example	for	new	or	unknown	hosts	in	your	local	network,	you	have
two	alternatives.	Since	we	have	already	created	zone	files	for	our	local	network,
we	can	simply	add	new	A	(and/or	CNAME)	and	corresponding	PTR	entries	for	every
new	subdomain	within	our	base	domain	name	into	our	forward	and	reverse	zone
file	configuration	using	our	text	editor	of	choice.	Alternatively,	we	can	use	the
nsupdate	command-line	tool	to	add	those	records	interactively	without	the	need
to	restart	the	DNS	server.	In	this	section,	we	will	show	you	how	to	prepare	and
work	with	the	nsupdate	tool.	In	our	example,	we	will	add	a	new	subdomain
client4.centos7.home	for	a	computer	with	the	IP	address	192.168.1.14	to	our
DNS	server's	zone:

1.	 Log	in	as	root	on	the	server	running	your	BIND	service.	Now	first	we	need
to	activate	named	to	be	allowed	to	write	into	its	zone	files	by	SELinux:

setsebool	-P	named_write_master_zones	1

2.	 Next,	we	need	to	fix	some	permission	problems	with	the	named
configuration	directory,	otherwise	nsupdate	cannot	update	our	zone	files
later:

chown	:named	varnamed	-R;	chmod	775	varnamed	-R

3.	 Since	our	BIND	server	is	running	on	port	8053,	type	the	following
command	to	start	the	interactive	nsupdate	session	locally:

nsupdate	-p	8053	-d	-l

4.	 At	the	prompt	(>),	first	connect	to	the	local	DNS	server	by	typing	the
following	(press	Return	to	finish	commands):

						local	127.0.0.1

5.	 To	add	a	new	forward	domain	to	IP	mapping	to	your	DNS	server,	type	the
following:

update	add	client4.centos7.home.	115200	A	192.168.1.14

send

6.	 Now	add	the	reverse	relationship	using	the	following	command:

update	add	14.1.168.192.in-addr.arpa.	115200	PTR	

client4.centos7.home.

send

If	both	the	update	commands'	outputs	contained	the	message	NOERROR,	press
Ctrl+c	key	to	exit	the	interactive	nsupdate	session.

7.	 Finally,	check	if	both	the	domain	and	IP	resolution	for	the	new	zone	entry
work	(this	should	also	work	remotely	through	the	Unbound	server):

dig	-p	8053	@127.0.0.1		client4.centos7.home.

nslookup	-port=8053	192.168.1.14	127.0.0.1

How	it	works…
In	this	fairly	easy	recipe,	we	showed	you	how	easily	you	can	add	new	domain
name	resolution	records	with	the	nsupdate	tool	dynamically	at	runtime	without
needing	to	restart	your	BIND	DNS	server.

So	what	did	we	learn	from	this	experience?

In	this	recipe,	we	introduced	you	to	the	nsupdate	command-line	tool	which	is	a
utility	for	making	changes	to	a	running	BIND	DNS	database	without	the	need	to
edit	the	zone	files	or	restart	the	server.	If	you	have	already	configured	the	zone
files	in	your	DNS	server,	then	this	is	the	preferred	way	to	make	changes	to	the
DNS	server.	It	has	several	options,	for	example,	you	can	connect	to	the	remote
DNS	servers	but	for	simplicity	and	for	security	reasons	we	will	only	use	and
allow	the	most	simple	form	and	only	connect	nsupdate	to	our	BIND	server
locally	(to	connect	to	a	BIND	server	remotely	using	nsupdate,	you	need	to	do
more	configuration,	such	as	generate	secure	key-pairs,	open	the	firewall,	and	so
on).

After	allowing	named	to	write	into	its	own	zone	files,	which	otherwise	is
prohibited	by	SELinux,	and	fixing	some	permission	problems	on	the	default
named	configuration	directory,	we	started	the	nsupdate	program	with	-l	for
local	connection,	and	-p	8053	to	connect	to	our	BIND	DNS	server	on	port	8053.
-d	gives	us	debug	output	which	can	be	useful	for	resolving	any	problems.	We
then	got	prompted	by	an	interactive	shell	where	we	could	run	BIND	specific
update	commands.	First	we	set	local	127.0.0.1	which	connects	to	our	local
server,	than	we	used	the	commands	update	add	to	add	a	new	forward	A	record
to	our	running	DNS	server.	The	syntax	is	similar	to	defining	records	in	the	zone
files.	Here	we	used	the	line	update	add	<domain-name>	<TTL>	<type>	<IP
address>	to	add	a	new	A	record	with	a	TTL	of	three	days	(115200	seconds)	for
the	domain	client4.centos7.home	to	resolve	to	the	IP	address	192.168.1.14.
The	next	line	was	used	to	config	some	reverse	resolution	rules	for	our	new
domain	and	which	adds	the	domain	name	as	a	PTR	entry	into	our	reverse	zone.
Here	it	is	important	to	note	that	you	need	to	define	the	domain	part	of	the	reverse
update	add	rule	the	following	way:	<host	name	for	the	rule>.<reverse	C-
class>.in-addr.arpa.	To	finally	execute	our	commands	and	make	them
permanent	in	our	DNS	server's	database,	without	the	need	to	restart	the	server,

we	used	the	send	command	for	both	the	reverse	and	forward	commands
separately	since	they	target	different	zones.	Finally,	we	tested	if	the	new	entries
into	the	DNS	server's	zone	files	were	working	by	querying	the	BIND	server.

Building	a	secondary	(slave)	DNS
server
To	guarantee	high-availability	in	your	network,	it	can	be	useful	to	operate	more
than	one	DNS	server	in	your	environment	to	catch	up	with	any	server	failures.
This	is	particularly	true	if	you	run	a	public	DNS	server	where	continuous	access
to	the	service	is	crucial	and	where	it	is	not	uncommon	to	have	five	and	more
DNS	servers	at	once.	Since	configuring	and	managing	multiple	DNS	servers	can
be	time	consuming,	the	BIND	DNS	server	uses	the	feature	of	transferring	zone
files	between	the	nodes	so	that	every	DNS	server	has	the	same	domain	resolving
and	configuration	information.	In	order	to	do	this,	we	need	to	define	one	primary
and	one	or	more	secondary	or	slave	DNS	servers.	Then	we	only	have	to	adjust
our	zone	file	once	on	the	primary	server	which	will	transfer	the	current	version
to	all	our	secondary	servers,	keeping	everything	consistent	and	up-to-date.	For	a
client	it	will	then	make	no	difference	which	DNS	server	they	are	connecting	to.

Getting	ready
To	complete	this	recipe,	you	will	require	at	least	two	CentOS	7	servers	in	the
same	network	which	can	see	and	ping	each	other.	An	Internet	connection	will	be
required	to	download	and	install	the	BIND	server	software	on	all	the	computers
we	want	to	include	in	our	DNS	server	farm.	In	this	example,	we	have	two
servers,	192.168.1.7	which	is	already	installed	and	configured	as	a	BIND
server,	and	192.168.1.15	which	will	be	our	second	BIND	server	within	the
subnet	192.168.1.0/24.	You	should	also	have	read	and	applied	the	zone	file
recipe	from	this	chapter	and	created	a	forward	and	reverse	zone	file	because	this
is	what	we	want	to	transfer	between	DNS	servers.

How	to	do	it...
We	begin	this	recipe	by	installing	BIND	on	every	CentOS	7	computer	we	want
to	include	in	our	BIND	DNS	server	cluster.	To	do	this,	follow	the	recipe	Setting
up	an	authoritative-only	DNS	server	for	all	the	remaining	systems.	Before	we
can	start,	we	need	to	define	which	server	will	be	our	primary	DNS	server.	For
simplicity	in	our	example,	we	will	choose	the	server	with	the	IP	address
192.168.1.7.	Now	let's	make	all	our	DNS	server	nodes	aware	of	their	role.

Changes	to	the	primary	DNS	server
1.	 Let's	log	in	as	root	on	the	primary	server	and	open	its	main	configuration:

vi	etcnamed.conf

2.	 Now	we	define	which	secondary	DNS	server(s)	will	be	allowed	to	receive
the	zone	files	at	all,	write	the	following	command	somewhere	between	the
options	curly	brackets	in	a	new	line	(we	only	have	one	secondary	DNS
server	with	the	IP	address	192.168.1.15,	change	accordingly):

allow-transfer	{	192.168.1.15;	};

notify	yes;

3.	 Also,	we	must	allow	the	other	nameservers	to	connect	to	our	primary
nameserver.	In	order	to	do	this,	you	need	to	change	your	listen-on
directive	to	include	the	DNS	server's	primary	network	interface	(in	our
example	192.168.1.7	,	so	change	appropriately):

listen-on	port	8053	{	127.0.0.1;192.168.1.7;	};

4.	 Save	and	close	the	file.	Now	open	the	new	port	8053	in	your	server's
firewall	(or	create	a	firewalld	service	for	it,	see	Chapter	6,	Providing
Security):

firewall-cmd	--permanent	--zone=public	--add-port=8053/tcp	--

add-port=8053/udp;firewall-cmd	--reload

5.	 Save	and	close	the	file.	Next,	update	the	zone	files	we	created	earlier	to
include	the	IP	addresses	of	all	the	new	nameservers	we	have	available	in
the	system.	Change	both	the	forward	and	reverse	zone	files,
varnamed/centos7.home.db	and	varnamed/db.1.168.192,	to	include	our
new	secondary	DNS	server.	In	the	forward	zone	file,	add	the	following
lines	(you	can	also	use	the	nsupdate	program	to	do	this)	into	the

appropriate	sections:

NS		ns2.centos7.home.

ns2		A			192.168.1.15

6.	 In	the	reverse	zone	file,	add	instead	into	the	appropriate	sections:

NS		ns2.centos7.home.

15	PTR	ns2.centos7.home.

7.	 Finally,	restart	BIND	and	recheck	the	configuration	file:

named-checkconf	&&	systemctl	restart	named

Changes	to	the	secondary	DNS	server(s)

For	simplicity	and	to	demonstrate,	just	install	named	on	any	server	you	want	to
use	as	a	BIND	slave	(we	only	show	the	important	configuration	here):

1.	 Log	in	to	the	new	server	as	root,	install	BIND,	and	open	its	main
configuration:

yum	install	bind;	vi	etcnamed.conf

2.	 Now	locate	the	line	include	etcnamed.rfc1912.zones;.	Immediately
following	this	line,	create	a	space	for	your	work	and	add	the	following
zones	(replace	the	zone	and	file	names	appropriately):

	zone	"centos7.home"	IN	{

				type	slave;

				masters	port	8053	{	192.168.1.7;	};

				file	"varnamed/centos7.home.db";

};

	zone	"1.168.192.in-addr.arpa"	IN	{

				type	slave;

				masters	port	8053{	192.168.1.7;	};

				file	"varnamed/db.1.168.192.db";

	};

3.	 Save	and	close	the	file.	Then	fix	some	incorrect	BIND	folder	permissions
and	enable	named	to	write	into	its	zone	file	directory	before	restarting
BIND:

chown	:named	varnamed	-R;	chmod	775	varnamed	-R

setsebool	-P	named_write_master_zones	1

named-checkconf	&&	systemctl	restart	named

4.	 Now	initiate	a	new	zone	transfer	using:

rndc	refresh	centos7.home.

5.	 After	waiting	a	while,	to	test	if	our	secondary	DNS	server	is	working	as
expected,	check	if	the	master	zone	files	have	been	transferred:

ls	varnamed/*.db

6.	 Finally,	we	can	now	test	if	we	can	query	our	local	domain	on	the	secondary
DNS	server	too:

dig	@127.0.0.1	client2.centos7.home.

How	it	works...
In	this	recipe,	we	showed	you	how	to	set	up	secondary	BIND	servers	in	your
network	which	can	help	in	increasing	the	stability	and	availability	of	your	DNS
server	system.

So	what	did	we	learn	from	this	experience?

We	started	our	journey	by	deciding	which	of	our	servers	should	be	the	primary
and	which	should	be	the	slave	DNS	servers.	Then	we	opened	the	BIND	main
configuration	file	on	the	primary	server	and	introduced	two	lines	of	code	to
configure	our	server	to	be	the	head	of	our	DNS	cluster.	The	allow-transfer
directive	defines	to	which	clients	we	want	to	transfer	our	updated	zone	files
while	the	notify	yes	directive	enables	automatic	transfer	when	any	changes	to
the	zone	files	happen.	If	you	have	got	several	secondary	BIND	DNS	servers,	you
can	add	more	than	one	IP	address	into	the	allow-transfer	directive,	separated
by	semicolons.	Then	we	opened	our	zone	files	we	created	in	a	former	recipe	in
this	chapter	and	introduced	a	new	line	IN	NS	<IP	address>	which	defines	the
IP	address	of	our	secondary	DNS	servers	we	need	to	be	aware	on	every	DNS
node	in	our	system.	If	we	have	got	multiple	servers,	then	we	introduce	multiple
IN	NS	lines.	Finally,	we	introduced	a	small	comment	to	easily	check	the
successful	zone	file	transfer	on	our	secondary	servers.

Afterwards,	we	configured	our	slave	DNS	server(s).	Here	we	introduced	the
same	zone	file	definitions	as	on	the	primary	server's	BIND	configuration,	with
the	exceptions	that	we	used	type	slave	instead	of	master	to	denote	we	are	a
secondary	DNS	server	and	will	get	a	copy	of	the	zone	files	from	the	master	node
by	defining	the	primary	DNS	server's	IP	address	using	the	masters	directive
(please	do	not	forget	that	our	master	BIND	is	listening	on	the	non-default	port
8053	in	our	example).

Since	we	had	not	created	or	copied	the	zone	files	ourselves	on	the	slave	DNS
server,	it	was	then	easy	to	check	if	the	zone	file	transfer	had	been	successful
after	restarting	the	BIND	service	using	the	ls	command.	Finally,	we	verified	the
transferred	zone	file	content	by	running	test	queries	using	dig	or	nslookup	to	see
if	we	could	resolve	the	same	local	hostnames	on	our	secondary	DNS	server.
Remember	if	you	later	make	changes	to	your	master's	zone	files	you	have	to

increase	their	serial	number	in	order	that	those	changes	get	transferred	to	all
your	slaves.

Chapter	10.	Working	with	Databases
In	this	chapter,	we	will	cover:

Installing	a	MariaDB	database	server
Managing	a	MariaDB	database
Allowing	remote	access	to	a	MariaDB	server
Installing	a	PostgreSQL	server	and	managing	a	database
Configuring	remote	access	to	a	PostgresSQL
Installing	phpMyAdmin	and	phpPgAdmin

Introduction
This	chapter	is	a	collection	of	recipes	that	deliver	the	necessary	steps	to
implement	and	maintain	two	of	the	most	popular	database	management	systems
in	the	Linux	world.	The	need	for	data	is	everywhere	and	is	a	must	have	service
for	almost	any	server,	and	this	chapter	provides	the	starting	point	required	to
deploy	these	database	systems	in	any	environment.

Installing	a	MariaDB	database	server
Supporting	over	70	collations,	more	than	30	character	sets,	multiple	storage
engines,	and	deployment	in	virtualized	environment,	MySQL	is	a	mission-
critical	database	server	that	is	used	by	production	servers	all	over	the	world.	It	is
capable	of	hosting	a	vast	number	of	individual	databases	and	it	can	provide
support	for	various	roles	across	your	entire	network.	MySQL	server	has	become
synonymous	with	the	World	Wide	Web	(WWW),	is	used	by	desktop	software,
extends	local	services,	and	is	one	of	the	world's	most	popular	relational	database
systems.	The	purpose	of	this	recipe	is	to	show	you	how	to	download,	install,	and
lockdown	MariaDB,	which	is	the	default	implementation	of	MySQL	in	CentOS
7.	MariaDB	is	open	source	and	fully	compatible	with	MySQL	and	adds	several
new	features;	for	example,	a	non-blocking	client	API	library,	new	storage
engines	with	better	performance,	enhanced	server	status	variables,	and
replication.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet	in	order	to	download	additional	packages.	It	is
expected	that	your	server	will	be	using	a	static	IP	address.

How	to	do	it...
As	the	MariaDB	Database	Management	System	(DBMS)	is	not	installed	by
default	on	CentOS	7,	we	will	start	this	recipe	by	installing	the	required	packages.

1.	 To	begin,	log	in	as	root	and	type	the	following	command	to	install	the
required	packages:

yum	install	mariadb-server	mariadb

2.	 When	complete,	ensure	the	service	starts	at	boot	before	starting	the	service:

systemctl	enable	mariadb.service	&&	systemctl	start	

mariadb.service

3.	 Finally,	begin	the	secure	installation	process	with	the	following	command:

mysql_secure_installation

4.	 When	you	first	run	the	previous	command,	you	will	be	asked	to	provide	a
password	but	as	this	value	has	not	been	set,	press	the	Enter	key	to	represent
the	value	(blank)	none.

5.	 Now	you	will	be	asked	a	number	of	simple	questions	which	will	help	you	in
the	process	of	hardening	your	MariaDB	DBMS	system.	It	is	a	good	advice
to	choose	Yes	(Y)	to	every	question	for	maximum	security	unless	you	are
already	a	MariaDB	expert	and	really	require	a	certain	feature.

6.	 Finally,	test	if	you	can	connect	and	login	to	the	MariaDB	service	locally
using	the	MariaDB	command-line	client	called	mysql.	The	test	passes	if	the
following	command	outputs	all	the	MariaDB	user	names	together	with	their
associated	hosts	known	to	the	MariaDB	server	(enter	the	administrator	root
password	you	set	in	the	last	step	when	prompted):

echo	"select	User,Host	from	user"	|	mysql	-u	root	-p	mysql

How	it	works...
MariaDB	is	a	fast,	efficient,	multithreaded,	and	robust	SQL	database	server.	It
supports	multiple	users	and	provides	access	to	a	number	of	storage	engines,	and
by	following	a	few	short	steps,	you	now	know	how	to	install,	secure,	and	login
to	your	MariaDB	server.

So	what	did	we	learn	from	this	experience?

We	started	the	recipe	by	installing	the	necessary	package	for	the	MariaDB	server
(mariadb-server)	and	also	the	client	shell	interface	(mariadb)	for	controlling
and	querying	the	server.	Having	done	this,	we	then	proceeded	to	ensure	that	the
MariaDB	daemon	(mariadb.service)	would	start	during	the	boot	process	before
we	actually	started	it.	At	this	point	we	had	a	working	installation,	but	in	order	to
ensure	that	our	installation	was	safe	we	then	invoked	the	secure	installation
script	in	order	to	guide	us	through	a	few	simple	steps	to	harden	our	basic
installation.	As	the	basic	installation	process	does	not	enable	us	to	set	a	default
password	for	the	root	user,	we	did	it	here	as	a	first	step	in	the	script,	so	we	could
be	certain	that	no	one	could	access	the	MariaDB	root	user	account	without	the
required	authorization.	We	then	discovered	that	a	typical	MariaDB	installation
maintains	an	anonymous	user.	The	purpose	of	this	is	to	allow	anyone	to	login	to
our	database	server	without	having	to	have	a	valid	user	account.	It	is	typically
used	for	testing	purposes	only,	and	unless	you	are	in	unique	circumstances	that
require	this	facility,	it	is	always	advisable	to	remove	this	feature.	Following	this,
and	to	ensure	that	the	root	user	could	not	access	our	MariaDB	server	installation,
we	then	opted	to	disallow	remote	root	access	before	removing	the	test	database
and	performing	a	reload	of	the	privilege	tables.	Finally,	we	ran	a	small	test	to	see
if	we	could	connect	to	the	database	with	the	root	user	and	query	some	data	from
the	user	table	(which	is	part	of	the	standard	mysql	database).

Having	completed	the	steps	of	the	recipe,	we	have	learned	that	the	process	of
installing	and	securing	the	MariaDB	server	is	very	simple.	Of	course,	there	are
always	more	things	that	can	be	done	in	order	to	make	the	installation	useful	but
the	purpose	of	this	recipe	was	to	show	you	that	the	most	important	part	of
installing	your	new	database	system	was	to	make	it	secure.	Remember,	the	act	of
running	mysql_secure_installation	is	recommended	for	all	MariaDB	servers
and	it	is	advisable	regardless	of	whether	you	are	building	a	development	server

or	one	that	is	used	in	a	production	environment.	As	a	server	administrator,
security	should	always	remain	your	top	priority.

Managing	a	MariaDB	database
In	this	recipe,	we	will	learn	how	to	create	a	new	database	and	database	user	for
the	MariaDB	server.	MariaDB	can	be	used	in	conjunction	with	a	wide	variety	of
graphical	tools	(for	example,	the	free	MySQL	Workbench),	but	in	situations
where	you	simply	need	to	create	a	database,	provide	an	associated	user,	and
assign	the	correct	permissions,	it	is	often	useful	to	perform	this	task	from	the
command	line.	Known	as	the	MariaDB	shell,	this	simple	interactive	and	text
based-command	line	facility	supports	the	full	range	of	SQL	commands	and
affords	both	local	and	remote	access	to	your	database	server.	The	shell	provides
you	with	complete	control	over	your	database	server,	and	for	this	reason	it
represents	the	perfect	tool	for	you	to	start	your	MariaDB	work.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system.	It	is	expected	that	a	MariaDB	server	is	already	installed	and
running	on	your	server.

How	to	do	it...
The	MariaDB	command-line	tool	supports	executing	commands	in	both	the
batch	mode	(reading	from	a	file	or	standard	input)	and	interactively	(typing	in
statements	and	waiting	for	the	results).	We	will	use	the	latter	in	this	recipe.

1.	 To	begin,	log	in	on	your	CentOS	7	server	with	any	system	user	you	like	and
type	the	following	command	in	order	to	access	the	MariaDB	server	using
the	MariaDB	shell	with	the	main	MariaDB	administration	user	called	root
(use	the	password	created	in	the	previous	recipe):

mysql	-u	root	-p

2.	 On	successful	login,	you	will	be	greeted	with	the	MariaDB	command-line
interface.	This	feature	is	signified	by	the	MariaDB	shell	prompt:

MariaDB	[(none)]>

3.	 In	this	first	step,	we	will	create	a	new	database.	To	do	this,	simply
customize	the	following	command	by	substituting	an	appropriate	value	for
the	new	<database-name>	value	using:

CREATE	DATABASE	<database-name>	CHARACTER	SET	utf8	COLLATE	

utf8_general_ci;

Note

If	this	is	your	first	introduction	to	the	MariaDB	shell,	remember	to	end	each
line	with	a	semicolon	(;)	and	press	the	Enter	key	after	typing	each
command.

4.	 Having	created	our	database,	we	will	now	create	a	MariaDB	user.	Each	user
will	consist	of	a	username	and	a	password	that	is	completely	independent	of
the	operating	system's	user.	For	reasons	of	security,	we	will	ensure	that
access	to	the	database	is	restricted	to	localhost	only.	To	proceed,	simply
customize	the	following	command	by	changing	the	values	<username>,
<password>,	and	<database-name>	to	reflect	your	needs:

GRANT	ALL	ON	<database-name>.*	TO	'<username>'@'localhost'	

IDENTIFIED	BY	'<password>'	WITH	GRANT	OPTION;

5.	 Next,	make	the	MariaDB	DBMS	aware	of	your	new	user:

FLUSH	PRIVILEGES;

6.	 Now	simply	type	the	following	command	to	exit	the	MariaDB	shell:

EXIT;

7.	 Finally,	you	can	test	the	accessibility	of	your	new	<username>	by	accessing
the	MariaDB	shell	from	the	command-line	in	the	following	way:

mysql	-u	<username>	-p

8.	 Now	back	at	the	MariaDB	shell	(MariaDB	[(none)]>),	type	the	following
commands:

SHOW	DATABASES;

EXIT;

How	it	works...
During	the	course	of	this	recipe	you	were	shown	not	only	how	to	create	a
database,	but	also	how	to	create	a	database	user.

So	what	did	we	learn	from	this	experience?

We	started	the	recipe	by	accessing	the	MariaDB	shell	as	the	root	user	with	the
mysql	command.	By	doing	this,	we	were	then	able	to	create	a	database	with	a
simple	SQL	function	called	CREATE	DATABASE,	providing	a	custom	name	for	the
<database-name>	field.	We	also	specified	utf8	as	the	character	set	of	our	new
database	together	with	a	utf8_general_ci	collation.	A	character	set	is	how	the
characters	are	encoded	in	the	database	and	a	collation	is	a	set	of	rules	for
comparing	the	characters	in	a	character	set.	For	historic	reasons	and	to	keep
MariaDB	backward-compatible	with	the	older	server	versions,	the	default
character	set	is	latin1	and	latin1_swedish_ci,	but	for	any	modern	databases
you	should	always	prefer	to	use	utf-8	instead	as	it	is	the	most	standard	and
compatible	encoding	for	international	character	sets	(non-English	alphabets).
However,	this	command	can	be	modified	to	invoke	the	need	to	check	if	a
database	name	is	already	in	use	by	using:	CREATE	DATABASE	IF	NOT	EXISTS
<database-name>.	In	this	way,	you	can	then	drop	or	remove	a	database	by	using
the	following	command:

DROP	DATABASE	IF	EXISTS	<database-name>;

Having	done	this,	it	is	simply	a	matter	of	adding	a	new	database	user	with	the
appropriate	permissions	by	running	our	GRANT	ALL	command.	Here	we	provided
<username>	with	full	privileges	via	a	defined	<password>	for	localhost.	As	a
specific	<database-name>	was	elected,	then	this	level	of	permission	will	be
restricted	to	that	particular	database	and	using	<database-name>.*	allows	us	to
specify	these	rules	to	all	the	tables	(using	the	asterisks	symbol)	in	this	database.
The	general	syntax	in	order	to	provide	a	chosen	user	with	specific	permission	is:

GRANT	[type	of	permission]	ON	<database	name>.<table	name>	TO

'<username>'@'<hostname>';

For	security	reasons,	here	in	this	recipe	we	limit	<hostname>	to	localhost	but	if
you	want	to	grant	permissions	to	remote	users	you	will	need	to	change	this	value
(see	later).	In	our	example,	we	set	[type	of	permission]	to	ALL	but	you	can

always	decide	to	minimize	the	privileges	by	providing	a	single	or	a	comma-
separated	list	of	privilege-types	offered	in	the	following	way:

GRANT	SELECT,	INSERT,	DELETE	ON	<database	name>.*	TO

'<username>'@'localhost';

Using	the	previous	technique,	here	is	a	summary	of	the	permissions	that	can	be
employed:

ALL:	Allows	the	<username>	value	with	all	available	privilege-types
CREATE:	Allows	the	<username>	value	to	create	new	tables	or	databases
DROP:	Allows	the	<username>	value	to	delete	tables	or	databases
DELETE:	Allows	the	<username>	value	to	delete	rows	from	tables
INSERT:	Allows	the	<username>	value	to	insert	rows	into	tables
SELECT:	Allows	the	<username>	value	to	read	from	tables
UPDATE:	Allows	the	<username>	value	to	update	table	rows

However,	once	the	privileges	were	granted,	the	recipe	then	showed	you	that	we
must	FLUSH	the	system	in	order	to	make	our	new	settings	available	to	the	system
itself.	It	is	important	to	note	that	all	commands	within	the	MariaDB	shell	should
end	in	a	semicolon	(;).	Having	completed	our	task,	we	simply	exit	the	console
using	the	EXIT;	statement.

MariaDB	is	an	excellent	database	system	but	like	all	services,	it	can	be	abused.
So	remain	vigilant	at	all	times,	and	by	considering	the	previous	advices,	you	can
be	confident	that	your	MariaDB	installation	will	remain	safe	and	secure.

There's	more...
Creating	a	restricted	user	is	one	way	of	providing	database	access	but	if	you
have	a	team	of	developers	who	require	constant	access	to	a	development	server,
you	may	wish	to	consider	providing	a	universal	user	who	maintains	superuser
privilege.	To	do	this,	simply	login	to	the	MariaDB	shell	with	your	administrator
user	root,	then	create	a	new	user	in	the	following	way:

GRANT	ALL	ON	.	TO	'<username>'@'localhost'	IDENTIFIED	BY	

'<password>'	WITH	GRANT	OPTION;

By	doing	this,	you	will	enable	<username>	to	add,	delete,	and	manage	databases
across	your	entire	MariaDB	server	(the	asterisks	in	.	tell	MariaDB	to	apply	the
privileges	to	all	the	databases	and	all	their	associated	tables	found	on	the
database	server),	but	given	the	range	of	administrative	features,	this	new	user
account	will	restrict	all	activities	to	localhost	only.	So	in	simple	terms,	if	you
want	to	provide	<username>	with	access	to	any	database	or	to	any	table,	always
use	an	asterisk	(*)	in	place	of	the	database	name	or	table	name.	Finally,	every
time	you	update	or	change	a	user	permission,	always	be	sure	to	use	the	FLUSH
PRIVILEGES	command	before	exiting	the	MariaDB	shell	with	the	EXIT;
command.

Reviewing	and	revoking	permissions	or	dropping	a	user

It	is	never	a	good	idea	to	keep	user	accounts	active	unless	they	are	used,	so	your
first	consideration	within	the	MariaDB	shell	(login	with	your	administrator	user
root)	will	be	to	review	their	current	status	by	typing:

SELECT	HOST,USER	FROM	mysql.user	WHERE	USER='<username>';

Having	done	this,	if	you	intend	to	REVOKE	permission(s)	or	remove	a	user	listed
here,	you	can	do	this	with	the	DROP	command.	First	of	all,	you	should	review
what	privileges	the	user	of	interest	has	by	running:

SHOW	GRANTS	FOR	'<username>'@'localhost';

You	now	have	two	options,	starting	with	the	ability	to	revoke	the	user's
privileges	as	follows:

REVOKE	ALL	PRIVILEGES,	GRANT	OPTION	FROM	'<username>'@'localhost';

Then	you	may	either	reallocate	the	privilege	using	the	formula	provided	in	the
main	recipe	or	alternatively,	you	can	decide	to	remove	the	user	by	typing:

DROP	USER	'<username>'@'localhost';

Finally,	update	all	your	privileges	the	usual	way	using	FLUSH	PRIVILEGES;
before	exiting	the	shell	EXIT;	command.

Allowing	remote	access	to	a	MariaDB
server
Unless	you	are	running	your	MariaDB	database	server	to	drive	some	local	web
applications	on	the	same	server	hardware,	most	working	environments	would	be
pretty	useless	if	remote	access	to	a	database	server	were	forbidden.	In	many	IT
surroundings	you	will	find	high-available,	centralized	dedicated	database	servers
optimized	in	hardware	(for	example,	huge	amounts	of	RAM)	and	hosting
multiple	databases	allowing	hundreds	of	parallel	connections	from	the	outside	to
the	server.	Here	in	this	recipe,	we	will	show	you	how	to	make	remote
connections	to	the	server	possible.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges.	It	is	expected	that	a	MariaDB	server	is
already	installed	and	running	and	you	have	read	and	applied	the	Managing	a
MariaDB	database	recipe	for	an	understanding	of	permissions	and	how	to	test
(local)	database	connections.

How	to	do	it...
In	our	example,	we	want	to	access	a	MariaDB	database	server	with	the	IP
address	192.168.1.12	from	a	client	computer	in	the	same	network,	with	the	IP
address	192.168.1.33.	Please	change	appropriately	to	fit	your	needs:

1.	 To	begin,	log	in	as	root	on	your	MariaDB	database	server	and	open	the
firewall	for	the	incoming	MariaDB	connections:

firewall-cmd	--permanent	--add-service=mysql	&&	firewall-cmd	--

reload

2.	 Afterwards,	we	need	to	create	a	user	account	which	can	connect	to	our
MariaDB	server	remotely	(as	we	have	prevented	root	from	doing	this	in	a
further	step	for	security	reasons),	login	your	database	server	using	the
MariaDB	command	line	interface	mysql	as	user	root	and	type	the
following	MariaDB	statement	(replacing	the	XXXX	with	a	password	of	your
choice,	also	feel	free	to	adjust	the	username	and	remote	IP	of	the	client	who
wants	to	connect	to	the	server—in	our	case	the	client	has	the	IP
192.168.1.33—accordingly):

GRANT	SELECT	ON	mysql.user	TO	'johndoe'@'192.168.1.33'	

IDENTIFIED	BY	'XXXX';

FLUSH	PRIVILEGES;EXIT;

Now	we	can	test	the	connection	from	our	client	computer	with	the	IP	address
of	192.168.1.33	in	our	network.	This	computer	needs	the	MariaDB	shell
installed	(on	a	CentOS	7	client,	install	the	package	mariadb)	and	needs	to	be
able	to	ping	the	server	running	the	MariaDB	service	(in	our	example,	the	IP
192.168.1.12).	You	can	test	connecting	to	the	server	by	using	the	following
command	(on	success,	this	will	print	out	the	content	of	the	mysql	user	table):

echo	"select	user	from	mysql.user"	|	mysql	-u	johndoe	-p	mysql	-h	

192.168.1.12

How	it	works...
We	started	our	journey	by	opening	the	standard	MariaDB	firewall	port	3306
using	the	firewalld	predefined	MariaDB	service,	which	is	disabled	by	default	on
CentOS	7.	After	this,	we	configured	which	IP	addresses	were	allowed	to	access
our	database	server,	which	is	done	on	a	database	level	using	the	MariaDB	shell.
In	our	example,	we	used	the	GRANT	SELECT	command	to	allow	the	user	johndoe
at	the	client	IP	address	192.168.1.33	and	with	the	password	in	quotes	'XXXX'	to
access	the	database	with	the	name	mysql	and	the	table	user	to	make	SELECT
queries	only.	Remember,	here	you	can	also	apply	wildcards	in	the	<hostname>
field	using	the	%	sign	(which	means	any	characters).	For	example,	for	defining
any	possible	hostname	combination	in	a	Class	C	network,	you	can	use	the	%	sign
like	so	192.168.1.%.	Granting	access	to	the	mysql.user	database	and	table	was
just	for	testing	purposes	only	and	you	should	remove	the	user	johndoe	from	this
access	permission	whenever	you	have	finished	your	tests,	using:	REVOKE	ALL
PRIVILEGES,	GRANT	OPTION	FROM	'johndoe'@'192.168.1.33';.	If	you	want
you	can	also	delete	the	user	DROP	USER	'johndoe'@'192.168.1.33';	because
we	don't	need	it	anymore.

Installing	a	PostgreSQL	server	and
managing	a	database
In	this	recipe,	we	will	not	only	learn	how	to	install	the	PostgreSQL	DBMS	on
our	server,	but	we	will	also	discover	how	to	add	a	new	user	and	create	our	first
database.	PostgreSQL	is	considered	to	be	the	most	advanced	open	source
database	system	in	the	world.	It	is	known	for	being	a	solid,	reliable,	and	well-
engineered	system	that	is	fully	capable	of	supporting	high-transaction	and
mission-critical	applications.	PostgreSQL	is	a	descendant	of	the	Ingres	database.
It	is	community-driven	and	maintained	by	a	large	collection	of	contributors	from
all	over	the	world.	It	may	not	be	as	flexible	or	as	pervasive	as	MariaDB,	but
because	PostgreSQL	is	a	very	secure	database	system	that	excels	in	data
integrity,	it	is	the	purpose	of	this	recipe	to	show	you	how	to	begin	exploring	this
forgotten	friend.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet	in	order	to	facilitate	the	download	of	additional
packages.	It	is	expected	that	your	server	will	be	using	a	static	IP	address.

How	to	do	it...
PostgreSQL	(also	known	as	Postgres)	is	an	object-relational	database
management	system.	It	supports	a	large	part	of	the	SQL	standard	and	it	can	be
extended	by	the	server	administrator	in	many	ways.	However,	in	order	to	begin,
we	must	start	by	installing	the	necessary	packages:

1.	 Start	by	logging	in	your	server	as	root	and	type:

yum	install	postgresql	postgresql-server

2.	 Having	installed	the	database	system,	we	must	now	enable	the	database
server	at	boot	by	typing:

systemctl	enable	postgresql

3.	 When	you	have	finished,	initialize	the	database	system	as	follows:

postgresql-setup	initdb

4.	 Now	complete	this	process	by	starting	the	database	server:

systemctl	start	postgresql

5.	 Now	set	a	new	initial	password	for	our	postgres	administrator	of	your
choice.	As	the	default	postgres	user	is	currently	using	peer	authentication,
we	need	to	execute	any	Postgres-related	command	with	user	postgres:

su	-	postgres	-c	"psql	--command	'\password	postgres'"

6.	 To	get	rid	of	the	requirement,	that	the	postgres	user	has	to	be	logged	in	on
a	system	user	basis	before	he	can	execute	Postgres-related	commands	such
as	psql,	and	to	allow	login	with	database	user	accounts	in	general,	we	need
to	change	the	authentication	method	for	localhost	from	peer	to	md5	in	the
Postgres	client	authentication	configuration	file.	You	can	do	this	manually
or	use	the	sed	tool	as	shown	next,	after	you	have	made	a	backup	of	the	file
first:

cp	varlib/pgsql/data/pg_hba.conf	

varlib/pgsql/data/pg_hba.conf.BAK

sed	-i	's/^\(local.*\)peer$/\1md5/g'	

varlib/pgsql/data/pg_hba.conf

7.	 Next,	we	have	to	restart	the	postgresql	service	in	order	to	apply	our
changes:

systemctl	restart	postgresql

8.	 Now	you	will	be	able	to	login	to	your	Postgres	server	with	user	postgres
without	the	need	to	login	the	postgres	Linux	system	user	first:

psql	-U	postgres

9.	 To	exit	the	shell	(postgres=#),	type	the	following	command	(followed	by
the	Return	key):

\q

10.	 We	will	now	issue	a	shell	command	to	create	a	new	database	user,	by
substituting	<username>	with	a	relevant	user	name	to	fit	your	own	needs
(type	in	a	new	password	for	the	user	when	prompted,	repeat	it,	and
afterwards	enter	the	password	for	the	administrator	user	postgres	to	apply
these	settings):

createuser	-U	postgres	-P	<username>

11.	 Now,	also	on	the	shell	create	your	first	database	and	assign	it	to	our	new
user	by	replacing	the	<database-name>	and	<username>	values	with
something	more	appropriate	to	your	needs	(enter	the	password	for	the
postgres	user):

createdb	-U	postgres	<database-name>	-O	<username>

12.	 Finally,	test	if	you	can	access	the	Postgres	server	with	your	new	user	by
printing	all	the	database	names:

psql	-U	<username>	-l

How	it	works...
PostgreSQL	is	an	Object-Relational	Database	Management	System	and	it	is
available	to	all	CentOS	servers.	Postgres	may	not	be	as	common	as	MariaDB,
but	its	architecture	and	large	array	of	features	do	make	it	an	attractive	solution
for	many	companies	concerned	with	data	integrity.

So	what	did	we	learn	from	this	experience?

We	began	this	recipe	by	installing	the	necessary	server	and	client	rpm	packages
using	yum.	Having	done	this,	we	then	proceeded	to	make	the	Postgres	system
available	at	boot	before	initializing	the	database	system	using	the	postgresql-
setup	initdb	command.	We	completed	this	process	by	starting	the	database
service.	In	the	next	stage,	we	were	then	required	to	set	the	password	for	the
Postgres	administrator	user	to	harden	the	system.	By	default,	the	postgresql
package	creates	a	new	Linux	system	user	called	postgres	(which	is	also	used	as
an	administrative	Postgres	user	account	to	access	our	Postgres	DBMS),	and	by
using	su	-	postgres	-	c	we	were	able	to	execute	the	psql	commands	as	the
postgres	user,	which	is	mandatory	upon	installation	(this	is	called	peer
authentication).

Having	set	the	admin	password,	to	have	more	like	a	MariaDB	shell-type	of	login
procedure	where	every	database	user	(including	the	administrator	postgres
user)	can	log	in	using	the	database	psql	client's	user	-U	parameter,	we	changed
this	peer	authentication	to	md5	database	password-based	authentication	for	the
localhost	in	the	pg_hba.conf	file	(see	the	next	recipe).	After	restarting	the
service,	we	then	used	Postgres's	createuser	and	createdb	command	line	tools
to	create	a	new	Postgres	user	and	connect	it	to	a	new	database	(we	needed	to
provide	the	postgres	user	with	the	-U	parameter	because	only	he	has	the
privileges	for	it).	Finally,	we	showed	you	how	to	make	a	test	connection	to	the
database	with	your	new	user	using	the	-l	flag	(which	lists	all	the	available
databases).	Also,	you	can	use	the	-d	parameter	to	connect	to	a	specific	database
using	the	syntax:	psql	-d	<database-name>	-U	<username>.

There's	more...
Instead	of	using	the	createuser	or	createdb	Postgres	command-line	tools,	as
we	have	been	showing	you	in	this	recipe,	to	create	your	databases	and	users,	you
can	also	do	the	same	using	the	Postgres	shell.	In	fact,	those	command-line	tools
are	actually	just	wrappers	around	the	Postgres	shell	commands,	and	there	is	no
effective	difference	between	the	two.	psql	is	the	primary	command-line	client
tool	for	entering	SQL	queries	or	other	commands	on	a	Postgres	server,	similar	to
the	MariaDB	shell	shown	to	you	in	another	recipe	in	this	chapter.	Here,	we	will
launch	psql	with	a	template	called	template1,	the	boilerplate	(or	default
template)	that	is	used	to	start	building	databases.	After	login	(psql	-U	postgres
template1),	and	typing	in	the	administrator	password	you	should	be	presented
with	the	interactive	Postgres	prompt	(template1=#).	Now	to	create	a	new	user	in
the	psql	shell,	type:

CREATE	USER	<username>	WITH	PASSWORD	'<password>';

To	create	a	database,	type:

CREATE	DATABASE	<database-name>;

The	option	to	grant	all	privileges	on	the	recently	created	database	to	the	new	user
is:

GRANT	ALL	ON	DATABASE	<database-name>	to	<username>;

To	exit	the	interactive	shell,	use:	\q	followed	by	pressing	the	Return	key.

Having	completed	this	recipe	you	could	say	that	you	not	only	know	how	to
install	PostgreSQL,	but	this	process	has	served	to	highlight	some	simple
architectural	differences	between	this	database	system	and	MariaDB.

Configuring	remote	access	to
PostgreSQL
In	this	recipe,	we	will	learn	how	to	configure	remote	access	to	a	Postgres	server
which	is	disabled	by	default.	Postgres	employs	a	method	called	host-based
authentication	and	it	is	the	purpose	of	this	recipe	to	introduce	you	to	its	concepts
in	order	to	provide	the	access	rights	you	need	to	run	a	safe	and	secure	database
server.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges	and	a	text	editor	of	your	choice.	It	is
expected	that	PostgreSQL	is	already	installed	and	running.

How	to	do	it...
In	the	previous	recipe,	we	have	already	modified	the	host-based	authentication
configuration	pg_hba.conf	file	using	sed	to	manage	our	Postgres's	client
authentication	from	peer	to	md5.	Here	we	will	make	changes	to	it	to	manage
remote	access	to	our	Postgres	server.

1.	 To	begin,	log	in	as	root	and	first	open	the	firewall	to	allow	any	incoming
PostgreSQL	connections	to	the	server:

firewall-cmd	--permanent	--add-service=postgresql;firewall-cmd	

--reload

2.	 Now	open	the	host-based	authentication	configuration	file	in	your	favorite
text	editor	by	typing:

vi	varlib/pgsql/data/pg_hba.conf

3.	 Scroll	down	to	the	end	of	the	file	and	append	the	following	line,	to	make
these	lines	read	as	follows	(substitute	the	XXX.XXX.XXX.XXX/XX	value	with	a
network	address	you	want	to	grant	access	to.	For	example,	if	the	IP	address
of	your	server	was	192.168.1.12	then	the	network	address	would	be
192.168.1.0/24):

host				all										all									XXX.XXX.XXX.XXX/XX				md5

4.	 When	you	have	finished,	simply	save	and	close	the	file	in	the	usual	way
before	opening	the	main	Postgres	configuration	file	by	typing:

vi	varlib/pgsql/data/postgresql.conf

5.	 Add	the	following	lines	to	the	end	of	the	file:

listen_addresses	=	'*'

port	=	5432

6.	 When	you	have	finished,	save	the	file	in	the	usual	way	before	restarting	the
database	server	by	typing	the	following	command:

systemctl	restart	postgresql

7.	 On	any	other	computer	which	is	in	the	same	network	(defined	by	the
XXX.XXX.XXX.XXX/XX	value	set	previously),	you	can	now	test	if	the	remote
connection	to	your	Postgres	server	is	working	using	the	psql	shell	(if	your

client	computer	is	CentOS,	you	need	to	install	it	using	yum	install
postgresql)	by	logging	in	on	the	server	remotely	and	printing	out	some
test	data.	In	our	example,	the	Postgres	server	is	running	with	the	IP	address
192.168.1.12.

psql	-h	192.168.1.12	-U	<username>	-d	<database-name>

How	it	works...
PostgreSQL	is	a	safe	and	secure	database	system	but	where	we	access	it	(either
remotely	or	locally)	can	often	become	a	cause	of	confusion.	It	was	the	purpose
of	this	recipe	to	lift	the	lid	on	host-based	authentication	and	provide	an	easy-to-
use	solution	that	will	enable	you	to	get	your	system	up-and-running.

So	what	did	we	learn	from	this	experience?

We	began	the	recipe	by	opening	the	Postgres	service's	standard	ports	in	firewalld
in	order	to	make	a	connection	from	any	remote	computer	possible	in	the	first
place.	Then	we	opened	Postgres's	host-based	authentication	configuration	file
called	pg_hba.conf	with	our	favorite	text	editor.	Remember,	we	already
changed	from	peer	to	md5	authentication	for	all	local	connections	to	provide	user
based	authentication	in	a	former	recipe.	The	inserted	host	record	line	specifies	a
connection	type,	database	name,	a	user	name,	a	client	IP	address	range,	and	the
authentication	method.	Many	of	the	previous	commands	may	already	be
understood	but	it	is	important	to	realize	that	there	are	several	different	methods
of	authentication:

trust:	Allows	the	connection	unconditionally	and	enables	anyone	to
connect	with	the	database	server	without	the	need	for	a	password.
reject:	Allows	the	database	server	to	reject	a	connection	unconditionally,	a
feature	that	remains	useful	when	filtering	certain	IP	addresses	or	certain
hosts	from	a	group.
md5:	Implies	that	the	client	needs	to	supply	an	MD5-encrypted	password
for	authentication.
peer	and	ident:	Access	is	granted	if	the	client's	logged	in	Linux	user	name
from	the	operating	system	can	be	found	as	a	database	user	in	the	system.
ident	is	used	for	remote	connections	and	peer	for	local	connections.

Having	completed	this	task,	we	then	saved	and	closed	the	file	before	opening	the
main	PostgreSQL	configuration	file	located	at
varlib/pgsql/data/postgresql.conf.	As	you	may	or	may	not	be	aware,
remote	connections	will	not	be	possible	unless	the	server	is	started	with	an
appropriate	value	for	listen_addresses,	and	where	the	default	setting	placed
this	on	a	local	loopback	address	it	was	necessary	to	allow	the	database	server	to
listen	to	all	network	interfaces	(signified	by	the	use	of	a	star	symbol	or	*)	for

incoming	Postgres	connections	on	the	5432	port.	When	finished,	we	simply
saved	the	file	and	restarted	the	database	server.

There	is	always	much	more	to	learn,	but	as	a	result	of	completing	this	recipe,
you	not	only	have	a	better	understanding	of	host-based	authentication	but	you
have	the	ability	to	access	your	PostgreSQL	database	server	both	locally	and
remotely.

Installing	phpMyAdmin	and
phpPgAdmin
Working	with	the	MariaDB	or	Postgres	command-line	shell	is	sufficient	for
performing	basic	database	administration	tasks,	such	as	user	permission	settings
or	creating	simple	databases	as	we	have	shown	you	in	this	chapter.	The	more
complex	your	schemas	and	relationships	between	tables	get	and	the	more	your
data	grows,	the	more	you	should	consider	using	some	graphical	database	user
interfaces	for	better	control	and	work	performance.	This	is	also	true	for	novice
database	administrators	as	such	tools	provide	you	with	syntax	highlightning	and
validation	and	some	tools	even	have	graphical	representations	of	your	databases
(for	example,	showing	Entity	Relationship	Models).	In	this	recipe,	we	will	show
you	how	to	install	two	of	the	most	popular	graphical	open-source	database
management	software	for	MariaDB	and	PostgreSQL	on	the	market,	namely
phpMyadmin	and	phpPgAdmin,	which	are	web-based	browser	applications	written
in	PHP.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet	in	order	to	facilitate	the	download	of	additional
packages.	It	is	expected	that	your	MariaDB	or	PostgreSQL	server	is	already
running	using	the	recipes	found	in	this	chapter.	Also,	you	will	need	a	running
Apache	web	server	with	PHP	installed,	which	must	be	accessible	from	all	the
computers	in	your	private	network	to	deploy	these	applications	(refer	to	Chapter
12,	Providing	Web	Services	for	instructions).	In	addition,	you	need	to	have
enabled	the	EPEL	repositories	for	installing	the	correct	software	packages	(refer
to	recipe	Using	a	third-party	repository	in	Chapter	4,	Managing	Packages	with
YUM).	Finally,	you	will	need	one	computer	in	your	network	with	a	graphical
window	manager	and	a	modern	web-browser	to	access	these	web	applications.

How	to	do	it...
In	this	recipe,	we	will	first	show	you	how	to	install	and	configure	phpMyAdmin
for	remote	access	and	afterwards	how	to	do	the	same	for	phpPgAdmin.

Installing	and	configuring	phpMyAdmin

To	install	and	configure	phpMyAdmin,	perform	the	following	steps:

1.	 Type	in	the	following	command	to	install	the	required	package:

yum	install	phpMyAdmin

2.	 Now	create	a	copy	of	the	main	phpMyadmin	configuration	file:

cp	etchttpd/conf.d/phpMyAdmin.conf	

etchttpd/conf.d/phpMyAdmin.conf.BAK

3.	 Next,	open	the	main	phpMyAdmin.conf	configuration	file	and	add	the	line
Require	ip	XXX.XXX.XXX.XXX/XX	with	your	defined	subnet's	network
address	you	want	to	grant	access	to	the	web	application—for	example,
Require	ip	192.168.1.0/24	below	the	line	Require	ip	127.0.0.1.	You
have	to	do	this	twice	in	the	file	or	you	can	use	sed	to	do	this	automatically,
as	shown	here.	On	the	command-line	define	the	environment	variable	NET=
accordingly	to	fit	it	to	your	own	subnet's	network	address.

NET="192.168.1.0/24"

4.	 Then	type	the	following	line	to	apply	your	changes	to	the	configuration	file:

sed	-i	"s,\(Require	ip	127.0.0.1\),\1\nRequire	ip	$NET,g"	

etchttpd/conf.d/phpMyAdmin.conf

5.	 Afterwards,	reload	your	Apache	server	and	now	you	should	be	able	to
browse	to	the	phpMyAdmin	website	from	any	other	computer	in	your	subnet
using	the	server's	IP	running	the	web	application,	for	example
192.168.1.12	(log	in	with	your	MariaDB	administrator	user	called	root	or
any	other	database	user):

http://192.168.1.12/phpMyAdmin

Installing	and	configuring	phpPgAdmin

Following	are	the	steps	to	install	and	configure	phpPgAdmin:

1.	 Type	in	the	following	command	to	install	the	required	package:

yum	install	phpPgAdmin

2.	 Before	editing	the	phpPgAdmin	main	configuration,	make	a	backup	of	it
first:

cp	etchttpd/conf.d/phpPgAdmin.conf	

etchttpd/conf.d/phpPgAdmin.conf.BAK

3.	 Allowing	remote	access	to	phpPgAdmin	is	very	similar	to	phpMyAdmin.	Here
you	can	also	add	a	Require	ip	XXX.XXX.XXX.XXX/XX	line	with	your
defined	subnet's	network	address	below	the	line	Require	local	in	the
phpPgAdmin.conf	file,	or	use	the	sed	utility	to	do	this	automatically	for
you:

NET="192.168.1.0/24"

sed	-i	"s,\(Require	local\),\1\nRequire	ip	$NET,g"	

etchttpd/conf.d/phpPgAdmin.conf

4.	 Restart	Apache	and	browse	to	the	phpPgAdmin	main	page:

http://192.168.1.12/phpPgAdmin

How	it	works...
In	this	fairly	simple	recipe,	we	have	shown	you	how	to	install	two	of	the	most
popular	graphical	administration	tools	for	MariaDB	and	Postgres,	running	as
web	applications	in	your	browser	(and	written	in	PHP)	on	the	same	server	where
your	database	service	is	running,	and	enabled	remote	access	to	them.

So	what	did	we	learn	from	this	experience?

Installing	phpMyAdmin	for	administering	MariaDB	databases	and	phpPgAdmin	for
Postgres	databases	was	as	easy	as	installing	the	corresponding	rpm	packages
using	the	yum	package	manager.	As	both	the	tools	are	not	to	be	found	in	the
official	CentOS	7	repositories,	you	need	to	enable	the	third-party	repository
EPEL	before	you	can	access	and	install	these	packages.	By	default,	when
installing	both	the	web	applications,	access	is	denied	to	any	connection	not	being
made	from	the	server	itself	(local	only).	Since	we	want	to	have	access	to	it	from
different	computers	in	our	network,	having	installed	a	web	browser	you	need	to
allow	remote	connections	first.	For	both	the	web	applications,	this	can	be
achieved	using	the	Apache	Require	ip	directive	which	is	part	of	the	Apache
mod_authz_core	module.	In	both	the	configuration	files	for	phpMyAdmin	and
phpPgAdmin,	we	defined	a	whole	subnet,	such	as	192.168.1.0/24,	to	allow
connecting	to	the	server,	but	you	can	also	use	a	single	IP	address	here	which	you
want	to	allow	access	to.	The	sed	commands	inserted	these	important	Require
lines	into	the	configuration	file,	but	as	said	earlier	you	can	also	do	this	manually
if	you	like	by	editing	these	files	with	your	text	editor	of	choice.	After	reloading
the	Apache	configuration,	you	were	then	able	to	browse	to	the	web	pages	using
the	two	URLs	shown	in	the	recipe.	On	the	start	page	of	both	the	web	sites,	you
can	use	any	database	user	to	log	in	without	the	need	to	enable	remote	privileges
for	them;	any	user	with	local	permissions	is	sufficient.

In	summary,	we	can	say	that	we	only	showed	you	the	basic	configuration	of	both
administration	tools.	There	is	always	more	to	learn;	for	example,	you	should
consider	securing	both	PHP	websites	with	SSL	encryption	or	configuring	your
instances	to	connect	to	different	database	servers.	Also,	if	you	prefer	desktop
software	for	managing	your	databases,	have	a	look	at	the	open-source	MySQL
Workbench	Community	Edition,	which	can	be	downloaded	from	the	official
MySQL	website	for	all	major	operating	systems	(Windows,	OS	X,	Linux).

Chapter	11.	Providing	Mail	Services
In	this	chapter,	we	will	cover:

Configuring	a	domain-wide	mail	service	with	Postfix
Working	with	Postfix
Delivering	the	mail	with	Dovecot
Using	Fetchmail

Introduction
This	chapter	is	a	collection	of	recipes	that	deliver	the	necessary	steps	to
implement	and	maintain	one	of	the	oldest	and	most	versatile	technologies	on	the
Internet	today.	Everyone	wants	to	send	and	receive	e-mails	and	this	chapter
provides	the	necessary	starting	point	required	to	deploy	such	a	service	in	a
timely	and	efficient	manner.

Configuring	a	domain-wide	mail
service	with	Postfix
Postfix	is	a	Mail	Transport	Agent	(MTA)	responsible	for	the	transfer	of	e-
mails	between	mail	servers	using	the	SMTP	protocol.	Postfix	is	now	the	default
MTA	on	CentOS	7.	Here,	as	with	most	other	critical	network	services,	its	default
configuration	allows	outgoing	but	does	not	accept	incoming	network
connections	from	any	host	other	than	the	local	one.	This	makes	sense	if	all	you
need	is	a	local	Linux	user	mailing	system	and	for	sending	out	mails	to	other
external	mail	servers	from	localhost	too.	But	if	you	want	to	run	your	own
centralized	mail	server	for	your	own	private	network	and	domain,	this	is	quite
restrictive.	So	the	purpose	of	this	recipe	is	to	set	up	Postfix	as	a	domain-wide
mail	service	to	allow	e-mails	sent	from	any	host	in	your	network	and	if	the
recipient	is	a	valid	e-mail	address	within	your	local	domain,	deliver	them	to	the
correct	mailbox	on	the	mail	server.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet	to	download	additional	software	packages.	You
need	to	set	up	your	local	network	properly	and	make	sure	that	all	the	computers
that	want	to	send	mails	through	your	single-domain	mailserver	are	in	the	same
network	and	can	ping	this	server.	Also,	setting	your	system	time	correctly	is	very
important	for	any	mail	server.	Apply	the	Synchronizing	the	system	clock	with
NTP	and	the	chrony	suite	recipe	in	Chapter	2,	Configuring	the	System	before
beginning	your	configuration.	Finally,	you	need	to	set	a	Fully	Qualified
Domain	Name	(FQDN)	for	your	mail	server.	Refer	to	the	Setting	your
hostname	and	resolving	the	network	recipe	in	Chapter	2,	Configuring	the
System.	It	is	expected	that	your	server	will	be	using	a	static	IP	address	and	that	it
maintains	one	or	more	system	user	accounts.	It	is	also	assumed	that	you	are
working	through	this	chapter	recipe	by	recipe	in	the	order	in	which	they	appear.

How	to	do	it...
Postfix	is	already	installed	by	default	on	all	CentOS	7	flavors	and	it	should	be	in
a	running	state.	In	our	example,	we	want	to	build	a	central	mail	server	for	our
network	192.168.1.0/24	with	the	local	domain	name	called	centos7.home.

1.	 First	login	as	root	and	test	if	Postfix	is	already	working	locally	and	can	send
local	mails	to	your	system	users.	Type	the	following	command	to	send	a
mail	to	a	Linux	user	specified	by	<username>:

echo	"This	is	a	testmail"	|	sendmail	<username>

2.	 On	CentOS	7,	Postfix	is	also	already	configured	to	send	out	mails	to
external	e-mail	addresses	(but	from	localhost	only)	without	any	changes	to
the	configuration	file.	For	example,	you	could	use	right	out-of-the-box:

echo	"This	is	a	testmail"	|	sendmail	contact@example.com

Note

If	you	don't	have	a	trusted	domain	and	certificate	behind	your	Postfix
server,	in	times	of	massive	spam	e-mails	most	external	e-mail	servers	will
reject	or	put	such	e-mails	directly	into	the	spam	folders.

3.	 To	see	if	the	local	mail	message	has	been	delivered	successfully,	show	the
latest	mail	log	(Press	Ctrl+C	to	exit	the	log):

tail	-f	varlog/maillog

4.	 Next,	check	if	a	FQDN	for	our	server	is	available.	This	is	mandatory,	and	if
not	set	properly,	refer	to	Chapter	2,	Configuring	the	System	to	set	one	(in
our	example,	this	will	output	the	name	mailserver.centos7.home):

hostname	--fqdn

5.	 Now	create	a	backup	copy	of	the	main	Postfix	configuration	file	before
opening	this	file:

cp	etcpostfix/main.cf	etcpostfix/main.cf.BAK	&&	vi	etc

postfix/main.cf

6.	 First	of	all,	we	will	want	Postfix	to	listen	on	all	network	interfaces	instead
of	only	the	local	one.	Activate	or	uncomment	the	following	line	(which
means	remove	the	#	sign	at	the	beginning	of	the	line)	that	starts	with

inet_interfaces	to	read:

inet_interfaces	=	all

7.	 Now,	some	lines	below,	you	will	find	the	line	that	reads	inet_interfaces
=	localhost.	Deactivate	it	or	comment	it	out	by	putting	a	#	sign	at	the
start	of	the	line:

#	inet_interfaces	=	localhost

8.	 Next	we	need	to	set	the	local	domain-name	of	the	mail	server.	For	example,
if	our	mailserver's	FQDN	is	mailserver.centos7.home	and	this	mailserver
is	responsible	for	delivering	mail	for	the	whole	private	centos7.home
domain,	the	domain	name	will	be	(it's	best	to	put	it	below	the	line	that	reads
#mydomain	=	domain.tld):

mydomain	=	centos7.home

9.	 With	the	intention	that	this	server	may	become	a	domain-wide	mail	server,
you	should	now	update	the	following	line	that	starts	with	mydestination	to
read	as	follows	(for	example,	in	the	mydestination	section,	comment	out
the	first	mydestination	line	and	uncomment	the	second	line):

mydestination	=	$myhostname,	localhost.$mydomain,	localhost,	

$mydomain

10.	 Next,	we	need	to	specify	the	pathname	of	a	mailbox	file	relative	to	a	user's
home	directory.	To	do	this,	scroll	down	and	locate	the	line	that	begins	with
home_mailbox	and	uncomment	the	following	option	(remove	the	#	sign	at
the	line's	beginning):

home_mailbox	=	Maildir/

11.	 Save	and	close	the	file.	Now	we	want	to	open	the	correct	Postfix	server
ports	in	the	firewall	to	allow	the	incoming	SMTP	connections	to	the	server:

firewall-cmd	--permanent	--add-service=smtp	&&	firewall-cmd	--

reload

12.	 Next,	restart	the	Postfix	service	as	follows:

systemctl	restart	postfix

13.	 Afterwards,	login	to	a	different	computer	in	the	same	network	and	install
Swiss	Army	Knife	SMTP	(swaks)	to	test	out	our	Postfix	server	connection

remotely.	On	CentOS,	type	the	following	(it	needs	the	EPEL	repository	to
be	installed	in	advance):

yum	install	swaks

14.	 Now,	to	test	if	you	can	connect	to	our	new	Postfix	server	using	the	standard
SMTP	mail	port	25,	with	our	Postfix	server	running	on	the	IP	address
192.168.1.100,	we	are	sending	a	mail	remotely	to	a	Linux	system	user
john	which	has	a	system	user	account	on	our	Postfix	server:

swaks	--server	192.168.1.100	--to	john@centos7.home

15.	 Swaks	creates	output	which	should	give	us	a	hint	if	the	mail	transport	has
been	successful.	For	example	(the	output	has	been	truncated):

->	This	is	a	test	mailing

<-		250	2.0.0	Ok:	queued	as	D18EE52B38

	->	QUIT

<-		221	2.0.0	Bye

16.	 You	can	also	test	that	the	last	command	has	been	successful	by	logging	in
as	user	john	on	the	Postfix	server,	then	checking	and	reading	your	local
mailbox's	inbox,	which	should	contain	a	file	with	the	test	mail	sent	from	the
swaks	tool	(the	filename	will	be	different	on	your	computer),	as	follows:

ls	~/Maildir/new

less	

~/Maildir/new/14941584.Vfd02I1M246414.mailserver.centos7.home

How	it	works...
As	we	have	seen,	Postfix	is	installed	and	running	on	every	CentOS	7	system	by
default	and	in	its	basic	configuration	the	mail	server	is	listening	on	the	localhost
address	for	incoming	mails	so	you	can	already	send	out	local	mails	between	your
server's	local	Linux	system	users	without	the	need	to	contact	an	external	MTA.	It
is	already	running	because	your	system	is	already	using	it	for	a	number	of	local
services,	such	as	the	crond	daemon	or	for	sending	out	warnings	about	security
breaches	(for	example,	running	a	sudo	command	as	a	non-sudo	user).

Before	we	can	explain	how	this	recipe	works,	we	need	to	review	some	more
basics	about	the	Postfix	MTA	system	in	general.	The	Postfix	MTA	service	can
receive	incoming	e-mails	from	mail	clients	or	other	remote	MTA	servers	using
the	SMTP	protocol.	If	an	incoming	e-mail	is	destinated	for	the	MTA	server's
configured	final	destination	domain	(for	example,	a	mail	sent	with	the	recipient
address	john@centos7.home	is	incoming	to	the	centos7.home	configured
Postfix	MTA	server),	it	will	deliver	the	mail	to	a	local	mailbox	installed	on	the
server	(either	in	the	filesystem	or	in	a	database	system	such	as	MariaDB).	If	the
incoming	mail	is	not	destinated	for	this	server,	it	will	be	relayed	(forwarded)	to
another	MTA.

Remember	that	this	is	all	a	Postfix	server	is	capable	of	doing	and	nothing	more:
receiving	incoming	SMTP	connections	from	mail	clients	or	other	MTAs,
delivering	mail	to	local	mailboxes	on	the	server,	and	forwarding	mail	to	other
MTAs	using	SMTP.	Contrary	to	common	belief,	Postfix	cannot	transfer	the
mails	from	its	local	mailboxes	to	the	end	users.	Here	we	need	another	type	of
MTA	called	delivery	agent,	which	uses	different	mail	protocols,	such	as	IMAP
or	POP3.

In	this	recipe,	we	configured	our	Postfix	server	so	that	the	other	computers	and
servers	in	the	same	network	could	also	send	mails	to	our	Postfix	server,	which	is
blocked	by	default	(by	default	only	the	server	itself	can	send	mails).	If	an
incoming	e-mail,	sent	from	another	computer	in	our	network,	has	the	same
domain	name	in	the	recipient's	e-mail	address	as	our	Postfix	server	has	its	FQDN
in,	then	it	gets	delivered	to	the	appropriate	local	mailbox	defined	by	the
recipient's	part	of	the	e-mail;	all	external	e-mail	addresses	get	relayed	to	an
external	MTA.

So	what	did	we	learn	from	this	experience?

We	began	our	journey	by	testing	if	we	could	send	out	local	mails	to	system
users.	Here	we	logged	in	as	our	root	user	and	sent	a	mail	to	a	valid	local	system
user	using	the	sendmail	program,	which	is	included	in	the	Postfix	package.	For
every	mail	you	send	using	sendmail,	you	should	be	able	to	see	some	new	lines
appearing	in	the	varlog/maillog	file,	which	contains	status	information	and
other	important	logging	text	for	the	mail.	If	you	sent	a	message	from	root	to	the
user	john	and	the	FQDN	of	your	server	is	centos7.home,	new	output	lines
appended	to	the	log	file	should	contain	amongst	other	things	a	from=
<root@centos7.home>,	a	to=<john@centos7.home>	and	if	delivered
successfully,	a	status=sent	information.	If	no	such	logging	information	shows
up,	check	the	status	of	the	Postfix	service.

Afterwards,	we	displayed	the	FQDN	for	our	server.	It	is	very	important	to	set
this	up	correctly	because	this	information	will	be	used	to	authenticate	the	Postfix
server	when	connecting	to	other	MTAs	or	mail	clients.	MTAs	check	the	FQDN
which	has	been	announced	by	their	partner	and	some	even	refuse	to	connect	if	it
is	not	provided	or	if	it	differs	from	the	real	DNS	domain	name	of	the	server.
After	our	initial	test,	we	then	started	editing	the	main	Postfix	configuration	file
after	we	made	a	backup	copy	of	it	first.	As	said	before,	by	default	only	the	users
sitting	on	the	same	server	the	Postfix	service	is	running	on	can	send	mails
between	them	as	the	server	defaults	to	listening	on	the	loopback	device	only.	So
first	we	enabled	Postfix	to	listen	to	all	the	available	network	interfaces	instead,
using	the	inet_interfaces	=	all	parameter.	This	ensured	that	all	our	clients	in
our	network	could	connect	to	this	server.	Next,	we	set	the	domain	name	using
the	mydomain	parameter	we	wanted	to	have	for	Postfix.	In	order	for	Postfix	to
work	in	our	network,	the	domain	name	defined	here	in	this	variable	must	be	the
exact	same	value	as	the	domain	name	for	our	server's	network.	Afterwards,	we
changed	the	mydestination	parameter	by	choosing	the	line	which	adds	the
$mydomain	parameter	to	the	list	of	allowed	domains.	This	will	define	all	domains
our	Postfix	mail	server	considers	as	the	final	destination.	If	a	Postfix	mail	server
is	configured	as	the	final	destination	for	a	domain,	it	will	deliver	the	messages	to
the	local	mailboxes	of	the	recipient	users,	which	can	be	found	in
varspool/mail/<username>	(we	will	change	this	location	in	the	next	step)
instead	of	forwarding	the	mails	to	the	other	MTAs	(as	we	added	$mydomain	to
the	list	of	final	destinations	in	our	example,	we	will	deliver	all	mails	sent	to	the

centos7.home	domain).

Here,	you	also	need	to	remember	that,	by	default,	Postfix	trusts	all	the	other
computers	(SMTP	clients)	in	the	same	IP	subnetwork	as	the	Postfix	server	is	in
to	send	mails	to	external	e-mail	addresses	(relay	mails	to	external	MTAs)
through	our	centralized	server,	which	could	be	too	relaxed	for	your	network
policy.	Since	e-mail	spam	is	an	ongoing	problem	on	the	Internet	and	we	don't
want	to	allow	any	user	to	abuse	our	mail	server	from	sending	spam	(which	an
open	relay	mail	server	does;	it	this	takes	anything	from	any	client	and	sends	it	to
any	mail	server),	we	can	further	increase	security	by	setting	mynetworks_style
=	host,	which	only	trusts	and	allows	the	localhost	to	send	mails	to	external
MTAs.	Another	way	to	reduce	the	spam	risk	might	be	to	use	the	mynetworks
parameter	where	you	can	specify	which	network	or	IP	address	is	allowed	to
connect	to	our	mail	server	and	send	e-mails	through	it;	for	example,	mynetworks
=	127.0.0.0/8,	192.168.1.0/24.	To	learn	more	about	all	the	available	Postfix
settings,	refer	to	the	Postfix	configuration	parameter	manual	using	the	command
man	5	postconf.	Afterwards,	we	changed	where	the	local	mail	should	be	stored.
By	default,	all	the	incoming	mails	go	to	a	centralized	mailbox	space	located	at
varspool/mail/<username>.	In	order	for	local	users	to	receive	their	mail	in	their
own	home	directory,	we	used	the	Maildir	parameter	for	the	home_mailbox
option,	which	changes	this	system	to	deliver	all	the	mails	to
home<username>/Maildir/	instead.	Afterwards,	we	opened	the	standard	SMTP
protocol	port	in	firewalld	using	the	SMPT	service,	which	Postfix	uses	for
communication	with	the	other	MTAs	or	mail	clients	sending	incoming	mails
through.

Postfix	is	already	configured	to	start	at	boot,	but	to	complete	this	part	of	the
recipe	we	restarted	the	Postfix	service	for	it	to	accept	the	new	configuration
settings.	At	this	stage,	the	process	of	configuring	Postfix	was	complete,	but	to
test	remote	access	we	needed	to	log	into	another	computer	in	the	same	network.
Here	we	installed	a	small	command	line-based	mail	client	called	swaks,	which
can	be	used	to	test	local	or	remote	SMTP	server	connections.	We	ran	our	test	by
sending	a	mail	to	our	remote	Postfix	mail	server	and	supplied	a	recipient	user
and	the	IP	address	of	our	SMTP	server.	Having	done	this,	you	should	have
received	a	test	message	and	as	a	result	you	should	be	happy	to	know	that
everything	is	working	correctly.	However,	if	you	did	happen	to	encounter	any
errors,	you	should	refer	to	the	mailserver	log	file	located	at	varlog/maillog.

There's	more...
In	this	section	of	the	recipe,	we	will	change	your	e-mail	sender	address,	encrypt
SMTP	connections,	and	configure	your	BIND	DNS	server	to	include	our	new
mailserver's	information.

Changing	an	e-mail's	appearing	domain	name

If	an	MTA	sends	out	an	e-mail,	Postfix	automatically	appends	the	hostname	of
the	sender's	e-mail	address	by	default,	if	not	provided	explicitly	otherwise,
which	is	a	great	feature	to	track	down	which	computer	in	your	network	sent	the
e-mail	locally	(otherwise	it	would	be	hard	to	find	the	origin	of	a	mail	if	you	got
multiple	computers	sending	out	mails	by	a	user	called	root).	Often	when	sending
messages	to	a	remote	MTA,	you	don't	want	to	have	your	local	hostname	appear
in	the	e-mail.

Here	it	is	better	to	have	only	the	domain	name	alone.	In	order	to	change	this,	go
to	the	Postfix	MTA	you	want	to	send	mails	from,	open	the	Postfix	configuration
file	etcpostfix/main.cf,	and	enable	this	feature	by	uncommenting	(removing
the	#	sign	at	the	beginning	of	the	line)	the	following	line	to	determine	the	origin
(restart	the	Postfix	service	afterwards):

myorigin	=	$mydomain

Using	TLS-	(SSL)	encryption	for	SMTP	communication

Even	if	you	are	running	your	own	Postfix	server	in	a	small	or	private
environment,	you	should	always	be	aware	that	normal	SMTP	traffic	will	be	sent
in	clear	text	over	the	Internet,	making	it	possible	that	anyone	could	sniff	the
communication.	TLS	will	allow	us	to	set	up	an	encrypted	SMTP	connection
between	the	server	and	the	mail	client,	meaning	that	the	complete
communication	will	be	made	enciphered	and	impossible	to	be	read	by	a	third-
party.	In	order	to	do	this,	if	you	have	not	already	bought	an	official	SSL
certificate	or	generated	some	self-signed	certificates	for	your	domain,	start	by
creating	one	here	(read	the	Generating	self-signed	certificates	recipe	in	Chapter
6,	Providing	Security	to	learn	more).	First	login	as	root	on	your	server	and	go	to
the	standard	certificate	location:	etcpki/tls/certs.	Next,	create	a	TLS/SSL
keypair	consisting	of	the	certificate	and	its	embedded	public	key	as	well	as	the
private	key	(enter	your	Postfix's	FQDN	as	the	Common	name,	for	example,

mailserver.centos7.home)	to	do	this	type	make	postfix-server.pem.
Afterwards,	open	the	main	Postfix	configuration	file	etcpostfix/main.cf	with
your	favorite	text	editor	and	put	in	the	following	lines	at	the	end	of	the	file:

smtpd_tls_cert_file	=	etcpki/tls/certs/postfix-server.pem

smtpd_tls_key_file	=	$smtpd_tls_cert_file

smtpd_tls_security_level	=	may

smtp_tls_security_level	=	may

smtp_tls_loglevel	=	1

smtpd_tls_loglevel	=	1

Then	save	and	close	this	file.	Note	that	setting	smtpd_tls_security_level	to
may	will	activate	TLS	encryption	if	available	in	the	mail	client	program,
otherwise	it	will	use	an	unencrypted	connection.	You	should	only	set	this	value
to	encrypt	(which	will	enforce	SSL/TLS	encryption	in	any	case)	if	you	are
absolutely	sure	that	all	your	senders	to	your	mail	server	are	supporting	this
feature.	If	any	sender	(external	MTA	or	mail	client)	does	not	support	this
feature,	the	connection	will	be	refused.	This	means	that	e-mails	from	such
sources	will	not	be	delivered	into	your	local	mailboxes.	We	also	specified	TLS
encryption	for	outgoing	SMTP	connections	from	our	Postfix	server	to	other
MTAs	where	possible	using	smtp_tls_security_level	=	may.	By	setting	both
the	Postfix's	client	and	server	mode	TLS	log	level	to	1	we	get	more	verbose
output	so	we	can	check	if	the	TLS	connections	are	working.	Some	very	old	mail
clients	use	an	ancient	port	465	for	encrypting	SMTP	over	SSL/TLS	instead	of
the	standard	SMTP	port	25.

In	order	to	activate	this	feature,	open	etcpostfix/master.cf	and	search,	then
uncomment	(remove	#	at	the	start	of	each	line)	the	following	lines,	so	they	read:

smtps							inet			n							-							n							-							-							smtpd

-o	syslog_name=postfix/smtps

-o	smtpd_tls_wrappermode=yes

Save	and	close	the	file,	and	then	restart	Postfix.	Next,	we	need	to	open	the
SMTPS	port	in	the	firewall	to	allow	incoming	connections	to	our	server.	Since
no	SMTPS	firewalld	rule	is	available	in	CentOS	7,	we	will	create	our	own
service	file	first	using	the	sed	utility:

sed	's/25/465/g'	usrlib/firewalld/services/smtp.xml	|	sed	's/Mail	

(SMTP)/Mail	(SMTP)	over	SSL/g'	>	etcfirewalld/services/smtps.xml

firewall-cmd	--reload

firewall-cmd	--permanent	--add-service=smtps;	firewall-cmd	--reload

You	should	now	be	able	to	test	if	an	SMTPS	connection	can	be	made	by	using
our	swaks	SMTP	command	line	tool	with	the	-tls	parameter	from	a	remote
computer	to	our	Postfix	server	running	on	IP	192.168.1.100,	for	example	swaks
--server	192.168.1.100	--to	john@centos7.home	-tls.	This	command	line
will	test	if	the	SMTP	server	supports	TLS	encryption	(STARTTLS)	and	exit	with
an	error	message	if	it	is	not	available	for	any	reason.	A	working	output	would
look	as	follows	(truncated	to	only	show	you	the	most	important	lines):

->	STARTTLS

<-		220	2.0.0	Ready	to	start	TLS

===	TLS	started	with	cipher	TLSv1.2:ECDHE-RSA-AES128-GCM-SHA256:128

	>	This	is	a	test	mailing

<		250	2.0.0	Ok:	queued	as	E36F652B38

You	can	then	also	recheck	your	TLS	setup	by	going	to	the	main	mail	log	file	on
your	Postfix	server	and	watching	for	the	following	line	corresponding	to	your
swaks	test	mail	from	the	last	step	(your	output	will	be	different):

Anonymous	TLS	connection	established	from	unknown[192.168.1.22]:

TLSv1.2	with	cipher	ECDHE-RSA-AES256-GCM-SHA384	(256/256	bits)

Configure	BIND	to	use	your	new	mailserver

After	our	domain-wide	Postfix	server	has	been	installed	and	configured,	we
should	now	announce	this	new	mail	service	in	our	domain	using	a	DNS	server.
Refer	to	Chapter	8,	Working	with	FTP	for	details	on	how	to	set	up	and	configure
a	BIND	server,	and	especially	read	the	section	about	the	Mail	eXchanger	(MX)
record	if	you	haven't	already.	Then	add	a	new	MX	entry	to	your	BIND	forward
and	corresponding	reverse	zone	file.	In	your	forward	zone	file,	add	the	following
lines	for	our	Postfix	server	with	the	IP	192.168.1.100:

IN						MX						10						mailhost.centos7.home.

mailhost																			IN						A							192.168.1.100

In	your	reverse	zone	file,	you	could	add	the	following	lines	instead:

100																	IN		PTR									mailhost.centos7.local.

Working	with	Postfix
In	a	previous	recipe,	we	learned	how	to	install	and	configure	Postfix	as	our
domain-wide	e-mail	server.	When	it	comes	to	working	with	e-mails,	there	are
lots	of	different	tools	and	programs	available	for	Linux	and	we	already	showed
you	how	to	send	e-mails	through	the	sendmail	program	as	well	as	the	swaks
utility.	Here	in	this	recipe,	we	will	show	you	how	to	work	with	one	of	the	most
commonly	used	mail	utilities	in	Unix	and	Linux,	called	mailx,	which	has	some
useful	features	missing	in	the	sendmail	package	for	sending	mails	or	reading
your	mailbox.

How	to	do	it...
We	will	begin	this	recipe	by	installing	the	mailx	package	on	our	server	running
our	domain-wide	Postfix	service,	as	it	is	not	available	on	CentOS	7	by	default.

1.	 Begin	by	logging	in	as	root	and	typing	the	following	command:

yum	install	mailx

The	easiest	way	is	to	use	mailx	with	its	standard	input	mode,	as	follows:

echo	"this	is	the	mail	body."	|	mail	-s	"subject"	john@centos7.home

You	can	also	send	mails	from	a	text	file.	This	is	useful	when	calling	the	mailx
command	from	a	shell	script,	using	multiple	recipients,	or	attaching	some	files	to
the	e-mail:

cat	~/.bashrc	|	mail	-s	"Content	of	roots	bashrc	file"	john

echo	"another	mail	body"	|	mail	-s	"body"	

john,paul@example.com,chris

echo	"this	is	the	email	body"	|	mailx	-s	"another	testmail	but	with	

attachment"	-a	"pathto/file1"	-a	"pathto/another/file"	

john@gmail.com

Connecting	mailx	to	a	remote	MTA

One	big	advantage	over	the	sendmail	program	is	that	we	can	use	mailx	to
directly	connect	to	and	communicate	with	remote	MTA	mail	servers.	In	order	to
test	this	feature,	log	in	to	another	Linux-based	computer,	which	should	be	in	the
same	network	as	our	Postfix	server,	install	the	mailx	package,	and	send	a	mail
through	our	Postfix	server's	IP	address	192.168.1.100	(we	have	already	opened
the	incoming	SMTP	firewall	port	in	a	previous	recipe).	In	our	example,	we	will
send	a	local	mail	to	the	user	john:

echo	"This	is	the	body"	|	mail	-S	smtp=192.168.1.100	-s	"This	is	a	

remote	test"	-v	john@centos7.home

Reading	your	local	mails	from	the	mailbox

Not	only	can	the	mail	x	program	send	e-mail	messages	to	any	SMTP	server,	it
also	provides	a	convenient	mail	reader	interface	for	your	local	mailbox	when
started	locally	on	the	Postfix	server.	If	you	run	the	mail	program	with	-f
specifying	a	user	mailbox,	the	program	will	start	by	showing	you	all	the	inbox	e-

mails.	But	remember	that	mailx	can	only	read	local	mailboxes	when	the
program	is	started	on	the	same	server	your	mailboxes	are	located	at	(if	you	want
to	use	it	to	access	your	mailbox	remotely	you	need	to	install	an	MTA	access
agent	such	as	Dovecot—see	later—with	POP3	or	IMAP).	For	example,	login	as
Linux	system	user	john	on	the	Postfix	server,	and	then,	to	open	the	mail	reader
with	your	user's	local	mailbox,	type:	mailx	-f	~/Maildir.

You	will	now	be	presented	with	a	list	of	all	the	mail	messages	in	your	current
inbox.	If	you	want	to	read	a	specific	mail,	you	need	to	type	in	its	number	and
press	the	Return	key.	After	reading	it,	you	can	type	d	followed	by	Return	to
delete	it	or	r	followed	by	Return	to	reply	to	it.	To	go	back	to	your	current	mail
message	overview	screen,	type	z	followed	by	Return.	If	you	have	more	than	one
screen	of	mail	messages,	type	z-	(z	minus)	followed	by	Return	to	go	back	one
page.	Type	x	followed	by	Return	to	exit	the	program.	To	learn	more,	refer	to	the
mailx	manual	(man	mailx).

How	it	works...
In	this	recipe,	we	showed	you	how	to	install	and	use	mailx,	a	program	to	send
and	read	your	Internet	mail.	It	is	based	on	an	old	Unix	mail	program	called
Berkely	mail	and	provides	the	functionality	of	the	POSIX	mailx	command.	It
should	be	installed	on	every	serious	CentOS	7	server	because	it	has	some
advantages	over	the	sendmail	program	and	understands	the	protocols	IMAP,
POP3,	and	SMTP	(If	you	need	an	even	more	user-friendly	mail	reader	and
sender,	you	can	check	out	mutt.	Type	yum	install	mutt	to	install	it.	Then	type
man	mutt	to	read	its	manual).

So	what	did	we	learn	from	this	experience?

We	started	this	recipe	by	installing	the	mailx	package	using	the	YUM	package
manager	on	our	Postfix	server.	It	includes	the	mailx	command	line	program
which	can	be	run	either	with	the	command	mail	or	mailx.	Afterwards,	we	ran
the	program	with	the	-s	parameter,	which	specifies	an	e-mail	subject	and;	also
you	need	a	recipient	e-mail	address	as	argument,	either	an	external	address	or	a
local	Linux	system	user	name	or	mail.	Without	anything	else,	mailx	suspects	it's
running	on	the	same	server	as	the	mail	server	is	on,	so	it	implicitly	sends	the
mail	to	the	localhost	MTA,	which	is	Postfix	in	our	example.	Also,	in	its	most
simple	form,	mailx	starts	in	interactive	mode,	which	lets	you	type	in	the
message	body	fields	manually	at	the	command	line.	This	is	good	for	quickly
writing	a	mail	for	testing,	but	in	most	cases	you	will	use	mailx	by	piping	in
content	from	another	source.	Here	we	showed	you	how	to	do	this	by	using	the
echo	command	to	write	a	string	to	the	Standard	Input	(STDIN)	of	mailx,	but
you	can	also	cat	a	file	content	into	it.

One	often	used	example	is	to	send	some	kind	of	file	output	or	a	log	file	content
of	a	failing	command	to	an	administrator	user	or	system	reports	at	a	certain
scheduled	time	point	using	cron.	Afterwards,	we	saw	that	we	could	also	send
mails	to	multiple	recipients	by	comma-separating	their	e-mail	addresses,	and
showed	you	how	to	send	attachments	along	with	your	mail	messages	by	using
the	-a	option.	In	the	next	section,	we	then	showed	you	how	to	send	mails	to	a
remote	SMTP	mail	server	using	the	-S	option	to	set	internal	options
(variable=value).	This	is	a	very	useful	feature	if	you	haven't	specified	your
standard	mail	server	on	your	DNS	server	or	for	testing	a	remote	mail	server.

Finally,	in	the	last	section	we	showed	you	how	you	could	read	your	local
mailbox	on	your	Postfix	server	using	mailx.	It	has	a	convenient	browsing
functionality	to	read,	delete,	and	reply,	and	do	advanced	e-mail	management	for
your	local	mailbox.	You	do	this	by	typing	in	commands	into	the	mailx
interactive	sessions	followed	by	pressing	the	Return	key.	Remember,	if	you	don't
like	this	way	of	browsing	your	mails,	you	can	also	always	read	or	filter	your
mails	in	your	user's	~/Maildir	directory	using	command-line	tools,	such	as
grep,	less,	and	so	on.	For	example,	to	search	all	new	mails	for	the	case-
intensive	keyword	PackPub.com,	type	grep	-i	packtpub	~/Maildir/new.

Delivering	the	mail	with	Dovecot
In	a	previous	recipe,	you	were	shown	how	to	configure	Postfix	as	a	domain-wide
mail	transport	agent.	As	we	have	learned	in	the	first	recipe	of	this	chapter,
Postfix	only	understands	the	SMTP	protocol	and	does	a	remarkable	job	to
transport	messages	from	another	MTA	or	mail	user	client	to	other	remote	mail
servers	or	storing	mails	which	are	destinated	to	itself	into	its	local	mailboxes.
After	storing	or	relaying	mails,	Postfix	jobs	end.	Postfix	can	only	understand	and
speak	the	SMTP	protocol	and	is	not	capable	of	sending	messages	to	anything
other	than	MTAs.	Any	possible	recipient	user	for	a	mail	message	who	wants	to
read	his	mails	would	now	need	to	log	in	to	the	server	running	the	Postfix	service
using	ssh	and	look	into	his	local	mailbox	directory,	or	alternatively	use	mailx
locally	to	view	his	messages	on	a	regular	basis	to	see	if	there	are	any	new	mails.
This	is	highly	inconvenient	and	nobody	would	use	such	a	system.	Instead,	the
users	choose	to	access	and	read	their	mail	from	their	own	workstations	other
than	where	our	Postfix	server	is	located.	Therefore,	another	group	of	MTAs	has
been	developed,	sometimes	are	called	access	agents	and	which	have	the	main
functionality	to	synchronize	or	transfer	those	local	mailbox	messages	from	the
server	running	the	Postfix	daemon	over	to	external	mailing	programs	where
users	can	read	them.	These	MTA	systems	use	different	protocols	than	SMTP,
namely	POP3	or	IMAP.	One	such	MTA	program	is	Dovecot.	Most	professional
server	administrators	would	agree	that	Postfix	and	Dovecot	are	perfect	partners
and	it	is	the	purpose	of	this	recipe	to	learn	how	to	configure	Postfix	to	work	with
Dovecot	in	order	to	provide	a	basic	POP3/IMAP	and	a	POP3/IMAP	over	SSL
(POP3S/IMAPS)	service	for	our	mailboxes	to	provide	an	industry	standard	e-
mail	service	for	your	users	across	the	local	network.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet	in	order	to	download	additional	packages.	It	is
also	assumed	that	you	are	working	through	this	chapter	recipe	by	recipe	in	the
order	that	they	appear	and	for	this	reason	it	is	expected	that	Postfix	has	been
configured	as	a	domain-wide	MTA.

Note

This	recipe	serves	as	a	guide	to	setting	up	a	basic	POP3S/IMAPS	service	for
trusted	users	on	a	local	network.	It	is	not	suitable	for	general	Internet	use	without
applying	additional	security	measures.

How	to	do	it...
Dovecot	is	not	installed	by	default,	and	for	this	reason	we	must	begin	by
installing	the	necessary	packages	by	following	the	given	steps:

1.	 To	start,	log	in	as	root	and	type	in	the	following	command:

yum	install	dovecot

2.	 Once	installed,	enable	the	Dovecot	service	at	boot	by	typing:

systemctl	enable	dovecot

3.	 Now	open	the	main	Dovecot	configuration	file	in	your	favorite	text	editor,
after	creating	a	backup	copy,	by	typing:

cp	etcdovecot/dovecot.conf	etcdovecot/dovecot.conf.BAK

vi	etcdovecot/dovecot.conf

4.	 Begin	by	confirming	the	protocols	we	want	to	use	by	activating	(removing
the	#	sign	at	the	beginning	of	the	line)	and	modifying	the	following	line,	so
it	reads:

protocols	=	pop3	imap	imaps	pop3s

5.	 Next,	enable	Dovecot	to	listen	to	all	network	interfaces	instead	of	only	the
loopback	address.	Search	for	the	line	#listen	=	*,	::,	then	modify	it	so	it
reads:

listen	=	*

6.	 Now	save	and	close	the	file	in	the	usual	way	before	making	a	backup	of	the
10-mail.conf	file	and	afterwards	opening	it	in	your	favorite	text	editor:

cp	etcdovecot/conf.d/10-mail.conf	etcdovecot/conf.d/10-

mail.conf.BAK

vi	etcdovecot/conf.d/10-mail.conf

7.	 Scroll	down	and	uncomment	(remove	#	character)	the	following	line,	so	it
reads:

mail_location	=	maildir:~/Maildir

8.	 Again,	save	and	close	the	file	in	the	usual	way	before	creating	a	backup
copy	and	then	opening	the	following	file	in	your	favorite	text	editor:

cp	etcdovecot/conf.d/20-pop3.conf	etcdovecot/conf.d/20-

pop3.conf.BAK

vi	etcdovecot/conf.d/20-pop3.conf

9.	 Start	by	uncommenting	the	following	line:

pop3_uidl_format	=	%08Xu%08Xv

10.	 Now	scroll	down	and	amend	the	following	line:

pop3_client_workarounds	=	outlook-no-nuls	oe-ns-eoh

11.	 Save	and	close	the	file	in	the	usual	way.	Now	we	will	allow	plain	text
logins.	To	do	this,	make	a	backup	before	opening	the	following	file:

cp	etcdovecot/conf.d/10-auth.conf	etcdovecot/conf.d/10-

auth.conf.BAK

vi	etcdovecot/conf.d/10-auth.conf

12.	 Change	the	line	#disable_plaintext_auth	=	yes	to	state:

disable_plaintext_auth	=	no

13.	 Save	and	close	the	file.	In	our	final	configuration	setting,	we	will	tell
Dovecot	to	use	our	self-signed	server	certificate.	Just	use	your	Postfix
certificate	from	another	recipe	in	this	chapter	or	create	a	new	one
(otherwise	skip	this	step):

cd	etcpki/tls/certs;	make	postfix-server.pem

14.	 Open	Dovecot's	standard	SSL	config	file	after	making	a	backup	of	the	file:

cp	etcdovecot/conf.d/10-ssl.conf	etcdovecot/conf.d/10-

ssl.conf.BAK

vi	etcdovecot/conf.d/10-ssl.conf

15.	 Now	change	the	following	line	(ssl	=	required)	to	read:

ssl	=	yes

16.	 Now	change	the	following	two	lines	to	point	to	your	server's	own	certificate
path:

ssl_cert	=	<	etcpki/tls/certs/postfix-server.pem

ssl_key	=	<etcpki/tls/certs/postfix-server.pem

17.	 Save	and	close	this	file.	Next,	enable	IMAP,	IMAPS,	POP3,	and	POP3S
ports	in	our	firewall	to	allow	incoming	connections	on	the	corresponding

ports.	For	POP3	and	IMAP,	we	need	to	specify	our	own	firewalld	service
files,	since	they	are	not	available	in	CentOS	7	by	default:

sed	's/995/110/g'	usrlib/firewalld/services/pop3s.xml	|	sed	's/	

over	SSL//g'	>	etcfirewalld/services/pop3.xml

sed	's/993/143/g'	usrlib/firewalld/services/imaps.xml	|	sed	's/	

over	SSL//g'	>	etcfirewalld/services/imap.xml

firewall-cmd	--reload

for	s	in	pop3	imap	pop3s	imaps;	do	firewall-cmd	--permanent	--

add-service=$s;	done;firewall-cmd	--reload

18.	 Now	save	and	close	the	file	before	starting	the	Dovecot	service:

systemctl	start	dovecot

19.	 Finally,	to	test	our	new	POP3/SMTP	network	service,	just	login	on	another
computer	in	the	same	network	and	run	the	following	commands	to	use
mailx	to	access	the	local	mailboxes	on	the	remote	Postfix	server,	which	is
provided	by	Dovecot	with	the	different	access	agent	protocols.	In	our
example,	we	want	to	access	the	local	mailbox	of	the	system	user	john	on
our	Postfix	server	with	the	IP	192.168.1.100	(to	login	to	john's	account,
you	need	his	Linux	user	password)	remotely:

mailx	-f	pop3://john@192.168.1.100

mailx	-f	imap://john@192.168.1.100

20.	 Next,	to	test	the	secure	connections,	use	the	following	commands	and	type
yes	to	confirm	that	the	certificate	is	self-signed	and	not	trusted:

mailx	-v	-S	nss-config-dir=etcpki/nssdb	-f	

pop3s://john@192.168.1.100

mailx	-v	-S	nss-config-dir=etcpki/nssdb	-f	

imaps://john@192.168.1.100

21.	 For	all	four	commands,	you	should	see	the	normal	mailx	inbox	view	of
your	mailbox	with	all	your	mail	messages	of	user	john	as	you	would	run
the	mailx	command	locally	on	the	Postfix	server	to	read	local	mails.

How	it	works...
Having	successfully	completed	this	recipe,	you	have	just	created	a	basic
POP3/SMTP	service,	(with	or	without	SSL	encryption)	for	all	the	valid	server
users	in	your	network,	which	will	deliver	local	mails	from	the	Postfix	server	to
the	client's	e-mail	program.	Every	local	system	user	can	directly	authenticate	and
connect	to	the	mail	server	and	fetch	their	mail	remotely.	Of	course,	there	is	still
much	more	that	can	be	done	to	enhance	the	service,	but	you	can	now	enable	all
local	system	account	holders	to	configure	their	favorite	e-mail	desktop	software
to	send	and	receive	e-mail	messages	using	your	server.

Note

POP3	downloads	the	mails	from	the	server	on	a	local	machine	and	deletes	them
afterwards,	whereas	IMAP	synchronizes	your	mails	with	your	mail	server
without	deleting	them.

So	what	did	we	learn	from	this	experience?

We	started	the	recipe	by	installing	Dovecot.	Having	done	this,	we	then	enabled
Dovecot	to	run	at	boot	before	proceeding	to	make	a	few	brief	changes	to	a	series
of	configuration	files.	Starting	with	the	need	to	determine	which	protocol	will	be
used	in	the	Dovecot	configuration	file	at	etcdovecot/dovecot.cf	here	we	will
use:	IMAP,	POP3,	IMAPS,	and	POP3S.	As	with	most	other	essential	networking
services,	after	installation	they	only	listen	on	the	loopback	device,	so	we	enabled
Dovecot	to	listen	to	all	network	interfaces	installed	in	the	server.	In	the	10-
mail.conf	file	we	then	confirmed	the	mailbox	directory	location	for	Dovecot
(with	the	mail_location	directive)	as	the	location	Postfix	will	put	them	into	on
receiving	mails	so	Dovecot	can	find	them	here	and	pick	them	up.	Following	this,
we	then	opened	the	POP3	protocol	in	20-pop3.conf	by	adding	a	fix	relating	to
various	e-mail	clients	(for	example,	for	the	Outlook	client)	using	the
pop3_uidl_format	and	pop3_client_workarounds	directives.	Finally,	we
enabled	plain	text	authorization	by	making	several	changes	to
etcdovecot/conf.d/10-auth.conf.	Remember	that	using	plain	text
authorization	with	POP3	or	IMAP	without	SSL	encryption	is	considered
insecure	but	because	we	were	concentrating	on	a	local	area	network	(for	a	group
of	trusted	server	users)	we	should	not	necessarily	see	this	as	a	risk.	Afterwards,
we	enabled	POP3	and	IMAP	over	SSL	(POP3S	and	IMAPS)	by	pointing	the	ssl

directives	in	the	10-ssl.conf	file	to	some	existing	self-signed	server
certificates.	Here	we	changed	ssl	=	required	to	ssl=yes	to	not	force	the	client
connecting	to	the	Dovecot	service	to	use	SSL	encryption,	as	we	do	want	to	give
the	user	the	choice	to	enable	encrypted	authentication	if	he	likes	to	but	not	make
it	mandatory	for	older	clients.	Afterwards,	to	make	our	Dovecot	service
available	from	the	other	computers	in	our	network,	we	had	to	enable	the	four
ports	to	allow	POP3,	IMAP,	POP3S,	and	IMAPS,	993,	995,	110,	143,	by	using
the	predefined	firewalld	service	files	and	creating	the	missing	ones	for	IMAP
and	POP3	ourselves.	Later,	we	started	the	Dovecot	service	and	tested	our	new
POP3/IMAP	server	using	the	mailx	command	remotely.	By	supplying	an	-f	file
parameter,	we	were	able	to	specify	our	protocol	and	location.	For	using	SSL
connections,	we	needed	to	supply	an	additional	nss-config-dir	option	pointing
to	our	local	Network	Security	Services	database	where	certificates	are	stored	in
CentOS	7.

Remember,	if	you	happen	to	encounter	any	errors,	you	should	always	refer	to	the
log	file	located	at	varlog/maillog.	Using	plain	text	authorization	should	not	be
used	in	a	real	corporate	environment	and	POP3/IMAP	over	SSL	should	be
preferred.

There's	more...
In	the	main	recipe,	you	were	shown	how	to	install	Dovecot	in	order	to	enable
trusted	local	system	users	with	system	accounts	to	send	and	receive	e-mails.
These	users	will	be	able	to	use	their	existing	username	as	the	basis	of	their	e-
mail	address,	but	by	making	a	few	enhancements	you	can	quickly	enable	aliases,
which	is	a	way	to	define	alternative	e-mail	addresses	for	existing	users.

To	start	building	a	list	of	user	aliases,	you	should	begin	by	opening	the	following
file	in	your	favorite	text	editor:

vi	etcaliases

Now	add	your	new	identities	to	the	end	of	the	file,	where	<username>	will	be	the
name	of	the	actual	system	account:

#users	aliases	for	mail

newusernamea:				<username>

newusernameb:				<username>

For	example,	if	you	have	a	user	called	john	who	currently	(only)	accepts	e-mails
at	john@centos7.home,	but	you	want	to	create	a	new	alias	for	john	called
johnwayne@	centos7.home,	you	will	write:

johnwayne:				john

Repeat	this	action	for	all	the	aliases,	but	when	you	have	finished	remember	to
save	and	close	the	file	in	the	usual	way	before	running	the	following	command:
newaliases.

Setting	up	e-mail	software

There	are	a	vast	number	of	e-mail	clients	on	the	market	and	by	now	you	will
want	to	start	setting	up	your	local	users	to	be	able	to	send	and	receive	e-mails.
This	isn't	complicated	by	any	means,	but	in	order	to	have	a	good	starting	point
you	will	want	to	consider	the	following	principles.	The	format	of	the	e-mail
address	will	be	system_username@domain-name.home.

The	incoming	POP3	settings	will	be	similar	to	the	following:

mailserver.centos7.home,	Port	110

Username:	system_username

Username:	system_username

Connection	Security:	None

Authentication:	Password/None

For	POP3S,	just	change	the	port	to	995	and	use	Connection	Security:	SSL/TLS.
For	IMAP,	just	change	the	port	to	143,	and	for	IMAPS	use	port	993	and
Connection	Security:	SSL/TLS.

The	outgoing	SMTP	settings	will	be	similar	to	the	following:

mailserver.centos7.home,	Port	25

Username:	system_username

Connection	Security:	None

Authentication:	None

Using	Fetchmail
So	far	in	this	chapter,	we	have	shown	you	two	different	forms	of	MTA.	First	we
introduced	you	to	the	Postfix	MTA,	which	is	a	transport	agent	used	for	routing
e-mails	from	a	mail	client	to	or	between	mail	servers	and	delivering	them	to	the
local	mailboxes	on	the	mail	server	using	the	SMTP	protocol.	Then	we	showed
you	another	type	of	MTA	which	sometimes	called	an	access	agent	and	which	the
Dovecot	program	can	be	used	for.	This	delivers	mails	from	the	local	Postfix
mailboxes	to	any	remote	mail	client	programs	using	the	POP3	or	IMAP
protocol.	Now	we	will	introduce	you	to	a	third	type	of	MTA,	which	can	be
termed	a	retrieval	agent,	and	explain	what	we	will	use	the	program	Fetchmail
for.	Nowadays,	almost	everybody	has	more	than	one	e-mail	account,	from	one	or
more	different	mail	providers,	which	can	be	hard	to	maintain	if	you	need	to	login
to	all	those	different	webmail	sites	or	use	different	accounts	in	your	mail
program.	This	is	where	Fetchmail	comes	into	play.	It	is	a	program,	running	on
the	same	server	as	your	domain-wide	Postfix	mail	server	and	which	can	retrieve
all	your	different	e-mails	from	all	your	different	mail	providers	and	pass	them
into	the	local	user	mailboxes	of	your	Postfix	MTA.	Once	they	are	stored	in	their
appropriate	place,	users	can	access	all	these	mails	in	the	usual	way	provided	by
the	access	agent	Dovecot	over	POP3	or	IMAP.	Here	in	this	recipe	we	will	show
you	how	to	install	and	integrate	Fetchmail	into	your	server	running	the	Postfix
MTA.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet	in	order	to	download	additional	packages.	It	is
assumed	that	you	are	working	through	this	chapter	recipe	by	recipe	in	the	order
that	they	appear	and	for	this	reason	it	is	expected	that	Postfix	has	been
configured	as	a	domain-wide	MTA	and	Dovecot	has	been	installed	to	provide	a
POP3/IMAP	mail	access	service.	In	order	to	test	Fetchmail	in	this	recipe,	we
also	need	to	have	registered	some	external	e-mail	addresses:	you	need	the	name
of	the	external	e-mail	server	address	and	the	port	of	your	e-mail	provider,	as	well
as	your	user	login	credentials	at	hand.	Often	you	can	find	this	information	from
your	mail	provider's	Frequently	Asked	Questions	(FAQ)	section	on	their
webpage.	Also,	for	some	e-mail	addresses	you	need	to	first	enable	POP3	or
IMAP	in	your	e-mail	settings	before	you	can	use	Fetchmail.

How	to	do	it...
Fetchmail	is	not	installed	by	default	and	for	this	reason	we	must	begin	by
installing	the	necessary	packages.	Perform	the	following	steps:

1.	 To	begin,	log	in	your	mail	server	running	your	Postfix	server	and	type:

yum	install	fetchmail

2.	 Once	installed,	we	will	log	into	a	system's	user	account	for	which	we	want
to	enable	Fetchmail	to	download	external	mail	from	an	external	mail
provider	into	his	local	mailbox,	in	our	example	it	will	be	the	system	user
john:	su	-	john.	Now	let's	configure	Fetchmail	with	an	external	e-mail
address.	If	your	e-mail	provider	is	called	mailhost.com	and	it	runs	a	POP3
server	at	pop.mailhost.com	and	IMAP	on	imap.mailhost.com	with	the
username	<username>,	here	(please	substitute	your	own	values)	is	an
example	command	line	to	test	connecting	and	fetching	mails	from	this
provider:

fetchmail	pop.mailhost.com	-p	pop3	-u	<username>	-k	-v

3.	 If	you	want	to	use	IMAP	with	the	same	provider	instead:

fetchmail	imap.mailhost.com	-p	IMAP	-u	<username>	-v

4.	 If	the	Fetchmail	command	was	successful,	all	new	messages	will	be
downloaded	from	the	server	into	your	local	mailbox	in	your	user	account.

How	it	works...
Here	in	this	recipe,	we	showed	you	how	to	install	and	test	Fetchmail,	which
provides	automated	mail	retrieval	capabilities	for	any	user	account	having	a
local	mailbox	on	our	Postfix	server.	As	a	result,	for	a	client	connecting	to	the
mail	server	using	POP3	or	IMAP,	the	mails	fetched	this	way	look	like	normal
incoming	e-mails.	Fetchmail	is	often	used	to	combine	and	bundle	all	your
different	mail	accounts	into	one	single	account,	but	you	can	also	use	it	if	your
mail	provider	does	not	have	good	virus	or	spam	filter.	Here	you	download	the
mails	from	your	host's	e-mail	server,	then	process	the	mails	using	tools	such	as
SpamAssassin	or	ClamAV	before	sending	mails	to	your	clients.

So	what	did	we	learn	from	this	experience?

We	began	this	recipe	by	installing	the	YUM	package	for	Fetchmail.	As	we
wanted	to	set	up	Fetchmail	for	a	system	user's	mailbox	called	john,	next	we
logged	in	as	this	user.	Afterwards,	we	tested	the	Fetchmail	program	by	running	a
simple	command	line	to	fetch	mail	from	a	single	mail	provider.	As	said	before,
for	a	successful	login	to	your	external	mail	provider,	you	need	to	know	the	exact
login	information	(server	address,	port,	username,	and	password,	as	well	as	the
type	of	protocol)	of	the	server	before	you	can	use	Fetchmail.

Remember	that,	while	some	e-mail	providers	let	the	user	decide	if	he	wants	to
connect	securely	using	SSL	or	not,	some	hosters	such	as	gmail.com	only	allow
secure	connections.	This	means	that	the	example	command	shown	here	in	this
recipe	is	likely	to	fail	on	every	major	e-mail	provider	if	they	don't	support
POP3/IMAP	access	without	SSL	connections.	Proceed	to	the	next	section	in
order	to	learn	how	to	use	Fetchmail	with	SSL	POP3/IMAP	encryption.

You	should	always	prefer	SSL	encryption	if	your	mail	provider	offers	both.
Also,	some	providers	such	as	gmail.com	only	let	the	user	use	their	services	via
webmail	and	disable	POP3/IMAP	service	features	by	default;	you	need	to	enable
them	in	your	account's	settings	on	your	provider's	website	(see	later).

We	specified	with	the	-p	parameter	which	mail	protocol	to	use	with	the
fetchmail	command.	With	the	-u	parameter,	we	specified	the	user	identification
to	be	used	when	logging	in	to	the	mailserver,	which	is	completely	dependent	on

http://gmail.com
http://gmail.com

our	e-mail	provider.	For	POP3,	we	applied	the	-k	flag	to	ensure	that	the	e-mails
only	get	fetched	from	the	server	but	never	deleted	(which	is	the	default	when
using	the	POP3	protocol).	Finally,	we	used	-v	to	make	the	output	more	verbose
and	give	us	more	information	for	our	simple	test.	If	your	e-mail	provider
supports	SSL,	you	also	need	to	add	a	-ssl	flag	to	the	Fetchmail	command	as
well	as	the	root	certificate	of	the	mail	server	(see	the	next	section	for	more
information).	If	you	run	the	previous	command,	Fetchmail	will	immediately	start
asking	the	mail	server	for	any	mail	in	the	inbox	on	the	server	and	download
anything	to	your	user's	local	mailbox.

There's	more...
In	this	section,	we	will	show	you	how	to	configure	Fetchmail	to	download	all
your	e-mails	from	some	real-life	mail	providers	using	POP3S,	IMAPS,	and	the
POP3	and	IMAP	protocols	to	your	local	mailbox	on	the	Postfix	server	using	a
configuration	file.	Finally,	we	will	show	you	how	to	automate	the	Fetchmail
process.

Configuring	Fetchmail	with	gmail.com	and	outlook.com	e-mail
accounts

Here	we	will	configure	the	different	external	mail	accounts	which	Fetchmail	will
download	from:	the	popular	gmail.com	and	outlook.com	e-mail	providers	and	a
hypothetical	one	at	my-email-server.com.

As	we	learned	in	the	main	recipe	that	Fetchmail	processes	configuration	options
on	the	command	line	by	default,	this	should	not	be	your	preferred	way	of	using
Fetchmail	to	download	your	mail	from	different	mail	accounts	automatically.
Normally	Fetchmail	should	be	running	as	a	service	in	daemon	mode	in	the
background	at	boot	time	or	with	a	cron	job	and	polls	a	list	of	mail	servers
defined	in	a	special	configuration	file	at	specific	time	intervals.	With	this	you
can	conveniently	configure	multiple	mail	servers	and	a	long	list	of	other	options.

Note

At	the	time	of	writing	this	book,	for	gmail.com	to	work	with	Fetchmail	you	need
to	login	to	the	gmail.com	website	with	your	user	account	and	first	enable	IMAP
by	going	to	your	accounts	settings	in	Forwarding	and	POP/IMAP.	Also,
enable	Allow	less	secure	apps	under	Sign-in	&	security	in	My	account.	For
outlook.com,	login	to	your	mail	account	on	the	webpage,	then	click	on	options,
again	click	on	options,	then	click	on	Connect	devices	and	apps	with	POP,	and
then	click	on	enable	POP.

Both	outlook.com	and	gmail.com	use	secure	POP3S	and	IMAPS	protocols,	so
you	need	to	download	and	install	the	root	certificates	they	are	signing	their	SSL
certificates	with	on	your	Fetchmail	server	first	in	order	to	be	able	to	use	their
services.	Here	we	can	install	the	Mozilla	CA	certification	bundle,	which	has
been	compiled	by	the	Mozilla	foundation	and	includes	the	most	commonly	used

http://gmail.com
http://outlook.com
http://gmail.com
http://gmail.com
http://outlook.com
http://outlook.com
http://gmail.com

root	server	certificates	used	by	all	major	websites	and	services,	such	as	those
used	by	our	mail	providers.	For	gmail.com	we	need	the	Equifax	Secure
Certificate	Authority	root	certificate	and	for	outlook.com	we	need	the	root	server
certificate	from	Globalsign.	Fetchmail	needs	these	root	certificates	to	verify	the
validity	of	any	other	SSL	certificate	downloaded	from	the	e-mail	server.	Login
as	root	on	your	Postfix	server	and	install	the	following	package:

yum	install	ca-certificates

Afterwards,	login	as	a	Linux	system	user,	for	example,	john,	who	we	will	create
a	new	Fetchmail	configuration	file	for,	and	who	already	has	a	local	Postfix
mailbox	directory	on	our	server	located	in	his	home	directory	under	~/Maildir.
Now	before	configuring	any	account	in	the	Fetchmail	configuration	file,	you
should	always	first	test	if	the	connection	and	authentication	to	the	specific
account	are	working	with	the	Fetchmail	command	line,	as	shown	in	the	previous
recipe.	For	testing	our	different	mail	providers'	accounts,	we	need	three	different
command	line	calls.	For	testing	if	your	provider	is	using	SSL	encryption,	you
need	the	–ssl	flag;	a	typical	output	for	a	mail	provider	who	is	not	allowing	non-
SSL	connections	could	be:

Fetchmail:	SSL	connection	failed.

Fetchmail:	socket	error	while	fetching	from	<userid>@<mailserver>

Fetchmail:	Query	status=2	(SOCKET)

If	your	google	and	outlook	username	is	johndoe	at	both	mail	providers	for
testing	google	with	the	IMAPS	protocol	try	(enter	your	e-mail	user's	password
when	prompted):

fetchmail	imap.gmail.com	-p	IMAP	--ssl	-u	johndoe@gmail.com	-k	-v

If	the	login	was	successful,	the	output	should	be	similar	to	(truncated):

Fetchmail:	IMAP<	A0002	OK	johndoe@gmail.com	authenticated	(Success)

9	messages	(2	seen)	for	johndoe	at	imap.gmail.com.

Fetchmail:	IMAP>	A0005	FETCH	1:9	RFC822.SIZE

For	testing	outlook.com	with	POP3S,	use:

fetchmail	pop-mail.outlook.com	-p	POP3	--ssl	-u	johndoe@outlook.com

-k	-v

On	success,	the	output	should	be	similar	to	(it	has	been	truncated):

http://gmail.com
http://outlook.com
http://outlook.com

Fetchmail:	POP3>	USER	johndoe@outlook.com

Fetchmail:	POP3<	+OK	password	required

Fetchmail:	POP3<	+OK	mailbox	has	1	messages

For	our	third	hypothetical	e-mail	account	at	my-email-server.com,	we	will	use
POP3	or	IMAP	without	SSL	so	test	it	using	our	account:

fetchmail	pop3.my-email-server.com	-p	POP3	-u	johndoe	-k	-v

fetchmail	imap.my-email-server.com	-p	IMAP	-u	johndoe		-v

You	should	also	check	if	all	the	fetched	mails	from	your	external	providers	have
been	downloaded	correctly.	View	your	system	user's	local	mailbox	using	the
mailx	command	(mailx	-f	~/Maildir).	After	we	successfully	verify	that
Fetchmail	is	able	to	connect	to	the	servers	and	fetch	some	mails,	we	now	can
proceed	to	create	a	local	Fetchmail	configuration	file	in	our	system	user's	home
directory	in	order	to	automate	this	process	and	configure	multiple	mail
addresses.	Start	by	opening	a	new	empty	file	using	vi	~/.fetchmailrc.
Remember	that	all	the	commands	which	can	be	put	on	the	command	line	can
also	be	used	with	slightly	different	names	in	the	configuration	file	(and	much
more).	Now	put	in	the	following	content	(replace	john	with	your	actual	Linux
system	user,	johndoe	with	your	e-mail	user	account	name,	and	secretpass	with
your	actual	mail	password	for	this	account):

set	postmaster	"john"

set	logfile	fetchmail.log

poll	imap.gmail.com	with	proto	IMAP

user	'johndoe@gmail.com'	there	with	password	'secretpass'	is	john

here

ssl

fetchall

poll	pop-mail.outlook.com	with	proto	POP3

user	'johndoe@outlook.com'	there	with	password	'secretpass'	is	john

here

ssl

fetchall

poll	pop3.my-email-server.com	with	proto	POP3

user	'johndoe@my-email-server.com'	there	with	password	'secretpass'

is	john	here

fetchall

Save	and	close	this	file.	In	this	file,	we	used	the	following	important	commands:

postmaster:	Defines	the	local	Linux	user	which	will	receive	all	the

warning	or	error	mails	if	Fetchmail	runs	into	problems.
logfile:	Defines	a	filename	for	a	log	file,	which	can	be	very	helpful	for	us
to	supervise	and	debug	Fetchmail	output	when	it's	running	continuously
over	a	long	period	of	time	in	the	background.
poll	section:	Specifies	downloading	mails	from	a	specific	mail	provider.
For	every	mail	account,	you	will	define	one	such	poll	section.	As	you	can
see	here,	the	syntax	is	very	similar	to	the	one	used	on	the	command	line
when	we	tested	the	single	connections.	With	proto	we	define	the	mail
protocol,	user	is	the	login	user	for	the	mail	account,	password	is	the	login
password	of	your	account,	and	with	the	is	<username>	here	parameter
you	specify	which	local	system	user	account	this	mail	account	is	tied	to.	For
SSL	connections	you	need	the	ssl	flag,	and	we	specified	the	fetchall
parameter	to	make	sure	we	also	download	all	the	e-mail	messages	flagged
as	read	by	the	e-mail	provider	as	otherwise	Fetchmail	would	not	download
e-mails	that	have	already	been	read.

Next	change	the	permissions	of	the	.fetchmailrc	file	because	it	contains
passwords	and	should	therefore	not	be	read	by	anyone	other	than	our	own	user:

chmod	600	~/.fetchmailrc

Finally,	we	execute	Fetchmail	with	the	settings	given	in	our	configuration	file.
For	testing,	we	will	use	a	very	verbose	parameter	here:	fetchmail	-vvvv.	All
the	new	mails	from	all	your	different	e-mail	providers	should	now	be	fetched,	so
afterwards	you	should	go	through	the	output	and	see	if	every	server	was	ready
and	could	be	polled	just	as	the	single	tests	we	did	on	the	command	line	tests
earlier.	All	the	new	mails	should	have	been	downloaded	to	the	local	mailbox,	so
in	order	to	read	your	local	mails	you	can	use	the	mailx	command	as	usual,	like:
mail	-f	~/Maildir.

Automating	Fetchmail

As	just	said,	we	can	now	manually	start	the	polling	process	every	time	we	want
by	just	typing	in	fetchmail	on	the	command	line.	This	will	poll	and	fetch	all
new	mails	from	the	mail	servers	specified	in	our	new	configuration	file	and	then
after	processing	each	entry	once	it	will	exit	the	program.	Now	what's	still
missing	is	a	mechanism	to	continuously	query	our	mail	servers	at	a	specific
interval	updating	our	mailbox	whenever	new	mails	can	be	fetched.	Here	you	can
use	two	approaches.	Either	run	the	fetchmail	command	as	a	cron	job	or	as	an

alternative	you	can	start	Fetchmail	in	daemon	mode	(use	the	parameter	set
daemon	in	your	.fetchmailrc	config	file	to	activate	it.)	and	put	it	in	the
background.	This	way	Fetchmail	will	run	constantly	and	wake	up	at	a	given	time
point	and	start	the	polling	until	everything	finishes	processing	and	then	go	back
to	sleep	until	the	next	interval	has	been	reached.

As	both	methods	are	basically	the	same,	here	we	will	show	you	how	to	run
Fetchmail	as	a	cron	job,	which	is	much	easier	to	set	up	because	we	don't	have	to
create	some	custom	systemd	service	files	(currently	in	CentOS	7	there	is	no
fetchmail	systemd	service	available	out-of-the	box).	For	every	system	user	(for
example,	john)	who	has	a	fetchmail	configuration	file,	to	start	the	e-mail	server
polling	process	every	10	minutes	type	in	the	following	command	once	to	register
the	cron	job:

crontab	-l	|	{	cat;	echo	"/10				*	usrbin/fetchmail	&>	devnull

";	}	|	crontab	-

Note

Do	not	set	the	Fetchmail	polling	cycle	shorter	than	every	5	minutes;	otherwise,
some	mail	providers	may	block	or	ban	you,	as	it	just	overloads	their	systems.

Chapter	12.	Providing	Web	Services
In	this	chapter,	we	will	cover	the	following:

Installing	Apache	and	serving	web	pages
Enabling	system	users	and	building	publishing	directories
Implementing	name-based	hosting
Implementing	CGI	with	Perl	and	Ruby
Installing,	configuring,	and	testing	PHP
Securing	Apache
Setting	up	HTTPS	with	Secure	Sockets	Layer	(SSL)

Introduction
This	chapter	is	a	collection	of	recipes	that	provides	the	necessary	steps	to	serve
web	pages.	From	installing	a	web	server	to	delivering	a	dynamic	page	through
SSL,	this	chapter	provides	the	starting	point	required	to	implement	an	industry
standard	hosting	solution	anywhere	and	at	any	time.

Installing	Apache	and	serving	web
pages
In	this	recipe,	we	will	learn	how	to	install	and	configure	the	Apache	web	server
to	enable	the	serving	of	static	web	pages.	Apache	is	one	of	the	world's	most
popular	open	source	web	servers.	It	runs	as	the	backend	for	over	half	of	all	the
Internet's	web	sites	and	can	be	used	to	serve	both	static	and	dynamic	web	pages.
Commonly	referred	to	as	httpd,	it	supports	an	extensive	range	of	features.	It	is
the	purpose	of	this	recipe	to	show	you	how	easily	it	can	be	installed	using	the
YUM	package	manager	so	that	you	can	maintain	your	server	with	the	latest
security	updates.	Apache	2.4	is	available	on	CentOS	7.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet	in	order	to	download	additional	packages.	It	is
expected	that	your	server	will	be	using	a	static	IP	address	and	a	hostname.

How	to	do	it...
Apache	is	not	installed	by	default	and	for	this	reason	we	will	begin	by	installing
the	necessary	packages	using	the	YUM	package	manager.

1.	 To	begin,	log	in	as	root	and	type	the	following	command:

yum	install	httpd

2.	 Create	a	home	page	by	typing:

vi	varwww/html/index.html

3.	 Now	add	the	required	HTML.	You	can	use	the	following	code	as	a	starting
point	but	it	is	expected	that	you	will	want	to	modify	it	to	suit	your	own
needs:

<!DOCTYPE	html>

<html	lang="en">

<head><title>Welcome	to	my	new	web	server</title></head>

<body><h1>Welcome	to	my	new	web	server</h1>

<p>Lorem	ipsum	dolor	sit	amet,	adipiscing	elit.</p></body>

</html>

4.	 You	can	now	remove	the	Apache	2	test	page	with	the	following	command:

rm	-f	etchttpd/conf.d/welcome.conf

5.	 Having	completed	these	steps,	we	will	now	consider	the	need	to	configure
the	httpd	service	for	basic	usage.	To	do	this,	open	the	httpd	configuration
file	in	your	favorite	text	editor	by	typing	(after	you	have	made	a	backup	of
the	file):

cp	etchttpd/conf/httpd.conf	etchttpd/conf/httpd.conf.BAK

vi	etchttpd/conf/httpd.conf

6.	 Now	scroll	down	to	find	the	line	ServerAdmin	root@localhost.	The
traditional	approach	to	setting	this	value	is	based	on	the	use	of	the
webmaster	identity,	so	simply	modify	the	e-mail	address	to	reflect
something	more	relevant	to	your	own	needs.	For	example,	if	your	server's
domain	name	was	www.centos7.home	then	your	entry	will	look	similar	to
this:

ServerAdmin	webmaster@centos7.home

7.	 Now	scroll	down	a	few	more	lines	to	find	the	ServerName	directive	as
follows:	#ServerName	www.example.com:80.	Uncomment	this	line	(which
means	remove	the	leading	#	sign	at	its	beginning)	and	replace	the	value
www.example.com	with	something	more	appropriate	to	your	own	needs.	For
example,	if	your	server's	domain	name	was	www.centos7.home	then	your
entry	will	look	as	follows:

ServerName	www.centos7.home:80

8.	 Next,	we	will	expand	the	DirectoryIndex	directive	a	bit	more.	Find	the
line	DirectoryIndex	index.html,	which	is	part	of	the	<IfModule
dir_module>	block,	then	change	it	to:

DirectoryIndex	index.html	index.htm

9.	 Save	and	close	the	file,	and	then	type	the	following	command	to	test	the
config	file:

apachectl	configtest

10.	 Next,	let's	configure	our	web	server's	firewall	by	allowing	incoming	http
connections	(this	defaults	to	port	80)	to	the	server:

firewall-cmd	--permanent	--add-service	http	&&	firewall-cmd	--

reload		

11.	 Now	proceed	to	set	the	httpd	service	to	start	at	boot	and	start	the	service:

systemctl	enable	httpd	&&	systemctl	start	httpd

12.	 You	can	now	test	httpd	from	any	computer	in	the	same	network	as	your
web	server	(both	systems	should	be	able	to	see	and	ping	each	other),
pointing	your	browser	at	the	following	URL	by	replacing	XXX.XXX.XXX.XXX
with	the	IP	address	of	your	server	in	order	to	see	our	own	custom	Apache
test	page	we	created:

http://XXX.XXX.XXX.XXX.

13.	 Alternatively,	if	you	don't	have	a	web	browser,	you	can	check	if	Apache	is
up	and	running	using	curl	by	fetching	our	test	page	on	any	computer	in
your	network:

curl	http://XXX.XXX.XXX

How	it	works...
Apache	is	a	software	package	that	enables	you	to	publish	and	serve	web	pages,
and	is	more	commonly	known	as	httpd,	Apache2	or	simply	Apache.	It	was	the
purpose	of	this	recipe	to	show	you	how	easily	CentOS	enables	you	to	get	started
with	your	very	first	website.

So	what	did	we	learn	from	this	experience?

We	began	the	recipe	by	installing	Apache	via	the	YUM	package	manager	and
the	package	named	httpd.	Having	done	this,	we	learned	that	on	CentOS	7	the
default	location	to	serve	static	HTML	is	varwww/html	so	our	first	task	was	to
create	a	suitable	home	page,	which	we	put	in	varwww/html/index.html.	Here
we	used	a	basic	HTML	template	to	get	you	started	and	it	is	expected	that	you
would	like	to	customize	the	look	and	feel	of	this	page	yourself.	Following	this,
we	then	removed	the	default	Apache	2	welcome	page	found	in
etchttpd/conf.d/welcome.conf.	Following	this,	the	next	stage	was	to	open	the
httpd.conf	configuration	file	in	our	favorite	text	editor	after	making	a	backup
of	it	so	we	could	revert	our	changes	if	any	problems	occurred.	First	we	defined
the	server's	e-mail	address	and	the	server	name,	which	often	appear	in	the	error
messages	on	the	server-generated	web	pages;	for	this	reason	it	should	reflect
your	domain	name.	Next,	we	adjusted	the	DirectoryIndex	directive,	which
defines	which	files	will	be	sent	first	to	the	browser	if	a	directory	is	requested.
Often	people	request	not	a	specific	web	page	but	a	directory	instead.	For
example,	if	you	browse	to	www.example.com,	you	request	a	directory,	while
www.example.com/welcome.html	is	a	specific	web	page.	By	default	Apache
sends	the	index.html	in	the	requested	directory	but	we	expanded	this	since	a	lot
of	websites	use	the	.htm	extension	instead.	Finally,	we	saved	and	closed	the
httpd	configuration	file	in	the	usual	way	before	proceeding	to	check	if	the
Apache	configuration	file	contained	any	errors	by	using	the	apachectl
configtest	command.	This	should	print	out	a	Syntax	OK	message	so	we	could
enable	the	httpd	service	to	start	at	boot	time.	We	had	to	open	the	standard	HTTP
port	80	in	our	firewalld	to	allow	incoming	HTTP	requests	to	the	server,	and
finally	we	then	started	the	httpd	service.	Remember,	you	can	also	always	reload
Apache's	configuration	file	if	it	has	been	changed	without	fully	restarting	the
service,	by	using:	systemctl	reload	httpd.	Having	completed	these	steps,	it
was	simply	a	matter	of	opening	your	browser	from	another	computer	in	the	same

network	and	electing	a	method	of	viewing	our	new	Apache	start	page.	You	can
use	your	server's	IP	address	(for	example,	http://192.168.1.100),	while	those
with	hostname	support	can	type	the	hostname	(for	example,
http://www.centos7.home)	instead.	Apache's	access	and	error	log	files	can	be
found	in	varlog/httpd.	To	get	a	live	view	of	who	is	currently	accessing	your
web	server,	open	varlog/httpd/access_log;	to	see	all	the	errors,	type
varlog/httpd/error_log.

Apache	is	a	big	subject	and	we	cannot	cover	every	nuance,	but	over	the	coming
recipes	we	will	continue	to	expose	additional	functionalities	that	will	enable	you
to	build	a	web	server	of	choice.

Enabling	system	users	and	building
publishing	directories
In	this	recipe,	we	will	learn	how	Apache	provides	you	with	the	option	to	allow
your	system	users	to	host	web	pages	within	their	home	directories.	This
approach	has	been	used	by	ISPs	since	the	outset	of	web	hosting	and	in	many
respects	it	continues	to	flourish	due	to	its	ability	to	avoid	the	more	complex
method	of	virtual	hosting.	In	the	previous	recipe	you	were	shown	how	to	install
the	Apache	web	server,	and	with	the	desire	to	provide	hosting	facilities	for
system	users,	it	is	the	purpose	of	this	recipe	to	show	you	how	this	can	be
achieved	in	CentOS	7.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges	and	a	console-based	text	editor	of	your
choice.	It	is	expected	that	your	server	will	be	using	a	static	IP	address	that
supports	a	hostname	or	domain	name	and	that	the	Apache	web	server	is	already
installed	and	currently	running.	Also,	at	least	one	system	user	account	should	be
available	on	the	server.

How	to	do	it...
To	provide	the	functionality	offered	by	this	recipe,	no	additional	packages	are
required	but	we	will	need	to	make	some	modifications	to	the	Apache
configuration	file.

1.	 To	begin,	log	in	as	root	and	open	the	Apache	userdir	configuration	file	in
your	favorite	text	editor	by	typing	the	following	command,	after	you	have
created	a	backup	copy	of	it	first:

cp	etchttpd/conf.d/userdir.conf	

etchttpd/conf.d/userdir.conf.BAK

vi	etchttpd/conf.d/userdir.conf

2.	 In	the	file,	locate	the	directive	that	reads	as	UserDir	disabled.	Change	it	to
the	following:

UserDir	public_html

3.	 Now	scroll	down	to	the	<Directory	"home*/public_html">	section	and
replace	the	existing	block	with	the	one	here:

<Directory	home*/public_html>

				AllowOverride	All

				Options	Indexes	FollowSymLinks

				Require	all	granted

</Directory>

4.	 Save	and	exit	the	file.	Now	log	in	as	any	system	user	to	work	with	your
publishing	web	directory	(su	-	<username>),	and	then	create	a	web
publishing	web	folder	in	your	home	directory	and	a	new	home	page	for
your	user:

mkdir	/public_html	&&	vi	/public_html/index.html

5.	 Now	add	the	required	HTML.	You	can	use	the	following	code	as	a	starting
point	but	it	is	expected	that	you	will	modify	it	to	suit	your	own	needs:

<!DOCTYPE	html>

<html	lang="en">

<head><title>Welcome	to	my	web	folder's	home	page</title>

</head>

<body><h1>Welcome	to	my	personal	home	page</h1></body>

</html>

6.	 Now	modify	the	permissions	of	the	Linux	system	user's	<username>	home
folders	by	typing:

chmod	711	home<username>

7.	 Set	the	read/write	permissions	for	public_html	755	so	Apache	can	execute
it	later:

chmod	755	~/public_html	-R

8.	 Now	log	in	as	root	again	using	su	-	root	to	configure	SELinux
appropriately	for	the	use	of	http	home	directories:

setsebool	-P	httpd_enable_homedirs	true

9.	 As	root,	change	the	SELinux	security	context	for	your	user's	web	public
directory	(this	needs	policycoreutils-python	package	to	be	installed)
with	the	username	<user>:

semanage	fcontext	-a	-t	httpd_user_content_t	

home<user>/public_html

restorecon	-Rv	home<user>/public_html

10.	 To	complete	this	recipe,	simply	reload	the	httpd	service	configuration:

apachectl	configtest	&&	systemctl	reload	httpd

11.	 You	can	now	test	your	setup	by	browsing	to	(substitute	<username>
appropriately):	http://<SERVER	IP	ADDRESS>/~<username>	in	any
browser.

How	it	works...
In	this	recipe,	we	learned	how	easy	it	is	to	host	your	own	peers	by	enabling	user
directories	on	the	Apache	web	server.

So	what	did	we	learn	from	this	experience?

We	began	the	recipe	by	making	a	few	minor	configuration	changes	to	Apache's
userdir.conf	in	order	to	set	up	the	user	directory	support.	We	activated	the	user
directories	by	adjusting	the	UserDir	directive	from	disabled	to	pointing	to	the
name	of	the	HTML	web	directory	within	each	user's	home	directory,	which	will
contain	all	our	user's	web	content,	and	call	this	public_html	(you	can	change
this	directory	name	to	anything	you	like	but	public_html	is	the	de	facto
standard	for	naming	it).	Then	we	proceeded	to	modify	the	<Directory
home*/public_html>	tag.	This	directive	applies	all	its	enclosed	options	to	the
parts	of	the	filesystem	defined	in	the	beginning	tag	home*/public_html.	In	our
example,	the	following	options	are	enabled	for	this	directory:	Indexes	are	used
whenever	a	directory	does	not	have	index.html.	This	will	show	the	file	and
folder	content	of	the	directory	as	HTML.	As	we	will	see	in	the	recipe	Securing
Apache,	this	should	be	avoided	for	your	web	root	whereas,	for	serving	user
directories,	this	can	be	a	good	choice	if	you	just	want	to	make	your	home	folder
accessible	to	your	peers	so	they	can	quickly	share	some	files	(if	you	have	any
security	concerns,	remove	this	option).	The	FollowSymLinks	option	allows
symbolic	links	(man	ln)	from	this	public_html	directory	to	any	other	directory
or	file	in	the	filesystem.	Again,	avoid	this	in	your	web	root	folder	but	for	home
directories	it	can	be	useful	if	you	need	to	make	files	or	folders	accessible	within
the	public_html	folder	without	the	need	to	copy	them	into	it	(user	directories
often	have	disk	quotas).	Next	we	configured	access	control	to	the	public_html
folder.	We	did	so	by	setting	Require	all	granted,	which	tells	Apache	that	in
this	public_html	folder	anyone	from	everywhere	can	access	the	contents
through	the	HTTP	protocol.	If	you	want	to	restrict	access	to	your	public_html
folder	then	you	can	replace	all	granted	with	different	options.	To	allow	access
based	on	a	hostname	use,	for	example	Require	host	example.com.	With	the	ip
parameter	we	can	restrict	the	public_html	folder	to	an	internally	available
network	only,	for	example	Require	ip	192.168.1.0/24.	This	is	particularly
useful	if	your	web	server	has	multiple	network	interfaces	and	one	IP	address	is
used	for	connecting	to	the	public	Internet	and	another	one	for	your	internal

private	network.	You	can	add	multiple	Require	lines	within	a	Directory	block.
Remember	to	always	set	at	least	Require	local	which	allows	local	access.

Having	saved	our	work,	we	then	began	to	make	various	changes	to	the	home
directories.	First	we	created	the	actual	public_html	folder	within	our	user's
home	directory,	which	will	be	the	actual	personal	web	publishing	folder	later.
Next,	we	changed	its	permissions	to	755	which	means	that	our	user	can	do
everything	in	the	folder	but	all	the	other	users	and	groups	can	only	read	and
execute	its	content	(and	change	into	this	folder).	This	type	of	permission	is
needed	because	all	the	files	in	the	public_html	folder	will	be	accessed	by	a	user
named	apache	with	the	group	apache	if	someone	requests	its	content	via	the
Apache	web	server	later.	If	no	read	or	execute	permissions	are	set	for	the	other
users	flag	(man	chmod),	we	will	get	an	Access	denied	message	in	our	browser.
This	will	also	be	the	case	if	we	do	not	change	the	permissions	for	the	parent
home<username>	directory	in	advance	because	parent	directory	permissions	can
affect	its	child	subfolder	permissions.	A	normal	user	home	directory	in	CentOS
Linux	has	the	permissions	700	which	means	that	the	home	directory's	owner	can
do	anything	but	everyone	else	is	completely	locked	out	of	the	home	folder	and
its	content.

As	written	before,	the	Apache	user	needs	access	to	the	subfolder	public_html	so
we	have	to	change	the	permissions	to	711	for	the	home	folder	so	that	everyone
else	can	at	least	change	into	the	directory	(and	then	access	the	subfolder
public_html	as	well	since	this	is	set	to	be	read/write	accessible).	Next,	we	set
the	security	context	of	our	new	web	folder	for	SELinux.	On	systems	running
SELinux,	it's	mandatory	to	set	all	the	Apache	web	publishing	folders	to	the
httpd_user_content_t	SELinux	label	(along	with	their	contents)	in	order	to
make	them	available	to	Apache.	Also,	we	made	sure	to	set	the	correct	SELinux
Boolean	to	enable	Apache	home	directories	(which	is	enabled	by	default):
httpd_enable_homedirs	is	true.	Read	Chapter	14,	Working	with	SELinux	to
learn	more	about	SELinux.

You	should	be	aware	that	the	previous	process	of	managing	the	home	directories
should	be	repeated	for	each	user.	You	will	not	have	to	restart	Apache	every	time
you	enable	a	new	system	user	but,	having	completed	these	steps	for	the	first
time,	it	will	be	simply	a	matter	of	reloading	the	configuration	of	the	httpd
service	to	reflect	the	initial	changes	made	to	the	configuration	file.	From	this
point	on,	your	local	system	users	can	now	publish	web	pages	using	a	unique

URL	based	on	their	username.

Implementing	name-based	hosting
Normally,	if	you	install	Apache	as	shown	in	the	previous	recipe,	you	can	host
exactly	one	website	that	is	accessible	as	the	server's	IP	address	or	the	domain
name	Apache	is	running	on,	for	example,	http://192.168.1.100	or
http://www.centos7.home.	Such	a	system	is	very	wasteful	for	your	server
resources	as	you	would	need	individual	servers	with	Apache	installed	for	every
single	domain	you	want	to	host.	Name-based	or	virtual	hosting	is	used	to	host
multiple	domains	on	the	same	Apache	web	server.	If	a	number	of	different
domain	names	have	already	been	assigned	to	your	Apache	web	server's	IP
address	using	a	DNS	server	or	through	a	local	etchosts	file,	virtual	hosts	can	be
configured	for	every	available	domain	name	to	direct	the	user	to	a	specific
directory	on	the	Apache	server	containing	the	site's	information.	Any	modern
webspace	provider	uses	this	kind	of	virtual	hosting	to	divide	one	web	server's
space	into	multiple	sites.	There	is	no	limit	to	this	system	and	to	the	number	of
sites	to	create	from	it	as	long	as	your	web	server	can	handle	its	traffic.	In	this
recipe,	we	will	learn	how	to	configure	name-based	virtual	hosting	on	the	Apache
web	server.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges	and	a	console-based	text	editor	of	your
choice.	It	is	expected	that	your	server	will	be	using	a	static	IP	address	and
Apache	is	installed	and	currently	running,	and	that	you	have	enabled	system
users	publishing	directories	in	an	earlier	recipe.	Virtual	host	names	cannot	work
without	previously	setting	up	one	or	more	domains	or	subdomains	outside
Apache.

For	testing,	you	could	set	up	your	etchosts	(see	the	Setting	your	hostname	and
resolving	the	network	recipe	in	Chapter	2,	Configuring	the	System)	or	configure
some	A	or	CNAMES	in	your	BIND	DNS	server	(refer	to	Chapter	9,	Working
with	Domains)	to	use	different	domain	names	or	subdomains,	such	as
www.centos7.home,	all	pointing	to	your	Apache	web	server's	IP	address.

Note

A	common	misconception	is	that	Apache	can	create	domain	names	for	your
Apache	web	server	on	its	own.	This	is	not	true.	The	different	domain	names	you
want	to	wire	to	different	directories	using	virtual	hosts	need	to	be	set	up	in	a
DNS	server	or	etchosts	file	to	point	to	your	Apache	server's	IP	address	before
you	can	use	them	with	virtual	hosts.

How	to	do	it...
For	the	purpose	of	this	recipe	we	will	be	building	some	local	virtual	hosts	with
the	following	Apache	example	subdomain	names:	www.centos7.home,
web1.centos7.home,	web2.centos7.home	and	<username>.centos7.home	for
the	corresponding	web	publishing	folders	varwww/html,	varwww/web1,
varwww/web2,	and	home<username>/public_html	for	the	domain's	network
name	centos7.home.	These	names	are	interchangeable	and	it	is	expected	that
you	will	want	to	customize	this	recipe	based	on	something	more	appropriate	to
your	own	needs	and	circumstances.

1.	 To	begin,	log	in	as	root	on	your	Apache	server	and	create	a	new
configuration	file	that	will	hold	all	our	virtual	host	definitions:

vi	etchttpd/conf.d/vhost.conf

2.	 Now	put	in	the	following	content,	customizing	the	centos7.home	value	and
the	username	<username>	to	fit	your	own	needs:

<VirtualHost	:80>

				ServerName	centos7.home

				ServerAlias	www.centos7.home

				DocumentRoot	varwww/html/

</VirtualHost>			

<VirtualHost	:80>

				ServerName		web1.centos7.home

				DocumentRoot	varwww/web1/public_html/

</VirtualHost>

<VirtualHost	:80>

				ServerName		web2.centos7.home

				DocumentRoot	varwww/web2/public_html/

</VirtualHost>

<VirtualHost	:80>

				ServerName		<username>.centos7.home

				DocumentRoot	home<username>/public_html/

</VirtualHost>

3.	 Now	save	and	close	the	file	in	the	usual	way	before	proceeding	to	create	the
directories	for	both	virtual	hosts	that	are	currently	missing:

mkdir	-p	varwww/web1/public_html	varwww/web2/public_html

4.	 Having	done	this,	we	can	now	create	default	index	pages	for	the	missing
subdomains	web1	and	web2	by	using	our	favorite	text	editor,	as	follows:

echo	"<html><head></head><body><p>Welcome	to	Web1</p></body>

</html>"	>	varwww/web1/public_html/index.html

echo	"<html><head></head><body><p>Welcome	to	Web2</p></body>

</html>"	>	varwww/web2/public_html/index.html

5.	 Now	reload	the	Apache	web	server:

apachectl	configtest	&&	systemctl	reload	httpd

6.	 Now,	for	simple	testing	purposes,	we	will	just	configure	all	our	new
Apache	web	server's	subdomains	in	the	hosts	file	of	the	client	computer
that	wants	to	access	these	virtual	hosts,	but	remember	that	you	can	also
configure	these	subdomains	in	a	BIND	DNS	server.	Login	to	this	client
computer	(it	needs	to	be	in	the	same	network	as	our	Apache	server)	as	root
and	add	the	following	lines	to	the	etchosts	file,	assuming	our	Apache
server	has	the	IP	address	192.168.1.100:

192.168.1.100	www.centos7.home

192.168.1.100	centos7.home

192.168.1.100	web1.centos7.home

192.168.1.100	web2.centos7.home

192.168.1.100	john.centos7.home

7.	 Now	on	this	computer,	open	a	browser	and	test	things	out	by	typing	the
following	addresses	into	the	address	line	(replace	<username>	with	the
username	you	defined	for	the	virtual	host):	http://www.centos7.home,
http://web1.centos7.home,	http://web2.centos7.home	and
http://<username>.centos7.home.

How	it	works...
The	purpose	of	this	recipe	was	to	show	you	how	easy	it	is	to	implement	name-
based	virtual	hosting.	This	technique	will	boost	your	productivity	and	using	this
approach	will	give	you	unlimited	opportunities	to	domain-based	web	hosting.

So	what	did	we	learn	from	this	experience?

We	began	by	creating	a	new	Apache	configuration	file	to	hold	all	our	virtual
host	configuration.	Remember,	all	files	ending	with	the	.conf	extension	in	the
etchttpd/conf.d/	directory	will	be	loaded	automatically	when	Apache	is
started.	Following	this,	we	then	proceeded	to	put	in	the	relevant	directive	blocks,
starting	with	our	default	server	root	centos7.home	and	the	alias
www.centos7.home.	The	most	important	option	in	any	virtual	host	block	is	the
ServerName	directive,	which	maps	an	existing	domain	name	for	our	web	server's
IP	address	to	a	specific	directory	on	the	filesystem.	Of	course,	there	are	many
more	settings	you	can	include,	but	the	previous	solution	provides	the	basic
building	blocks	that	will	enable	you	to	use	it	as	the	perfect	starting	point.	The
next	step	was	to	then	create	individual	entries	for	our	centos7.home	subdomains
web1,	web2,	and	<username>.	Remember,	each	virtual	host	supports	the	typical
Apache	directives	and	can	be	customized	to	suit	your	needs.	Refer	to	the	official
Apache	manual	(install	the	YUM	package	httpd-manual,	then	go	to	the	location
usrshare/httpd/manual/vhosts/)	to	learn	more.	After	we	created	our	virtual
host	blocks	for	every	subdomain	we	wanted,	we	then	proceeded	to	create	the
directories	to	hold	the	actual	content	and	created	a	basic	index.html	in	each
directory.	In	this	example,	our	web1	and	web2	content	directories	were	added	to
varwww.	This	is	not	to	imply	that	you	cannot	create	these	new	folders	in	another
place.	In	fact	most	production	servers	generally	place	these	new	directories	in
the	home	folder,	as	shown	with	our	home<username>/public_html	example.
However,	if	you	do	intend	to	take	this	approach,	remember	to	modify	the
permissions	and	ownership,	as	well	as	SELinux	labels	(outsidevarwww	you	need
to	label	Apache	directories	as	httpd_sys_content_t)	of	these	new	directories	so
that	they	can	be	used	as	they	were	intended.	Finally,	we	reloaded	the	Apache
web	service	so	that	our	new	settings	would	take	immediate	effect.	We	could	then
directly	use	the	subdomain	names	in	our	browser	to	browse	to	our	virtual	hosts
when	correctly	set	up	in	etchosts	on	the	client	or	on	a	BIND	DNS	server.

Implementing	CGI	with	Perl	and
Ruby
In	the	previous	recipes	in	this	chapter,	our	Apache	service	only	served	static
content,	which	means	that	everything	requested	by	a	web-browser	already
existed	in	a	constant	state	on	the	server,	for	example	as	plain	HTML	text	files
that	don't	change.	Apache	simply	sends	the	content	of	a	specific	file	from	the
web	server	to	the	browser	as	a	response	where	it	then	gets	interpreted	and
rendered.	If	there	were	no	way	to	change	the	contents	sent	to	the	client,	the
Internet	would	be	really	boring	and	not	the	huge	success	it	is	today.	Not	even	the
simplest	example	of	dynamic	content,	such	as	showing	a	web	page	with	the	web
server's	current	local	time	would	be	possible.

Therefore,	early	in	the	1990's,	some	smart	people	started	inventing	mechanisms
to	make	communication	possible	between	a	web	server	and	some	executable
programs	installed	on	the	server	to	generate	web	pages	dynamically.	This	means
that	the	content	of	the	HTML	sent	to	the	user	can	change	in	response	to	different
contexts	and	conditions.	Such	programs	are	often	written	in	scripting	languages
such	as	Perl	or	Ruby	but	can	be	written	in	any	other	computer	language	as	well,
such	as	Python,	Java,	or	PHP	(see	later).	Because	Apache	is	written	in	pure	C
and	C++,	it	cannot	execute	or	interpret	any	other	programming	language	such	as
Perl	directly.	Therefore,	a	bridge	between	the	server	and	the	program	is	needed
to	define	how	some	external	programs	can	interact	with	the	server.	One	of	these
methods	is	called	the	Common	Gateway	Interface	(CGI)	which	is	a	very	old
way	to	serve	dynamic	content.	Most	Apache	web	servers	use	some	form	of	CGI
applications	and	in	this	recipe	we	will	show	you	how	to	install	and	configure
CGI	for	use	with	Perl	and	Ruby	to	generate	our	first	dynamic	content.

Note

There	also	exist	some	special	Apache	web	server	modules	such	as	mod_perl,
mod_python,	mod_ruby,	and	so	on	which	should	be	generally	preferred	as	they
directly	embed	the	interpreter	of	the	language	into	the	web	server	process	and
therefore	are	a	lot	faster	in	comparison	to	any	interface	technology	such	as	CGI.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet	in	order	to	facilitate	the	download	of	additional
packages.

It	is	expected	that	your	server	will	be	using	a	static	IP	address,	Apache	is
installed	and	currently	running,	and	that	your	server	supports	one	or	more
domains	or	subdomains.

How	to	do	it...
As	both	scripting	languages	Perl	as	well	as	Ruby	are	not	installed	by	default	on
CentOS	7	Minimal,	we	will	start	this	recipe	by	installing	all	required	packages
using	YUM.

1.	 To	begin,	log	in	as	root	and	type	the	following	command:

yum	install	perl	perl-CGI	ruby

2.	 Next,	restart	the	Apache	web	server:

systemctl	restart	httpd

3.	 Next,	we	need	to	configure	SELinux	appropriately	for	the	use	of	CGI
scripts:

setsebool	-P	httpd_enable_cgi	1

4.	 Then	we	need	to	change	the	correct	security	context	for	our	cgi-bin
directory	for	SELinux	to	work:

semanage	fcontext	-a	-t	httpd_sys_script_exec_t	varwww/cgi-bin

restorecon	-Rv	varwww/cgi-bin

Creating	your	first	Perl	CGI	script
1.	 Now	create	the	following	Perl	CGI	script	file	by	opening	the	new	file	vi

varwww/cgi-bin/perl-test.cgi	and	putting	in	the	following	content:

#!/usr/bin/perl

use	strict;

use	warnings;

use	CGI	qw(:standard);

print	header;

my	$now	=	localtime;

print	start_html(-title=>'Server	time	via	Perl	CGI'),

h1('Time'),

p("The	time	is	$now"),

end_html;

2.	 Next,	change	the	file's	permission	to	755,	so	our	apache	user	can	execute	it:

chmod	755	varwww/cgi-bin/perl-test.cgi

3.	 Next,	to	test	and	actually	see	what	HTML	is	being	generated	from	the

preceding	script,	you	can	execute	the	perl	script	directly	on	the	command
line;	just	type:

varwww/cgi-bin/perl-test.cgi

4.	 Now	open	a	browser	on	a	computer	in	your	network	and	run	your	first	Perl
CGI	script,	which	will	print	the	local	time	by	using	the	URL:

http://<server	name	or	IP	address>/cgi-bin/perl-test.cgi

5.	 If	the	script	is	not	working,	have	a	look	at	the	log	file
varlog/httpd/error_log.

Creating	your	first	Ruby	CGI	script
1.	 Create	the	new	Ruby	CGI	script	file	vi	varwww/cgi-bin/ruby-test.cgi

and	put	in	the	following	content:

#!/usr/bin/ruby

require	"cgi"

cgi	=	CGI.new("html4")

cgi.out{

			cgi.html{

						cgi.head{	cgi.title{"Server	time	via	Ruby	CGI"}	}	+

						cgi.body{

												cgi.h1	{	"Time"	}	+

												cgi.p	{	Time.now}

						}

			}

}

2.	 Now	change	the	file's	permission	to	755	so	our	apache	user	can	execute	it:

chmod	755	varwww/cgi-bin/ruby-test.cgi

3.	 To	actually	see	what	HTML	is	being	generated	from	the	preceding	script,
you	can	execute	the	Ruby	script	directly	on	the	command	line;	just	type
varwww/cgi-bin/ruby-test.cgi.	When	the	line	offline	mode:	enter
name=value	pairs	on	standard	input	is	shown,	press	Ctrl+D	to	see	the
actual	HTML	output.

4.	 Now	open	a	browser	on	a	computer	in	your	network	and	run	your	first
Ruby	CGI	script	which	will	print	the	local	time	by	using	the	following
URL:

http://<server	name	or	IP	address>/cgi-bin/ruby-test.cgi

5.	 If	it	is	not	working,	have	a	look	at	the	log	file	varlog/httpd/error.log.

How	it	works...
Here	in	this	recipe	we	showed	you	how	easy	it	is	to	create	some	dynamic	web
sites	using	CGI.	When	a	CGI	resource	is	accessed,	the	Apache	server	executes
that	program	on	the	server	and	sends	its	output	back	to	the	browser.	The	main
advantage	of	this	system	is	that	CGI	is	not	restricted	to	any	programming
language	but	works	as	long	as	a	program	is	executable	on	the	Linux	command
line	and	generates	some	form	of	text	output.	The	big	disadvantage	of	CGI
technology	is	that	it	is	a	very	old	and	outdated	technology:	every	user	request	to
a	CGI	resource	starts	a	new	process	of	the	program.	For	example,	every	request
to	a	Perl	CGI	script	will	start	and	load	a	new	interpreter	instance	into	memory,
which	will	produce	a	lot	of	overhead,	therefore	making	CGI	only	usable	for
smaller	websites	or	lower	parallel	user	request	numbers.	As	said	before,	there	are
other	technologies	to	deal	with	this	issue,	for	example	FastCGI	or	Apache
modules	such	as	mod_perl.

So	what	did	we	learn	from	this	experience?

We	began	this	recipe	by	logging	in	as	root	and	installing	the	perl	interpreter	and
the	CGI.pm	module	for	it	as	it	is	not	included	in	the	Perl	standard	library	(we	will
use	it	in	our	script),	as	well	as	by	installing	the	ruby	interpreter	for	the	Ruby
programming	language.	Afterwards,	to	make	sure	our	Apache	web	server	takes
notice	of	our	new	programming	languages	installed	on	the	system,	we	restarted
the	Apache	process.

Next,	we	made	sure	that	SELinux	is	enabled	to	work	with	CGI	scripts	and	then
we	provided	the	standard	Apache	cgi-bin	directory	varwww/cgi-bin	with	the
proper	SELinux	context	type	to	allow	system-wide	execution.	To	learn	more
about	SELinux,	read	Chapter	14,	Working	with	SELinux.	In	this	directory	we
then	put	our	Perl	and	Ruby	CGI	scripts	and	made	them	executable	afterwards	for
the	Apache	user.	In	the	main	Apache	configuration	file,	the	varwww/cgi-bin
directory	has	been	defined	as	the	standard	CGI	directory	by	default,	which
means	that	every	executable	file	you	put	into	this	directory,	with	proper	access
and	execution	permissions	and	the	.cgi	extension,	is	automatically	defined	as	a
CGI	script	and	can	be	accessed	and	executed	from	your	web	browser,	no	matter
which	programming	or	scripting	language	it	has	been	written	in.	To	test	our
scripts,	we	then	opened	a	web	browser	and	went	to	the	URL	http://<server

name	or	IP	address>/cgi-bin/	with	the	name	of	the	.cgi	script	to	follow.

There's	more...
If	you	would	like	to	allow	execution	of	CGI	scripts	in	other	web	directories	as
well,	you	need	to	add	the	following	two	lines	(Options	and	AddHandler)	to	any
virtual	host	or	existing	Directive	directive,	or	create	a	new	one	in	the	following
way	(remember	that	you	then	also	have	to	set	the	SELinux
httpd_sys_script_exec_t	label	on	the	new	CGI	location	as	well):

<Directory	"varwww/html/cgi-new">

			Options	+ExecCGI

			AddHandler	cgi-script	.cgi

</Directory>

Installing,	configuring,	and	testing
PHP
Hypertext	Preprocessor	(PHP)	remains	one	of	the	most	popular	server-side
scripting	languages	designed	for	web	development.	It	already	supports	some
nice	features,	such	as	connecting	to	relational	databases	like	MariaDB	out-of-
the-box	which	can	be	used	to	implement	modern	web	applications	very	fast.
While	a	current	trend	can	be	seen	for	larger	enterprises	to	move	away	from	PHP
in	favor	of	some	newer	technologies	such	as	Node.js	(server-side	JavaScript),	it
is	still	the	superior	scripting	language	on	the	consumer	market.	Every	hosting
company	in	the	world	provides	some	kind	of	LAMP	stack	(Linux,	Apache,
MySQL,	PHP)	to	run	the	PHP	code.	Also,	a	lot	of	very	popular	web	applications
are	written	in	PHP,	such	as	WordPress,	Joomla,	and	Drupal,	so	it's	fair	enough	to
say	that	PHP	represents	a	must-have	feature	for	almost	any	Apache	web	server.
Here	in	this	recipe,	we	will	show	you	how	to	get	started	with	installing	and
running	PHP	in	your	Apache	web	server	with	the	module	mod_php.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges	and	a	console-based	text	editor	of	your
choice	and	a	Internet	connection.	It	is	expected	that	your	server	will	be	using	a
static	IP	address	and	Apache	is	installed	and	currently	running,	and	that	your
server	supports	one	or	more	domains	or	subdomains.

How	to	do	it...
We	will	begin	this	recipe	by	installing	the	PHP	Hypertext	Processor	together
with	the	Apache	mod_php	module,	both	not	installed	by	default	on	CentOS	7
minimal.

1.	 To	begin,	log	in	as	root	and	type	the	following	command:

yum	install	mod_php

2.	 Now	let's	open	the	standard	PHP	configuration	file	after	we	have	made	a
backup	of	the	original	file	first:

cp	etcphp.ini	etcphp.ini.bak	&&	vi	etcphp.ini

3.	 Find	the	line	;	date.timezone	=	and	replace	it	with	your	own	timezone.	A
list	of	all	the	available	PHP	time	zones	can	be	found	at
http://php.net/manual/en/timezones.php.	For	example	(be	sure	to
remove	the	leading	;	as	this	is	disabling	the	interpretation	of	a	command;
this	is	called	commenting	out)	to	set	the	timezone	to	the	city	Berlin	in
Europe	use:

date.timezone	=	"Europe/Berlin"

4.	 To	make	sure	the	new	module	and	settings	have	been	properly	loaded,
restart	the	Apache	web	server:

systemctl	restart	httpd

5.	 To	be	consistent	with	the	CGI	examples	from	the	former	recipe,	here	we
will	create	our	first	dynamic	PHP	script	which	will	print	out	the	current
local	server	time	in	the	script	vi	varwww/html/php-test.php,	and	run	the
popular	PHP	function	phpinfo()	that	we	can	use	to	print	out	important
PHP	information:

<html><head><title>Server	time	via	Mod	PHP</title></head>

<h1>Time</h1>

<p>The	time	is	<?php	print	Date("D	M	d,	Y	G:i	a");?></p><?php

phpinfo();	?></body></html>

6.	 To	actually	see	what	HTML	is	being	generated	from	the	preceding	script,
you	can	execute	the	PHP	script	directly	on	the	command	line;	just	type:	php
varwww/html/php-test.php.

7.	 Now	open	a	browser	on	a	computer	in	your	network	and	run	your	first	PHP
script	which	will	print	the	local	time	by	using	the	following	URL:
http://<server	name	or	IP	address>/php-test.php.

How	to	do	it...
In	this	recipe,	we	showed	you	how	easy	it	is	to	install	and	incorporate	PHP	into
any	Apache	web	server	by	using	the	mod_php	module.	This	module	enables	an
internal	PHP	interpreter,	which	directly	runs	in	the	Apache	process	and	is	much
more	efficient	than	using	CGI,	and	should	always	be	your	preferred	method
whenever	is	available.

So	what	did	we	learn	from	this	experience?

We	began	this	recipe	by	installing	the	mod_php	module	using	YUM,	which	will
install	PHP	as	a	dependency	as	well	as	both	are	not	available	on	any	standard
CentOS	7	minimal	installations.	Installing	mod_php	added	the	etcphp.ini
configuration	file	which	we	then	opened	after	making	a	backup	of	the	original
file	first.	This	file	is	the	main	PHP	configuration	file	and	should	be	edited	with
care	because	a	lot	of	settings	can	be	security	relevant	to	your	web	server.	If	you
are	just	starting	out	with	PHP,	leave	everything	as	it	is	in	the	file	and	don't
change	anything	despite	the	date.timezone	variable.	We	set	this	to	reflect	our
current	time	zone	and	it	is	necessary	for	PHP	because	it	is	used	by	a	lot	of
different	time	and	date	functions	(we	will	use	some	date	functions	in	our	first
PHP	script	as	well,	see	below).	Next,	we	restarted	the	Apache	web	server	which
automatically	reloads	the	PHP	configurations	as	well.	Afterwards,	we	created
our	first	PHP	script	and	put	it	in	the	main	web	root	folder	varwww/html/php-
test.php;	this	prints	out	the	current	server	time	as	well	as	the	result	of	the
phpinfo()	PHP	function.	This	gives	you	a	well	categorized	tabular	overview	of
your	current	PHP	installation,	helping	you	diagnose	server-related	problems	or
see	which	modules	are	available	in	PHP.

In	comparison	to	CGI,	you	may	ask	yourself	why	we	don't	have	to	put	the	PHP
scripts	into	any	special	folder	such	as	cgi-bin.	By	installing	mod_php,	an
Apache	configuration	file	called	etchttpd/conf.d/php.conf	gets	deployed	into
the	Apache	configuration	folder,	which	exactly	answers	this	question,	it	specifies
that	PHP	scripts	will	get	executed	as	valid	PHP	code	whenever	they	get	the
extension	.php	from	anywhere	in	every	web	directory.

Securing	Apache
Even	though	the	Apache	HTTP	server	is	one	of	the	most	mature	and	safe	server
applications	included	in	CentOS	7,	there	is	always	room	for	improvement	and	a
large	number	of	options	and	techniques	are	available	to	harden	your	web	server's
security	even	more.	While	we	cannot	show	the	user	every	single	security	feature
as	it	is	outside	of	the	scope	this	book,	in	this	recipe,	we	will	try	to	teach	what	is
considered	to	be	good	practice	when	it	comes	to	securing	your	Apache	web
server	for	a	production	system.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges	and	a	console-based	text	editor	of	your
choice.	It	is	expected	that	your	server	will	be	using	a	static	IP	address	and
Apache	is	installed	and	currently	running,	and	that	your	server	supports	one	or
more	domains	or	subdomains.

How	to	do	it...
Most	of	the	security	options	and	techniques	have	to	be	set	up	in	the	main	Apache
configuration	file,	so	we	will	begin	this	recipe	by	opening	it	in	our	favorite	text
editor.

Configuring	httpd.conf	to	provide	better	security
1.	 To	begin,	log	in	as	root	and	open	the	main	Apache	config	file:

vi	etchttpd/conf/httpd.conf

2.	 Now	go	to	your	main	document	root.	To	do	so,	search	the	directive	called:

<Directory	"varwww/html">

3.	 Within	the	beginning	<Directory	"varwww/html">	and	closing
</Directory>	tags	find	the	line	Options	Indexes	FollowSymLinks,	then
disable	(comment	out)	this	line	by	putting	a	#	in	front	of	it,	so	it	reads:

#		Options	Indexes	FollowSymLinks

4.	 Now	scroll	down	to	the	end	of	the	configuration	file	and	insert	the
following	line	one	line	before	the	line	#	Supplemental	configuration.
We	do	not	want	our	server	to	leak	any	detailed	information	through	the
header,	so	we	type:

ServerTokens	Prod

5.	 Afterwards,	reload	the	Apache	configuration	to	apply	your	changes:

apachectl	configtest	&&	systemctl	reload	httpd

Removing	unneeded	httpd	modules

Even	the	most	stable,	mature,	and	well-tested	programs	can	include	bugs	and
cause	vulnerabilities,	as	the	latest	news	about	the	Heartbleed	bug	in	OpenSSL	or
Shellshock	in	Bash	have	shown,	and	the	Apache	web	server	is	no	exception.
Therefore,	it	is	often	beneficial	to	remove	all	unneeded	software	to	limit	the
functionality,	and	thus	the	likelihood	of	security	problems	in	your	system.	For
the	Apache	web	server,	we	can	remove	all	unneeded	modules	to	increase
security	(this	can	also	increase	performance	and	memory	consumption).	Let's
start	this	process	by	reviewing	all	the	currently	installed	Apache	modules.

1.	 To	show	all	currently	installed	and	loaded	Apache	modules,	type	as	user
root:

httpd	-M

2.	 All	the	modules	outputted	by	the	preceding	command	are	loaded	into	the
Apache	web	server	by	special	configuration	files	in	the
etchttpd/conf.modules.d	folder	where	they	are	grouped	together	by	their
primary	target	into	the	following	files:

00-base.conf,	00-dav.conf,	00-lua.conf,	00-mpm.conf,	00-

proxy.conf,	00-ssl.conf,	00-systemd.conf,	01-cgi.conf,	10-

php.conf

3.	 So	instead	of	going	through	all	the	modules	individually,	this	file	structure
in	the	conf.modules.d	folder	can	make	our	life	much	easier	because	we
can	disable/enable	whole	groups	of	modules.	For	example,	if	you	know	that
you	will	not	need	any	Apache	DAV	modules	because	you	will	not	provide
any	WebDAV	server,	you	can	disable	all	DAV-related	modules	by
renaming	the	extension	of	the	00-dav.conf	configuration	file	since	only
files	with	the	ending	.conf	are	read	and	loaded	automatically	by	Apache.	In
order	to	do	so,	type:

mv	etchttpd/conf.modules.d/00-dav.conf	

etchttpd/conf.modules.d/00-dav.conf.BAK

4.	 Afterwards,	reload	the	Apache	configuration	to	apply	your	changes	to	the
modules	directory:

apachectl	configtest	&&	systemctl	reload	httpd

5.	 If	you	need	more	fine-grained	control,	you	can	also	enable/disable	single
modules	in	all	the	configuration	files	in	this	directory	as	well.	For	example,
open	00-base.conf	in	your	favorite	text	editor	and	disable	a	single	line	by
adding	a	#	to	the	beginning	of	the	line	of	choice	you	want	to	disable.	For
example:

#	LoadModule	userdir_module	modules/mod_userdir.so

6.	 If	you	decide	to	use	some	disabled	modules	files	later,	just	rename	the	.BAK
file	to	the	original	file	name	or	remove	the	#	in	a	specific	module	config	file
before	reloading	httpd	once	again.

Protecting	your	Apache	files

Another	really	simple	way	to	increase	the	security	of	your	Apache	web	server	is
to	protect	your	server-side	scripts	and	configurations.	In	our	scenario,	we	have
one	user	(root)	who	alone	is	responsible	and	maintains	the	complete	Apache	web
server,	websites	(for	example,	uploading	new	HTML	pages	to	the	server),
server-side	scripts,	and	configurations.	Therefore,	we	will	give	him/her	full	file
permissions	(read/write/execute).	The	apache	user	still	needs	proper	read	and
execute	permissions	to	serve	and	access	all	Apache	related	files,	thus	minimizing
the	risk	that	your	Apache	web	server	is	exposing	some	potential	security	risks	to
other	system	users	or	can	get	compromised	through	HTTP	hacks.	Do	this	in	two
steps:

1.	 First	we	will	change	or	reset	the	ownership	of	the	complete	Apache
configuration	directory	and	the	standard	web	root	directory	to	owner	root
and	group	apache:

chown	-R	root:apache	varwww/html	etchttpd/conf*

2.	 Afterwards,	we	will	change	the	file	permissions	so	no	one	other	than	our
dedicated	apache	user	(and	also	root)	can	read	those	files:

chmod	750	-R	varwww/html	etchttpd/conf*

How	it	works...
We	began	this	recipe	by	opening	the	main	Apache	configuration	file	httpd.conf
to	change	settings	for	our	main	Apache	root	web	content	directory	varwww/html.
Here	we	disabled	the	complete	Options	directive	which	included	the	Indexes	as
well	as	the	FollowSymLinks	parameter.	As	we	have	learned,	if	you	request	a
directory	instead	of	a	file	from	the	Apache	server,	index.html	or	the	index.htm
file	within	this	directory	will	be	sent	automatically.	Now	the	Indexes	option
configures	the	Apache	web	server	in	such	a	way	that	if	no	such	file	can	be	found
in	the	requested	directory,	Apache	will	auto-generate	a	listing	of	the	directory's
content,	as	if	you	had	typed	ls	(for	list	directory)	in	that	directory	on	the
command	line,	and	show	it	to	the	user	as	a	HTML	page.	We	don't	want	this
feature	in	general	because	it	can	expose	secret	or	private	data	to	unauthorized
users	and	a	lot	of	system	administrators	will	tell	you	that	indexing	is	considered
to	be	a	security	threat	in	general.	The	FollowSymLinks	directive	should	also	not
be	used	in	production	systems	because	if	you	make	a	mistake	with	it,	it	can
easily	expose	parts	of	the	file	system,	such	as	the	complete	root	directory.
Finally,	we	add	another	measurement	to	increase	the	server's	base	security	and
this	is	done	by	disabling	the	server	version	banner	information.	When	the
Apache	web	server	generates	either	a	web	page	or	an	error	page,	valuable
information,	for	example	the	Apache	server	version	and	the	activated	modules,
is	sent	automatically	to	the	browser	and	a	possible	attacker	can	gain	valuable
information	about	your	system.	We	stopped	this	from	happening	by	simply
setting	ServerTokens	to	Prod.	Afterwards,	we	showed	you	how	to	disable
Apache	modules	to	reduce	the	general	risk	of	bugs	and	exploitations	of	your
system.	Finally,	we	showed	how	to	adjust	your	Apache	file	permissions	which
can	also	be	a	good	general	protection.

There	are	lots	of	other	things	to	consider	when	it	comes	to	hardening	your
Apache	web	server	but	most	of	these	techniques,	such	as	Limiting	HTTP	request
methods,	TraceEnable,	setting	cookies	with	HttpOnly	and	secure	flags,
disabling	the	HTTP	1.0	protocol	or	SSL	v2,	or	modifying	the	HTTP	header	with
useful	security-related	HTTP	or	custom	headers	such	as	X-XSS-Protection,	are
much	more	advanced	concepts	and	can	restrict	a	general	purpose	Apache	web
server	too	much.

Setting	up	HTTPS	with	Secure
Sockets	Layer	(SSL)
In	this	recipe,	we	will	learn	how	to	add	a	secure	connection	to	the	Apache	web
server	by	creating	a	self-signed	SSL	certificate	using	OpenSSL.	This	is	often	a
requirement	for	web	servers	if	the	sites	running	on	them	transfer	sensitive	data
such	as	credit	card	or	login	information	from	the	web	browser	to	the	server.	In	a
previous	recipe	you	were	shown	how	to	install	the	Apache	web	server,	and	with
the	growing	demand	for	secure	connections,	it	is	the	purpose	of	this	recipe	to
show	you	how	to	enhance	your	current	server	configuration	by	teaching	you	how
to	extend	the	features	of	the	Apache	web	server.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet	in	order	to	facilitate	the	download	of	additional
packages.	It	is	expected	that	Apache	web	server	has	been	installed	and	that	it	is
currently	running.	Here	we	will	create	a	new	SSL	certificate	for	Apache.	If	you
want	to	learn	more	about	it,	refer	to	Chapter	6,	Providing	Security	for	advice	on
generating	self-signed	certificates.	As	a	correct	domain	name	is	crucial	for	SSL
to	work,	we	will	continue	naming	our	Apache	web	server's	configured	domain
name	centos7.home	to	make	this	recipe	work	(change	it	to	fit	your	own	needs).

How	to	do	it...
Apache	does	not	support	SSL	encryption	by	default	and	for	this	reason	we	will
begin	by	installing	the	necessary	package	mod_ssl	using	the	yum	package
manager.

1.	 To	begin,	log	in	as	root	and	type	the	following	command:

yum	install	mod_ssl

2.	 During	installation	of	the	mod_ssl	package,	a	self-signed	certificate	as	well
as	the	key	pair	for	the	Apache	web	server	are	generated	automatically;	these
lack	a	proper	common	name	for	your	web	server's	domain	name.	Before	we
can	re-generate	our	own	required	SSL	files	using	the	Makefile	in	the	next
steps,	we	need	to	delete	those	files:

rm	etcpki/tls/private/localhost.key	

etcpki/tls/certs/localhost.crt

3.	 We	are	now	required	to	create	our	intended	self-signed	certificate	and
server	key	for	our	Apache	web	server.	To	do	this,	type	the	following
command:

cd	etcpki/tls/certs

4.	 To	create	the	self-signed	Apache	SSL	keypair,	consisting	of	the	certificate
and	its	embedded	public	key	as	well	as	the	private	key,	type:

make	testcert

5.	 In	the	process	of	creating	the	certificate,	first	you	will	be	asked	to	enter	a
new	passphrase	and	then	to	verify	it.	Afterwards,	you	need	to	type	it	in
again	for	the	third	time.	As	usual,	enter	a	secure	password.	You	will	then	be
asked	a	number	of	questions.	Complete	all	the	required	details	by	paying
special	attention	to	the	common	name	value.	This	value	should	reflect	the
domain	name	of	your	web	server	or	the	IP	address	the	SSL	certificate	is	for.
For	example,	you	may	type:

www.centos7.home

6.	 When	the	process	of	creating	your	certificate	is	complete,	we	will	proceed
by	opening	the	main	Apache	SSL	configuration	in	the	following	way	(after
making	a	backup):

cp	etchttpd/conf.d/ssl.conf	etchttpd/conf.d/ssl.conf.BAK

vi	etchttpd/conf.d/ssl.conf

7.	 Scroll	down	to	the	section	that	begins	with	<VirtualHost	default:443>
and	locate	the	line	#	DocumentRoot	"varwww/html"	within	this	block.
Then	activate	it	by	removing	the	#	character,	so	it	reads:

DocumentRoot	"varwww/html"

8.	 Right	below,	find	the	line	that	reads	#ServerName	www.example.com:443.
Activate	this	line	and	modify	the	value	shown	to	match	the	common	name
value	used	during	the	creation	of	your	certificate,	as	follows:

ServerName	www.centos7.home:443

9.	 Save	and	close	the	file,	next	we	need	to	enable	the	HTTPS	port	in	our
firewalld	to	allow	incoming	HTTP	SSL	connections	over	port	443:

firewall-cmd	--permanent	--add-service=https	&&	firewall-cmd	--

reload

10.	 Now	restart	the	Apache	httpd	service	to	apply	your	changes.	Note	that	if
prompted	you	have	to	enter	the	SSL	passphrase	you	added	when	you
created	the	SSL	test	certificate:

systemctl	restart	httpd

11.	 Well	done!	You	can	now	visit	your	server	with	a	secure	connection	by
replacing	all	the	available	HTTP	URLs	we	have	defined	for	the	server	using
HTTPS	instead.	For	example,	go	to	https://www.centos7.home	instead	of
http://www.centos7.home.

Note

When	you	browse	to	this	website,	you	will	get	a	warning	message	that	the
signing	certificate	authority	is	not	known.	This	exception	is	to	be	expected
when	using	self-signed	certificates	and	can	be	confirmed.

How	it	works...
We	began	the	recipe	by	installing	mod_ssl	using	the	YUM	package	manager,
which	is	the	default	Apache	module	to	enable	SSL.	The	next	step	was	then	to	go
to	the	standard	location	where	all	the	system's	certificates	can	be	found	in
CentOS	7,	that	is,	etcpki/tls/certs.	Here	we	can	find	a	Makefile,	which	is	a
helper	script	for	conveniently	generating	self-signed	SSL	test	certificates	and
which	hides	away	complicated	command	line	parameters	for	the	OpenSSL
program	from	you.	Remember	that	the	Makefile	currently	lacks	a	clean	option
and	therefore	every	time	we	run	it,	we	need	to	delete	any	old	versions	of	the
generated	files	from	a	former	run	manually,	otherwise	it	will	not	start	doing
anything.	After	deleting	the	old	Apache	SSL	files,	we	used	make	with	the
testcert	parameter,	which	creates	self-signed	certificates	for	the	Apache	web
server	and	puts	them	in	the	standard	locations,	already	configured	in	the
ssl.conf	file	(the	SSLCertificateFile	and	SSLCertificateKeyFile
directives),	so	we	didn't	have	to	change	anything	here.	During	the	process,	you
were	asked	to	provide	a	password	before	completing	a	series	of	questions.
Complete	the	questions	but	pay	special	attention	to	the	Common	name.	As	was
mentioned	in	the	main	recipe,	this	value	should	reflect	either	the	domain	name	of
your	server	or	your	IP	address.	In	the	next	phase,	you	were	required	to	open
Apache's	SSL	configuration	file	in	your	favorite	text	editor	which	can	be	found
at	etchttpd/conf.d/ssl.conf.	In	it	we	enabled	the	DocumentRoot	directive	to
put	it	under	SSL	control	and	activated	the	ServerName	directive	with	an	expected
domain	value	that	must	be	the	same	as	the	one	we	defined	as	our	common	name
value.	We	than	saved	and	closed	the	configuration	file	and	enabled	the	HTTPS
ports	in	our	firewall,	thus	allowing	incoming	connections	over	the	standard
HTTPS	443	port.	Having	completed	these	steps,	you	can	now	enjoy	the	benefits
of	a	secure	connection	using	a	self-signed	server	certificate.	Just	type	https://
instead	of	http://	for	any	URL	address	available	on	your	Apache	web	browser.
However,	if	you	are	intending	to	use	an	SSL	Certificate	on	a	production	server
for	members	of	the	public,	then	your	best	option	is	to	purchase	an	SSL
certificate	from	a	trusted	Certificate	Authority.

There's	more...
We	learned	that	since	our	SSL	certificate	is	protected	by	a	passphrase,	so
whenever	we	need	to	restart	our	Apache	web	server,	we	need	to	enter	the
password.	This	is	impractical	for	server	restarts	as	Apache	will	refuse	to	start
without	a	password.	To	get	rid	of	the	password	prompt,	we	will	provide	the
passphrase	in	a	special	file	and	make	sure	it	is	only	accessible	by	root.

1.	 Create	a	backup	of	the	file	that	will	contain	your	password:

cp	usrlibexec/httpd-ssl-pass-dialog	usrlibexec/httpd-ssl-pass-

dialog.BAK

2.	 Now	overwrite	this	password	file	with	the	following	content,	replacing
XXXX	in	the	following	command	line	with	your	current	SSL	passphrase:

echo	-e	'#!/bin/bash\necho	"XXXX"'	>		usrlibexec/httpd-ssl-

pass-dialog

3.	 Finally,	change	the	permissions	so	that	only	root	can	read	and	execute
them:

chmod	500	usrlibexec/httpd-ssl-pass-dialog

Chapter	13.	Operating	System-Level
Virtualization
In	this	chapter,	we	will	cover:

Installing	and	configuring	Docker
Downloading	an	image	and	running	a	container
Creating	your	own	images	from	Dockerfiles	and	uploading	to	Docker	Hub
Setting	up	and	working	with	a	private	Docker	registry

Introduction
This	chapter	is	a	collection	of	recipes	that	provides	the	essential	steps	to	install,
configure,	and	work	with	Docker,	which	is	an	open	platform	to	build,	ship,
share,	and	run	distributed	applications	through	operating-system-level
virtualization,	a	technology	that	has	been	around	for	many	years	in	the	Linux
world	and	can	provide	speed	and	efficiency	advantages	over	traditional
virtualization	technologies.

Installing	and	configuring	Docker
Traditional	virtualization	technologies	provide	hardware	virtualization,	which
means	they	create	a	complete	hardware	environment	so	each	virtual	machine
(VM)	needs	a	complete	operating	system	to	run	it.	Therefore	they	have	some
major	drawbacks	because	they	are	heavyweight	and	produce	a	lot	of	overhead
while	running.	This	is	where	the	open-source	Docker	containerization	engine
offers	an	attractive	alternative.	It	can	help	you	build	applications	in	Linux
containers,	thus	providing	application	virtualization.

This	means	that	you	can	bundle	any	Linux	program	of	choice	with	all	its
dependencies	and	its	own	environment	and	then	share	it	or	run	multiple
instances	of	it,	each	as	a	completely	isolated	and	separated	process	on	any
modern	Linux	kernel,	thus	providing	native	runtime	performance,	easy
portability,	and	high	scalability.	Here,	in	this	recipe,	we	will	show	you	how	to
install	and	configure	Docker	on	your	CentOS	7	server.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet	in	order	to	download	additional	rpm	packages
and	a	test	Docker	image.

How	to	do	it...
While	Docker	is	available	as	a	package	in	the	official	CentOS	7	repository,	we
will	use	the	official	Docker	repository	to	install	it	on	our	system	instead.

1.	 To	begin,	log	in	as	root	and	update	your	YUM	packages	before
downloading	and	executing	the	official	Docker	Linux	installation	script
using	the	following	command:

yum	update	&&	curl	-sSL	https://get.docker.com/	|	sh

2.	 Next,	enable	Docker	at	boot	time	before	starting	the	Docker	daemon	(the
first	time	you	start,	it	will	take	a	while):

systemctl	enable	docker	&&	systemctl	start	docker

3.	 Finally,	after	starting	Docker	you	can	verify	that	it's	working	by	typing:

docker	run	hello-world

How	it	works...
When	installing	any	software	on	CentOS	7,	most	of	the	time	it	is	a	very	good
advice	to	use	the	packages	available	in	your	official	CentOS	repository	instead
of	downloading	and	installing	from	third-party	locations.	Here	by	installing
Docker	using	the	official	Docker	repository	instead	we	made	an	exception.	We
did	this	because	Docker	is	a	very	young	project	and	is	evolving	fast,	and	it	keeps
changing	a	lot.	While	you	can	use	Docker	for	running	every	Linux	application,
including	critical	web	servers	or	programs	dealing	with	confidential	data,	bugs
found	or	introduced	into	the	Docker	program	can	have	severe	security
consequences.	By	using	the	official	Docker	repository,	we	make	sure	we	always
get	the	latest	updates	and	patches	available	as	fast	as	possible	right	from	the
developers	of	this	fast-moving	project.	So	anytime	you	type	yum	update	in	the
future,	your	package	manager	will	automatically	query	and	check	the	Docker
repos	to	see	if	there	is	a	new	version	of	Docker	available	for	you.

So	what	did	we	learn	from	this	experience?

We	started	this	recipe	by	logging	into	our	server	as	root	and	updated	the	YUM
package's	database.	Then	we	used	a	command	to	download	and	execute	the
official	Docker	installation	script	from	https://get.docker.com/	in	one	step.	What
this	script	does	is	add	the	official	Docker	repository	to	the	YUM	package
manager	as	a	new	package	source	and	then	automatically	install	Docker	in	the
background.	Afterwards,	we	enabled	the	Docker	service	at	boot-time	and	started
it	by	using	systemd.	Finally,	to	test	our	installation,	we	issued	the	command
docker	run	hello-world,	which	downloads	a	special	image	from	the	official
Docker	registry	to	test	our	installation.	If	everything	went	fine,	you	should	see
the	following	success	message	(output	truncated):

Hello	from	Docker

This	message	shows	that	your	installation	appears	to	be	working	correctly.

https://get.docker.com/

Downloading	an	image	and	running	a
container
A	common	misconception	is	that	Docker	is	a	system	for	running	containers.
Docker	is	only	a	build-tool	to	wrap	up	any	piece	of	Linux	based	software	with
all	its	dependencies	in	a	complete	filesystem	that	contains	everything	it	needs	to
run:	code,	runtime,	system	tools,	and	system	libraries.	The	technology	to	run
Linux	containers	is	called	operating-system-level	virtualization	and	provides
multiple	isolated	environments	built	in	every	modern	Linux	kernel	by	default.
This	guarantees	that	it	will	always	run	the	same,	regardless	of	the	environment	it
is	deployed	in;	thus	making	your	application	portable.	Therefore,	when	it	comes
to	distributing	your	Docker	applications	into	Linux	containers,	two	major
conceptional	terms	must	be	introduced:	Docker	images	and	containers.	If	you
ever	wanted	to	set	up	and	run	your	own	WordPress	installation,	in	this	recipe	we
will	show	you	how	to	do	so	the	fastest	way	possible	by	downloading	a	pre-made
WordPress	image	from	the	official	Docker	hub;	we	will	then	run	a	container
from.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet	in	order	to	facilitate	the	download	of	additional
Docker	images.	It	is	expected	that	Docker	has	already	been	installed	and	is
running.

How	to	do	it...
The	official	WordPress	image	from	Docker	Hub	does	not	contain	its	own
MySQL	server.	Instead	it	relies	on	it	externally,	so	we	will	start	this	recipe	by
installing	and	running	a	MySQL	docker	container	from	Docker	Hub.

1.	 To	begin,	log	in	as	root	and	type	the	following	command	by	replacing
<PASSWORD>	in	the	following	command	with	a	strong	MySQL	database
password	of	your	own	choice	(at	the	time	of	writing,	the	latest	WordPress
needs	MySQL	v.5.7;	this	can	change	in	the	future,	so	check	out	the	official
WordPress	Docker	Hub	page):

docker	run	--restart=always	--name	wordpressdb	-e	

MYSQL_ROOT_PASSWORD=<PASSWORD>	-e	MYSQL_DATABASE=wordpress	-d	

mysql:5.7

2.	 Next,	install	and	run	the	official	WordPress	image	and	run	an	instance	of	it
as	a	Docker	container,	connecting	it	to	the	MySQL	container	(providing	the
same	<PASSWORD>	string	from	the	previous	step):

docker	run	--restart=always	-e	WORDPRESS_DB_PASSWORD=<password>	

-d	--name	wordpress	--link	wordpressdb:mysql	-p	8080:80	

wordpress

3.	 Now	the	MySQL	and	WordPress	container	should	already	be	running.	To
check	the	currently	running	containers,	type:

docker	ps

4.	 To	get	all	the	Docker	WordPress	container	settings,	use:

docker	inspect	wordpress

5.	 To	check	the	container's	log	file	for	our	WordPress	container,	run	the
following	command:

docker	logs	-f	wordpress

6.	 Open	a	browser	on	a	computer	in	the	same	network	as	the	server	running
the	Docker	daemon	and	type	in	the	following	command	to	access	your
Wordpress	installation	(replace	IP	address	with	the	one	from	your	Docker
server):

http://<IP	ADDRESS	OF	DOCKER	SERVER>:8080/

How	it	works...
A	Docker	image	is	a	collection	of	all	the	files	that	make	up	a	software
application	and	its	functional	dependencies,	as	well	as	information	about	any
changes	as	you	modify	or	improve	on	its	content	(in	the	form	of	a	change	log).	It
is	a	non-runnable,	read-only	version	of	your	application	and	can	be	compared	to
an	ISO	file.	If	you	want	to	run	such	an	image,	a	Linux	container	will	be	created
out	of	it	automatically	by	cloning	the	image.	This	is	what	then	actually	executes.
It's	a	real	scalable	system	because	you	can	run	multiple	containers	from	the	same
image.	As	we	have	seen,	Docker	is	really	not	only	the	tools	you	need	to	work
with	images	and	containers	but	a	complete	platform	as	it	also	provides	tools	to
access	already	pre-made	images	of	all	kinds	of	Linux	server	software.	This	is
really	the	beauty	of	the	whole	Docker	system	because	most	of	the	time	you	don't
have	to	reinvent	the	wheel	twice	trying	to	create	your	own	docker	image	from
scratch.	Just	go	to	the	Docker	Hub	(https://hub.docker.com),	search	for	a
software	you	want	to	run	as	a	container,	and	when	you	find	it	then	just	use	the
docker	run	command,	providing	the	Docker	Hub	name	of	the	image,	and	you
are	done.	Docker	really	can	be	a	life-saver	when	thinking	about	all	the	endless
hours	trying	to	get	the	latest	trendy	programs	to	work	with	all	the	dependencies
you	need	to	compile	and	trying	to	get	it	to	install.

So	what	did	we	learn	from	this	experience?

We	started	our	journey	by	using	the	docker	run	command	which	downloaded
two	images	from	the	remote	Docker	Hub	repos	and	put	them	into	a	local	image
store	(called	mysql:5.7	and	wordpress)	and	then	run	them	(create	containers	out
of	them).	To	get	a	list	of	all	the	images	downloaded	on	our	machine,	type	docker
images.	As	we	have	seen,	both	run	command	lines	provided	the	-e	command
line	parameter,	which	we	need	to	set	some	essential	environment	variables	that
will	then	be	visible	within	the	container.	These	include	the	MySQL	database	we
want	to	run	and	the	MySQL	root	password	to	set	and	access	them.	Here	we	see	a
very	important	feature	of	Docker:	containers	that	can	communicate	which	each
other!	Often	you	can	just	stack	your	application	together	from	different	Docker
container	pieces	and	make	the	whole	system	very	easy	to	use.	Another	important
parameter	was	-p	which	is	used	to	create	a	port	mapping	from	our	host	port	8080
to	the	internal	HTTP	port	80	and	opens	the	firewall	to	allow	incoming	traffic	on
this	port	as	well.	--restart=always	is	useful	to	make	the	image	container

https://hub.docker.com

restartable,	so	the	containers	automatically	get	restarted	on	reboot	of	the	host
machine.	Afterwards,	we	introduced	you	to	Docker's	ps	command	line
parameter	which	prints	out	all	running	Docker	containers.	Here	the	command
should	print	out	two	running	containers	called	wordpressdb	and	wordpress,
together	with	their	CONTAINER_ID.	This	ID	is	a	unique	MD5	hash	we	will	use	all
the	time	in	most	of	the	Docker	command	line	inputs	whenever	we	need	to
reference	a	specific	container	(in	this	recipe	we	referenced	by	container	name
which	is	also	possible).	Afterwards,	we	showed	you	how	to	print	out	a
container's	configuration	by	using	the	inspect	parameter.	Then,	to	get	the
Wordpress	container's	log	file	in	an	open	stream,	we	used	the	log	-f	parameter.
Finally,	since	the	-p	8080:80	mapping	allows	incoming	access	to	our	server	at
port	8080,	we	could	then	access	our	Wordpress	installation	from	any	computer
in	the	same	network	using	a	browser.	This	will	open	the	Wordpress	installation
screen.

Note

Note	that	if	you	have	any	connection	problems	while	downloading	any
containers	from	Docker	at	any	time,	such	as	dial	tcp:	lookup
index.docker.io:	no	such	host,	restart	the	Docker	service	before	trying
again.

There's	more...
In	this	section,	we	will	show	you	how	to	start	and	stop	a	container	and	how	to
attach	to	your	container.

Stopping	and	starting	a	container

In	the	main	recipe,	we	used	Docker's	run	command	which	is	actually	a	wrapper
for	two	other	Docker	commands:	create	and	start.	As	the	names	of	these
commands	suggest,	the	create	command	creates	(clones)	a	container	from	an
existing	image	and	if	it	does	not	exist	in	the	local	image	cache	then	it	downloads
it	from	a	given	Docker	registry	(such	as	the	predefined	Docker	hub),	while	the
start	command	actually	starts	it.	To	get	a	list	of	all	the	containers	(running	or
stopped)	on	your	computer,	type:	docker	ps	-a.	Now	identify	a	stopped	or	a
started	container,	and	find	out	its	specific	CONTAINER_ID.	Then	we	can	start	a
stopped	container	or	stop	a	running	one	by	providing	the	correct	CONTAINER_ID
such	as	docker	start	CONTAINER_ID.	Examples	are:	docker	start
03b53947d812	or	docker	stop	a2fe12e61545	(the	CONTAINER_ID	hashes	will
vary	on	your	computer).

Sometimes	you	need	to	remove	a	container;	for	example,	if	you	want	to
completely	change	its	command	line	parameters	when	creating	from	an	image.
For	removing	a	container,	use	the	rm	command	(but	remember	that	it	has	to	be
stopped	before):	docker	stop	b7f720fbfd23;	docker	rm	b7f720fbfd23

Attaching	and	interacting	with	your	container

Linux	containers	are	completely	isolated	processes	running	in	a	separated
environment	on	your	server	and	there	is	no	way	to	log	in	to	it	like	logging	into	a
normal	server	using	ssh.	If	you	need	to	access	your	containers	BASH	shell	then
you	can	run	the	docker	exec	command,	which	is	particularly	useful	for
debugging	problems	or	modifying	your	container	(for	example,	installing	new
packages	or	updating	programs	or	files	in	it).	Note	that	this	only	works	on
running	containers	and	you	need	to	know	your	container's	ID	before	(type
docker	ps	to	find	out)	you	run	the	following	command:	docker	exec	-it
CONTAINER_ID	binbash,	for	example	docker	exec	-it	d22ddf594f0d
binbash.	Once	successfully	attached	to	the	container,	you	will	see	a	slightly
changed	command-line	prompt	with	the	CONTAINER_ID	as	hostname;	for

example,	root@d22ddf594f0d:/var/www/html#.	If	you	need	to	exit	your
container,	type	exit.

Creating	your	own	images	from
Dockerfiles	and	uploading	to	Docker
Hub
Besides	images	and	containers,	Docker	has	a	third	very	important	term	called	a
Dockerfile.	A	Dockerfile	is	like	a	recipe	on	how	to	create	an	environment	for	a
specific	application,	which	means	that	it	contains	the	blueprint	and	exact
description	on	how	to	build	a	specific	image	file.	For	example,	if	we	would	like
to	containerize	a	webserver-based	application,	we	would	define	all	the
dependencies	for	it,	such	as	the	base	Linux	system	that	provides	the	system
dependencies	such	as	Ubuntu,	Debian,	CentOS,	and	so	on	(this	does	not	mean
we	virtualize	the	complete	operating	system	but	just	use	the	system
dependencies),	as	well	as	all	applications,	dynamic	libraries,	and	services	such	as
PHP,	Apache,	and	MySQL	in	the	Dockerfile	and	also	all	special	configuration
options	or	environment	variables.	There	are	two	ways	to	build	your	own	custom
images.	One,	you	could	download	an	existing	base	image	as	we	did	in	the
previous	Wordpress	recipe	and	then	attach	to	the	container	using	BASH,	install
your	additional	software,	make	the	changes	to	your	configuration	files,	and	then
commit	the	container	as	a	new	image	to	the	registry.	Alternatively,	here	in	this
recipe,	we	will	teach	you	how	to	build	your	own	Docker	image	from	a	new
Dockerfile	for	an	Express.js	web	application	server	and	upload	it	to	your	own
Docker	Hub	account.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet	in	order	to	communicate	with	the	Docker	Hub.	It
is	expected	that	Docker	is	already	installed	and	is	running.	Also,	for	uploading
your	new	image	to	the	Docker	Hub,	you	need	to	create	a	new	Docker	Hub	user
account	there.	Just	go	to	https://hub.docker.com/	and	register	there	for	free.	In
our	example,	we	will	use	a	fictitious	new	Docker	Hub	user	ID	called	johndoe.

https://hub.docker.com/

How	to	do	it...
1.	 To	begin,	log	in	as	root	and	create	a	new	directory	structure	using	your

Docker	Hub	user	ID	(substitute	the	johndoe	directory	name	appropriately
with	your	own	ID),	and	open	an	empty	Dockerfile	where	you	put	in	your
image's	building	blueprint:

mkdir	-p	~/johndoe/centos7-expressjs

cd	$_;	vi	Dockerfile

2.	 Put	in	the	following	content	into	that	file:

FROM	centos:centos7

RUN	yum	install	-y	epel-release;yum	install	-y	npm;

RUN	npm	install	express	--save

COPY	.	./src

EXPOSE	8080

CMD	["node",	"srcindex.js"]

3.	 Save	and	close	the	file.	Now	create	your	first	Express.js	web	application,
which	we	will	deploy	on	the	new	container.	Open	the	following	file	in	the
current	directory:

vi	index.js

4.	 Now	put	in	the	following	JavaScript	content:

var	express	=	require('express'),	app	=	express();

app.get('/',	function	(req,	res)	{res.send('Hello	CentOS	7	

cookbook!\n');});

app.listen(8080);

5.	 Now	to	build	an	image	from	this	Dockerfile,	stay	in	the	current	directory
and	use	the	following	command	(don't	forget	the	dot	at	the	end	of	this	line
and	replace	johndoe	with	your	own	Docker	Hub	ID):

docker	build	-t	johndoe/centos7-expressjs	.

6.	 After	successfully	building	the	image,	let's	run	it	as	a	container:

docker	run	-p	8081:8080	-d	johndoe/centos7-expressjs

7.	 Finally,	test	if	we	can	make	an	HTTP	request	to	our	new	Express.js	web
application	server	running	in	our	new	container:

curl	-i	localhost:8081

8.	 If	the	Docker	image	is	successfully	running	on	the	Express.js	server,	the
following	HTTP	response	should	occur	(truncated	to	the	last	line):

Hello	CentOS	7	cookbook!

Uploading	your	image	to	the	Docker	Hub
1.	 After	creating	a	new	Docker	Hub	account	ID	called	johndoe,	we	will	start

to	login	to	the	site	using	the	following	command—stay	in	the	directory
where	you	put	your	Dockerfile	from	the	last	step–for	example
~/johndoe/centos7-expressjs	(provide	the	username,	the	password,	and
the	registration	e-mail	when	asked):

docker	login

2.	 Now,	to	push	your	new	image	created	in	this	recipe	to	the	Docker	Hub
(again	replace	johndoe	with	your	own	user	ID),	use:

docker	push	johndoe/centos7-expressjs

3.	 After	uploading,	you	will	be	able	to	find	your	image	on	the	Docker	Hub
web	page	search.	Alternatively,	you	can	use	the	command	line:

docker	search	expressjs

How	it	works...
Here	in	this	short	recipe,	we	showed	you	how	to	create	your	first	Dockerfile
which	will	create	a	CentOS	7	container	to	serve	Express.js	applications,	which	is
a	modern	alternative	to	LAMP	stacks	where	you	program	JavaScript	on	the
client-and	server-side.

So	what	did	we	learn	from	this	experience?

As	you	can	see,	a	Dockerfile	is	an	elegant	way	to	describe	all	the	instructions	on
how	to	create	an	image.	The	commands	are	straight-forward	to	understand	and
you	use	special	keywords	to	instruct	Docker	what	to	do	in	order	to	produce	an
image	out	of	it.	The	FROM	command	tells	Docker	which	base	image	we	should
use.	Fortunately,	someone	has	already	created	a	base	image	from	the	CentOS	7
system	dependencies	(this	will	be	downloaded	from	Docker	Hub).	Next,	we	used
the	RUN	command,	which	just	executes	commands	as	on	a	BASH	command-line.
We	use	this	command	to	install	dependencies	on	our	system	in	order	to	run
Express.js	applications	(it's	based	on	the	Node.js	rpm	package	which	we	access
by	installing	the	EPEL	repository	first).	The	COPY	command	copies	files	from
our	host	machine	to	a	specific	location	on	the	container.	We	need	this	to	copy
our	index.js	file	which	will	create	all	our	Express.js	web	server	code	in	a	later
step	on	to	the	container.	EXPOSE,	as	the	name	implies,	exposes	an	internal
container	port	to	the	outside	host	system.	Since	by	default	Express.js	is	listening
on	8080,	we	need	to	do	this	here.	While	all	these	commands	shown	up	to	this
point	will	only	be	executed	once	when	creating	the	image,	the	next	command
CMD	will	be	run	every	time	we	start	the	container.	The	command	node
srcindex.js	will	be	executed	and	instructs	the	system	to	start	the	Express.js
web	server	with	the	index.js	file	(which	we	already	provided	in	this	directory
by	copying	it	from	the	host	machine).	We	don't	want	to	go	into	any	details	about
the	JavaScript	part	of	the	program—it	just	handles	HTTP	GET	requests	and
returns	the	Hello	World	string.	In	the	second	part	of	this	recipe,	we	showed	you
how	to	push	our	new	created	image	to	the	Docker	Hub.	In	order	to	do	so,	login
with	your	Docker	user	account.	Then	we	can	push	our	image	to	the	repository.

As	this	is	a	very	simple	Dockerfile,	there	is	much	more	to	learn	about	this
subject.	To	see	a	list	of	all	the	commands	available	in	the	Dockerfile,	use	man
Dockerfile.	Also,	you	should	visit	the	Docker	Hub	and	browse	the	Dockerfiles

(under	the	section	Source	Repository	hosted	on	GitHub)	of	some	interesting
projects	to	learn	how	to	create	some	highly	sophisticated	image	files	with	just	a
handful	of	commands	on	your	own.

Setting	up	and	working	with	a	private
Docker	registry
While	we	have	learned	in	a	former	recipe	in	this	chapter	how	easy	it	is	to	upload
our	own	images	to	the	official	Docker	Hub,	everything	we	put	there	will	be
exposed	to	the	public.	If	you	work	on	a	private	or	closed-source	project	within	a
corporate	environment	or	just	want	to	test	things	out	before	publishing	to
everyone,	chances	are	high	that	you	would	prefer	your	own,	protected	or
cooperate-wide	private	Docker	registry.	Here	in	this	recipe	we	will	show	you
how	you	can	set	up	and	work	with	your	own	Docker	registry	that	will	be
available	in	your	own	private	network	and	which	will	be	protected	by	TLS
encryption	and	which	will	use	user	authentication	so	you	can	control	exactly
who	can	use	it	(push	and	pull	images	to	and	from	it).

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet	in	order	to	facilitate	the	download	of	additional
packages.	In	our	example,	we	will	install	the	Docker	Registry	on	a	server	with
the	IP	address	192.168.1.100.	Change	the	recipe's	commands	appropriately	to
fit	your	needs.	You	need	to	have	set	a	FQDN	for	this	server,	otherwise	the
registry	will	not	work.	For	simplicity,	we	will	use	the	etchosts	approach	instead
of	setting	up	and	configuring	a	DNS	server	(see	Chapter	9,	Working	with
Domains	if	you	would	like	to	do	this	instead).	Also,	you	need	an	Apache	web
server	on	your	Docker	server	running	which	must	be	accessible	from	your	whole
private	network.

How	to	do	it...
Complete	all	the	following	steps	in	this	recipe	with	user	root	on	every	computer
in	your	network	you	want	to	connect	to	the	Docker	registry!

1.	 On	each	computer	you	want	to	access	your	Docker	registry,	as	well	as	on
our	Docker	registry	server	itself,	with	the	IP	address	192.168.1.100,	define
the	domain	name	of	the	Docker	registry,	which	in	our	example	will	be
dockerserver.home	(replace	the	dockerserver.home	part	appropriately	if
you	use	a	different	domain	name):

echo	"export	DCKREG=dockerserver.home"	>>	~/.bash_profile

source	~/.bash_profile

2.	 Now	we	will	define	the	FQDN	of	our	Docker	server	registry	on	each
computer	in	our	network	we	want	to	use	the	registry	on	(as	well	as	on	the
Docker	registry	server	itself).	Log	in	as	root	on	every	machine	and	type	the
following	command.	Skip	this	step	if	you	have	already	defined	your	Docker
registry's	server's	domain	name	via	a	BIND	DNS	server	(change	the	IP
address	of	your	Docker	service	192.168.1.100	appropriately):

echo	"192.168.1.100	$DCKREG"	>>		etchosts

Steps	to	be	done	on	our	Docker	registry	server	(192.168.1.100)
1.	 First	create	a	TLS	certificate	for	our	Docker	registry	certificate	(use	the

FQDN	you	defined	in	DCKREG	when	asked	for	a	Common	name	(for	name;
for	example	your	name	or	your	server's	hostname)
[]:dockerserver.home):

cd;	mkdir	-p	~/certs;	openssl	req	-newkey	rsa:4096	-nodes	-

sha256	-keyout	certs/domain.key	-x509	-days	365	-out	

certs/domain.crt

2.	 Next,	we	need	to	copy	the	new	certificate	to	the	Docker	trusted	certificate's
location	as	well	as	to	the	system's	default	trusted	certificate	location	and
rebuild	the	certificate	index:

mkdir	-p	etcdocker/certs.d/$DCKREG\:5000

cp		~/certs/domain.crt	etcdocker/certs.d/$DCKREG\:5000/ca.crt

cp	~/certs/domain.crt	etcpki/ca-trust/source/anchors/docker-

registry.crt

update-ca-trust

3.	 Also,	copy	the	certificate	to	our	Apache	web	server	so	we	can	easily	access
it	from	the	Docker	clients	later:

cp	~/certs/domain.crt	varwww/html/docker-registry.crt

4.	 Next,	we	will	finally	download,	create,	and	run	our	Docker	registry	as	a
container:

mkdir	/auth;	touch	/auth/htpasswd	docker	run	-d	-p	5000:5000	--

restart=always	--name	registry	-v	/

root/certs:/certs	-v	rootauth:/auth	-v	/reg:varlib/registry	-e	

REGISTRY_HTTP_TLS_CERTIFICATE=/certs/domain.crt	-e

	REGISTRY_HTTP_TLS_KEY=/certs/domain.key	-e	

"REGISTRY_AUTH_HTPASSWD_REALM=Registry	Realm"	-e	

REGISTRY_AUTH_HTPASSWD_PATH=/auth/htpasswd	-e	

REGISTRY_AUTH=htpasswd	registry:2

5.	 Now	check	if	the	registry	is	running	(in	the	output	you	should	find	it
listening	on	[::]:5000,	tls):

docker	logs	registry

6.	 For	setting	up	user	authentication	for	our	registry,	use	the	following
command	(here	we	use	johndoe	as	the	username	and	mysecretpassword	as
the	password	for	authentication.	Change	these	two	values	to	fit	your	needs.
Repeat	this	command	for	every	user	account	you	want	to	have	later	for	your
users	to	login):

cd;	docker	run	-it	--entrypoint	htpasswd	-v	$PWD/auth:/auth	-w	

auth	registry:2	-Bbc	auth/htpasswd	johndoe	mysecretpassword

7.	 Next	restart	the	registry	to	apply	your	user	account	changes:

docker	restart	registry

8.	 Now	create	a	new	firewalld	service	and	activate	it	in	our	firewall	to	make
incoming	connections	to	our	new	Docker	registry	port	5000	possible:

sed	's/80/5000/g'	usrlib/firewalld/services/http.xml	|	sed	

's/WWW	(HTTP)/Docker	registry/g'	|	sed	's/<description>.*

<\/description>//g'	>	etcfirewalld/services/docker-reg.xml

firewall-cmd	--reload

firewall-cmd	--permanent	--add-service=docker-reg;	firewall-cmd	

--reload

Steps	to	be	done	on	every	client	needing	access	to	our	registry

1.	 Finally	we	can	test	connecting	to	our	own	new	TLS-enhanced	private
Docker	registry	with	user	authentication	by	logging	in	on	any	computer	in
the	same	network	as	our	Docker	registry	with	root.

2.	 The	first	step	is	to	install	Docker	on	every	client	that	wants	to	connect	to
the	Docker	registry:

yum	update	&&	curl	-sSL	https://get.docker.com/	|	sh

3.	 Next,	on	every	client	wanting	to	connect	to	our	new	Docker	registry,	set	up
the	server's	certificate	on	the	client	first	before	we	are	able	to	connect	to	it
(this	step	has	been	tested	on	CentOS	7	clients	only):

mkdir	-p	etcdocker/certs.d/$DCKREG\:5000

curl	http://$DCKREG/docker-registry.crt	-o	tmpcert.crt

cp	tmpcert.crt	etcdocker/certs.d/$DCKREG\:5000/ca.crt

cp	tmpcert.crt	etcpki/ca-trust/source/anchors/docker-

registry.crt

update-ca-trust

4.	 For	testing,	we	start	by	pulling	a	new	small	test	image	from	the	official
Docker	Hub.	Log	in	to	the	official	Docker	Hub	by	using	your	Docker	Hub
account	(see	a	previous	recipe	in	this	chapter):

docker	login

5.	 Now	pull	a	small	image	called	busybox:

docker	pull	busybox

6.	 Afterwards,	switch	the	Docker	registry	server	to	use	our	own	that	we	set	up
in	this	recipe	(enter	the	username	and	password,	for	example,	johndoe	/
mysecretpassword.	Leave	the	e-mail	field	blank):

docker	login	$DCKREG:5000

7.	 Next,	to	push	a	Docker	image	from	our	client	to	our	new	private	Docker
registry,	we	need	to	tag	it	to	be	in	our	registry's	domain:

docker	tag	busybox	$DCKREG:5000/busybox

8.	 Finally,	push	the	image	to	our	own	registry:

docker	push	$DCKREG:5000/busybox

9.	 Congratulations!	You	have	just	pushed	your	first	image	to	your	private
Docker	repository.	You	can	now	pull	this	image	$DCKREG:5000/busybox	on

any	other	client	set	up	to	communicate	to	our	repository.	To	get	a	list	of	all
the	available	images,	use	(change	the	account	information	accordingly):

curl	https://johndoe:mysecretpassword@$DCKREG:5000/v2/_catalog

How	it	works...
In	this	recipe	we	showed	you	how	to	set	up	your	own	Docker	registry	running	in
a	Docker	container	on	the	server.	It	is	very	important	to	understand	that	you	will
need	to	configure	a	FQDN	for	your	registry	server	because	it	is	mandatory	for
the	whole	system	to	work.

So	what	did	we	learn	from	this	experience?

We	began	by	configuring	the	Docker	registry's	FQDN	on	every	computer	using
the	etchosts	approach.	Then	we	created	a	new	certificate	on	the	Docker	registry
server	which	will	be	used	to	communicate	securely	using	TLS	encryption
between	clients	and	registry.	Next	we	installed	the	new	generated	certificate	on
the	httpd	server,	so	it	is	accessible	to	all	the	clients	later;	also	in	a	specific
Docker	directory	to	make	it	accessible	for	Docker	as	well;	and	in	the	default
trusted	certificate	location	of	the	server	where	we	also	rebuilt	the	certificate
cache	for	this	server.	Afterwards,	we	used	the	docker	run	command	to
download,	install,	and	run	our	new	Docker	registry	in	a	docker	container	itself
on	this	server.	We	provided	a	list	of	parameters	to	configure	TLS	encryption	and
user	authentication.

In	the	next	step,	we	attached	to	the	registry	to	create	new	htpasswd	accounts.
You	can	repeat	this	step	whenever	you	need	new	accounts	for	your	registry.
Don't	forget	to	restart	the	registry	container	afterwards.	Next,	on	every	client	we
want	to	make	communications	to	our	new	Docker	registry,	we	need	to	install	the
server's	certificate	also	in	the	same	places	as	on	the	server	itself;	thus	we
downloaded	it	from	the	HTTP	source	implemented	previously	and	copied	it	to
the	various	locations.	To	test	things	out	on	the	client,	next	we	connected	to	the
official	Docker	Hub	to	download	a	random	image	we	wanted	to	push	to	our	own
registry	in	the	next	step.	We	downloaded	the	busybox	image	to	our	own	image
cache	and	afterwards	switched	to	connecting	to	our	new	private	Docker	registry.
Before	we	could	upload	the	image	to	the	new	location,	we	had	to	give	it	a	proper
tag	that	fitted	the	new	server	name	and	then	we	were	able	to	push	the	image	to
our	new	Docker	registry.	The	server	is	now	available	at	port	5000	in	the
complete	network.	Remember	that,	if	you	don't	want	to	use	your	own	registry
any	more	on	the	clients,	you	can	always	switch	back	to	the	official	docker
repository	using	docker	login.

There	is	so	much	more	to	learn	about	Docker.	In	the	recipes	of	this	chapter	we
only	scratched	the	surface	of	the	Docker	platform.	If	you	want	to	learn	more
about	it,	consider	going	to	https://www.Packtpub.com	and	check	out	one	of	the
many	titles	available	at	this	website	about	it.

https://www.Packtpub.com

Chapter	14.	Working	with	SELinux
In	this	chapter,	we	will	cover	the	following	topics:

Installing	and	configuring	important	SELinux	tools
Working	with	SELinux	security	contexts
Working	with	policies
Troubleshooting	SELinux

Introduction
This	chapter	is	a	collection	of	recipes	that	strive	to	demystify	Security-
Enhanced	Linux	(SELinux),	a	mature	technology	for	hardening	your	Linux
system	using	additional	security	features	added	to	the	basic	security	system.	It
has	been	around	for	many	years	in	the	CentOS	world	but	nevertheless	is	a
somewhat	little-known	and	confusing	topic	for	a	lot	of	system	administrators.

Installing	and	configuring	important
SELinux	tools
The	most	significant	security	feature	of	any	Linux	system	is	providing	access
control—often	called	Discretionary	Access	Control	(DAC)—which	allows	the
owner	of	an	object	(such	as	a	file)	to	set	security	attributes	for	it	(for	example,
deciding	who	can	read	or	write	to	a	file	using	the	chown	and	chmod	commands).
While	this	old	and	very	simple	security	system	was	sufficient	in	ancient	UNIX
times,	it	does	not	meet	all	the	modern	requirements	of	security,	where	servers
and	services	are	constantly	connected	to	the	Internet.

Often,	security	breaches	can	be	initiated	by	attackers	exploiting	buggy	or
misconfigured	applications	and	the	permissions	to	them.	This	is	why	the
SELinux	has	been	developed.	Its	main	purpose	is	to	enhance	the	security	of	the
DAC	system	in	Linux.	It	does	so	by	adding	an	additional	security	layer	on	top	of
DAC,	which	is	called	Mandatory	Access	Control	(MAC),	and	which	can
provide	fine-grain	access	control	to	every	single	component	of	your	system.
SELinux	has	already	been	enabled	on	CentOS	7	and	is	absolutely	recommended
for	any	server	connected	directly	to	the	Internet.	Here	in	this	recipe,	we	will
install	additional	tools	and	configure	them	to	better	manage	your	SELinux
system,	and	help	in	the	troubleshooting	and	monitoring	process.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges	and	a	connection	to	the	Internet	in	order	to
download	additional	packages.	For	the	best	learning	experience,	it	is	also
preferred	that	you	work	through	this	chapter	recipe	by	recipe,	in	the	order	that
they	appear,	because	they	build	upon	each	other.

How	to	do	it...
Throughout	this	book,	we	already	applied	programs	such	as	semanage	from	the
rpm	policecoreutils-python	package	to	manage	our	SELinux	environment.	If
you	missed	installing	it,	we	will	begin	this	recipe	by	doing	so	(skip	step	1	if	you
have	already	done	this	before):

1.	 Log	in	as	root	and	install	the	following	basic	toolkit	to	work	with	SELinux:

yum	install	policycoreutils-python

2.	 Now,	we	need	some	additional	tools	that	will	also	be	needed	later	in	the
course	of	this	chapter:

yum	install	setools	setools-console	setroubleshoot*

3.	 Next,	install	and	configure	the	SELinux	manual	pages	as	they	are	not
available	by	default	on	CentOS	7,	but	are	important	for	getting	detailed
information	about	specific	policies,	security	contexts,	and	SELinux
Booleans	later.	First,	we	need	to	install	another	package:

yum	install	policycoreutils-devel

4.	 Afterwards,	let's	generate	all	the	man	pages	for	all	SELinux	security	context
policies	currently	available	on	the	system,	and	then	update	the	manual
pages	database	afterwards:

sepolicy	manpage	-a	-p	usrshare/man/man8;	mandb

How	it	works...
By	following	this	recipe,	we	installed	all	the	tools	needed	for	our	daily	work
with	SELinux.	Also,	we	generated	all	available	SELinux	manual	pages,	which
will	be	our	primary	source	of	information	when	working	with	SELinux,	and	also
for	troubleshooting	SELinux	services	later.

SELinux	has	two	primary	and	fundamental	terms	that	we	need	to	understand
before	diving	into	the	remaining	recipes	in	this	chapter:	labels	(or	more
technically,	security	contexts)	and	policies.	From	SELinux's	perspective,	a	Linux
system	is	divided	into	a	number	of	different	objects.	Objects,	for	example,	are	all
files,	processes,	users,	sockets,	and	pipes	in	a	system.	In	a	SELinux	context,
every	such	object	gets	a	special	label.	SELinux	policies	are	the	rules	to	control
access	to	these	objects	using	the	labels	defined	on	them:	On	every	access	attempt
to	such	an	object	(for	example,	a	file	read),	all	SELinux	policies	available	to	the
system	will	be	searched	if	there	is	a	rule	for	the	specific	label	to	make	access
control	decisions	(allow	or	deny	the	access).

So,	what	did	we	learn	from	this	experience?

A	lot	of	system	administrators	seem	to	avoid	SELinux	like	the	plague,	and	a
trend	in	a	lot	of	instruction	manuals	and	tutorials	leans	towards	disabling	it
altogether	right	after	the	installation	of	CentOS	7	because	people	seem	to	fear	it
and	don't	want	to	mess	with	it,	or	are	even	frustrated	if	some	networking	service
is	not	working	correctly	out-of-the-box.	Often,	they	blame	SELinux	for	any
connection	problems,	so	it	often	looks	easier	to	disable	it	altogether	rather	than
find	out	the	true	reasons	by	delving	into	the	inner	workings	of	SELinux.	If	you
are	disabling	it,	you	are	missing	out	one	of	the	most	critical	security	features	of
CentOS	7	that	can	prevent	a	lot	of	harm	to	your	system	in	the	event	of	an	attack!
In	the	last	few	years,	the	SELinux	project	has	evolved	very	much	and	is	easier	to
use	than	ever.	A	lot	of	convenient	tools	for	working	with	it	have	emerged,	and
we	get	more	of	a	complete	set	of	policies	to	work	with	all	the	major	applications
and	services	available.	By	installing	these	tools,	we	are	now	ready	to	use
SELinux	and	work	with	it	in	the	most	convenient	way	possible.

There's	more...
There	are	three	different	modes	when	it	comes	to	SELinux.	While	Enhanced	is
the	only	true	mode	that	really	protects	us	and	enhances	our	server's	security,
there	are	two	other	modes:	Disabled	and	Permissive.	Disabled	means	SELinux
is	turned	off,	which	will	never	be	an	option	for	us	in	this	book	and	is	not
discussed	any	further	as	it	does	not	make	sense	to	get	rid	of	this	fantastic
CentOS	feature.	When	disabled,	our	system	is	not	enhanced	by	SELinux	and	the
good	old	DAC	system	is	the	only	source	of	protection	we	have	at	hand.
Permissive	mode	means	SELinux	is	turned	on,	the	policy	rules	are	loaded,	and
all	objects	are	labeled	with	a	specific	security	context,	but	the	system	is	not
enforcing	these	policies.	This	is	like	a	dry-run	parameter	that	a	lot	of	Linux
based	command-line	tools	have:	it	simulates	the	system	under	SELinux
enhanced	security	protection,	and	the	system	logs	every	SELinux	policy
violation	as	it	would	when	running	for	real.	This	is	a	great	way	to	debug	the
system,	or	to	analyze	the	consequences	that	a	normal,	enforced	run	would	have
had	on	the	system.

Often,	it	is	used	if	you	are	unsure	about	the	impact	of	using	SELinux.	As	this
mode	does	not	really	provide	us	with	any	additional	security,	we	will	eventually
need	to	switch	to	Enforcing	mode	if	we	want	enhanced	security!	Again,	this	is
the	only	mode	that	protects	us;	SELinux	is	fully	running	with	all	the	policies
loaded	and	is	enforcing	these	rules	on	the	system.	You	should	always	aim	for
Enforcing	mode	on	any	system!	To	view	the	current	mode,	use	the	command
sestatus.	We	can	see	the	current	SELinux	mode	in	the	Current	mode	line	in	the
output.	On	CentOS	7,	SELinux	is	in	Enforcing	mode	by	default,	which	again
tells	us	that	the	system	is	fully	protected	by	it.	To	change	this	mode	to
permissive	mode,	use	the	command	setenforce	permissive.	Now,	validate
your	setting	using	sestatus	again.	To	revert	your	changes	back	to	Enforcing
mode,	use	setenforce	enforcing.	Setting	the	SELinux	mode	using	setenforce
is	only	setting	it	temporarily,	and	it	will	not	survive	a	reboot	(take	a	look	at	the
Mode	from	config	file	in	the	sestatus	output).	To	change	this	permanently,
open	the	etcselinux/config	file	and	change	the	SELINUX=	configuration
parameter.

Working	with	SELinux	security
contexts
As	we	have	learned	from	the	previous	recipe	in	this	chapter,	SELinux	is	all
about	labels	and	policies.	In	this	recipe,	we	will	show	you	how	to	work	with
these	labels,	also	known	as	security	contexts.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges.	It	is	assumed	that	you	are	working
through	this	chapter	recipe	by	recipe,	so	by	now	you	should	have	installed	the
SELinux	tools	from	the	previous	recipe	and	generated	all	the	SELinux	man
pages	for	the	policies.	As	you	may	notice,	some	of	the	commands	that	we	will
show	you	in	this	recipe	have	already	been	applied	in	other	recipes	in	this	book.
We	will	explain	them	here	in	detail.	For	using	the	netstat	program,	install	the
package,	net-tools,	with	the	YUM	package	manager.

How	to	do	it...
As	we	have	learned	in	a	previous	recipe,	almost	every	component	in	a	SELinux
system	is	an	object	(files,	directories,	processes,	users,	and	so	on).	We	will	begin
this	recipe	by	showing	you	how	to	print	out	the	SELinux	labels	for	all	kinds	of
objects	using	the	-Z	command-line	flag,	which	a	lot	of	basic	Linux	commands
on	a	SELinux	system	support.

1.	 To	begin	with,	log	in	as	root	and	type	the	following	commands	to	explore
SELinux	security	context	information	from	various	kinds	of	objects:

id	-Z

ls	-Z

ps	-auxZ

netstat	-tulpenZ

2.	 Next,	to	list	all	available	security	context	names	for	the	files	and	directories
on	your	system,	use	the	following	command	(which	we	filtered	for	httpd
labels	only):

semanage	fcontext	-l	|	grep	httpd

3.	 Next,	let's	create	a	new	empty	file	that	we	can	work	with:

touch	tmpselinux-context-test.txt

4.	 Show	the	current	security	context	of	the	new	file	(should	contain	the	type
user_tmp_t):

ls	-Z	tmpselinux-context-test.txt

5.	 Finally,	change	the	user_tmp_t	type	to	a	random	samba_share_t	label
name:

semanage	fcontext	-a	-t	samba_share_t	tmpselinux-context-

test.txt

restorecon	-v	tmpselinux-context-test.txt

6.	 Perform	a	test	to	validate	your	changes:

ls	-Z	tmpselinux-context-test.txt

How	it	works...
Here	in	this	recipe,	we	have	shown	you	how	to	display	labels	(security	contexts)
of	various	SELinux	object	types,	how	to	show	all	available	label	names,	and
how	to	modify	or	set	them	on	the	example	of	the	file	object.	Working	on	a
SELinux	enhanced	system	on	a	daily	basis,	most	administrators	would	confirm
that	the	most	important	objects	we	have	to	manage	security	contexts	for	are	files,
directories,	and	processes.	Also,	you	need	to	remember	that	every	SELinux
object	can	have	only	one	security	context.

So,	what	did	we	learn	from	this	experience?

As	we	have	have	seen,	we	can	use	the	-Z	parameter	on	a	lot	of	different	standard
Linux	command-line	tools	to	print	out	their	SELinux	security	context.	Here,	we
have	shown	you	examples	to	display	labels	for	users,	files	and	directories,
processes,	and	network	connections,	which	we	could	query	with	the	id,	ls,	ps,
and	netstat	commands.	In	the	output	of	these	commands,	we	see	that	every
security	context	label	of	every	such	object	consists	of	three	values:	user	(flagged
by	_u),	role	(_r),	and	type	(_t).	The	type	field	is	used	as	the	main	mechanism	to
do	all	our	access	control	decisions	in	the	standard	SELinux	type	(which	is	called
targeted),	so	we	often	call	the	whole	SELinux	access	control	process	type
enforcement	(TE).

The	other	values	user	and	role	in	an	object's	label	are	only	necessary	for	very
advanced	SELinux	configurations	not	discussed	here.	In	order	to	show	all	the
available	context	types	for	use	on	our	system,	use	the	command-line	seinfo	-t.
These	SELinux	types	are	a	very	important	concept	that	we	need	to	understand.
For	file	and	directory	objects,	they	are	used	to	bundle	together	groups	of	objects
related	to	each	other,	and	that	should	be	protected	or	treated	the	same	so	that	we
can	define	specific	policy	rules	on	them.	For	example,	we	can	assign	each	file	in
the	standard	mail	spool	directory,	varspool/mail,	of	the	type	mail_spool_t,
and	then	create	an	access	rule	policy	in	which	we	will	use	this	type	to	allow
specific	access.	In	the	context	of	processes,	type	values	are	called	domains.
Here,	types	are	used	as	a	way	to	isolate	and	sandbox	processes:	any	process	that
has	a	specified	domain	name	can	only	communicate	and	interact	with	other
processes	in	the	same	domain	(with	some	exceptions,	such	as	transitions	not
discussed	here).	This	isolating	of	processes	via	domains	greatly	reduces	security

risks.	When	processes	get	compromised,	they	can	only	damage	themselves	and
nothing	else.

Note

SELinux	is	sometimes	called	a	sandboxing	system.	Starting	from	the	assumption
that	software	will	always	have	bugs,	SELinux	provides	ways	to	isolate
components	of	the	software	such	that	a	breach	in	one	component	doesn't
compromise	another.

If	you	type	in	ps	-auxZ,	you	will	also	see	that	there	are	processes	that	run	in	a
domain	called	unconfined_t.	Processes	running	with	this	label	are	not	protected
by	SELinux	policies,	which	means	that,	if	an	unconfined	process	is
compromised,	SELinux	does	not	prevent	an	attacker	from	gaining	access	to
other	system	resources	and	data.	Here,	security	falls	back	to	standard	DAC	rules,
which	will	be	your	only	and	exclusive	protection	instead.

After	we	discussed	how	to	display	security	contexts,	next	in	the	recipe	we
showed	you	how	you	can	set	and	change	them.	In	some	older	documentation	as
well	as	in	some	SELinux	policy	man	pages,	you	will	encounter	examples	with	a
tool	called	chcon,	which	is	used	to	modify	the	security	context	of	your	objects.
The	usage	of	this	tool	is	not	the	recommended	approach	any	more,	and	you
should	always	replace	such	command	line	examples	with	the	newer	semanage
fcontext	-a	-t	command-line	in	combination	with	the	restorecon	program.
For	semanage,	you	provide	the	label	type	name	with	-t,	and	then	provide	the
filename	you	want	to	set	it	for.	Then,	with	restorecon,	you	provide	the	filename
to	which	you	want	to	apply	the	change	made	by	semanage	earlier.	This	is	needed
because	security	context	can	be	set	on	two	levels.	It	can	be	set	to	the	policy	and
on	a	filesystem	level.	The	chcon	command	sets	the	new	context	directly	on	the
filesystem,	while	the	policy	context	does	not	get	altered.	This	can	be	a	problem,
for	example,	if	you	want	to	reset	or	change	the	security	context	of	your
filesystem	later	(this	is	called	relabeling)—which	means	that	all	the	security
context	will	be	applied	from	the	policy	to	the	filesystem,	overwriting	all	your
changes	made	with	chcon.	So	it	is	better	to	use	semanage,	which	will	write	to	the
policy,	and	then	use	restorecon,	which	will	synchronize	the	policy	labels	to	the
filesystem,	keeping	everything	up-to-date.	If	you	want	to	set	labels	for
directories	instead	of	single	files,	you	can	use	regular	expressions;	to	see	some
examples	and	further	command-line	options;	type	man	semanage-fcontext	and

browse	to	the	EXAMPLES	section.

Working	with	policies
At	the	core	of	every	SELinux	system	are	the	policies.	These	are	the	exact	rules
that	define	the	access	rights	and	relationships	between	all	our	objects.	As	we
have	learned	earlier,	all	our	system's	objects	have	labels,	and	one	of	them	is	a
type	identifier	that	can	then	be	used	to	enforce	rules	laid	down	by	policies.	In
every	SELinux	enabled	system,	by	default,	all	access	to	any	object	is	prohibited
unless	a	policy	rule	has	been	defined	otherwise.	Here,	in	this	recipe,	we	will
show	you	how	we	can	query	and	customize	SELinux	policies.	As	you	may
notice,	some	of	the	commands	have	already	been	applied	in	other	recipes	in	this
book,	such	as	for	the	httpd	or	ftpd	daemons.	Here,	you	will	find	out	how
policies	work.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges.	It	is	assumed	that	you	are	working
through	this	chapter	recipe	by	recipe,	so	by	now	you	should	have	installed	the
SELinux	tools	from	the	previous	recipe	and	generated	all	SELinux	man	pages
for	the	policies.	For	our	tests	here,	we	will	use	the	Apache	web	server,	so	please
make	sure	it	is	installed	and	running	on	your	system	(Refer	to	recipe	Installing
Apache	and	serving	web	pages	in	Chapter	12,	Providing	Web	Services).

How	to	do	it...
1.	 To	begin,	log	in	as	root	and	type	the	following	command	to	show	all

SELinux	Boolean	policy	settings,	filtered	by	the	httpd	daemon	only:

semanage	boolean	-l	|	grep	httpd

2.	 To	get	more	information	about	a	specific	policy	and	its	contained	Booleans,
read	the	corresponding	man	page;	for	example,	for	httpd	type	the
following:

man	httpd_selinux

3.	 Here,	within	the	manual	pages	for	the	httpd	policy,	we	will,	among	others,
find	detailed	information	about	every	httpd	policy	Boolean	available.	For
example,	there	is	a	section	about	httpd_use_nfso.	To	toggle	single	policy
features,	use	the	setsebool	command	together	with	the	policy	Boolean
name	with	the	on	or	off	parameter,	as	shown	here:

setsebool	httpd_use_nfs	on

setsebool	httpd_use_nfs	off

How	it	works...
Here	in	this	recipe,	we	have	shown	you	how	to	work	with	SELinux	Booleans.
Remember	that	SELinux	follows	the	model	of	least	privilege,	which	means	that
SELinux	policies	enable	only	the	least	amount	of	features	to	any	object;	like	a
system	service,	they	need	to	perform	their	task	and	nothing	more.	These	features
of	a	policy	can	be	controlled	(activated	or	deactivated)	using	corresponding
SELinux	Booleans	at	runtime	without	the	need	to	understand	the	inner	workings
of	policy	writing.	It	is	a	concept	to	make	policies	customizable	and	extremely
flexible.	In	other	recipes	in	this	book,	we	have	already	worked	with	enabling
SELinux	Booleans	to	add	special	policy	features,	such	as	enabling	Apache	or
FTP	home	directories,	which	are	all	disabled	by	default.

What	did	we	learn	from	this	experience?

SELinux	Booleans	are	like	switches	to	enable	or	disable	certain	functionalities	in
your	SELinux	policy.	We	started	this	recipe	using	the	semanage	command	to
show	all	Booleans	available	on	the	system,	and	we	filtered	by	http	to	get	only
those	related	to	this	service.	As	you	can	see,	there	are	a	huge	number	of
Booleans	available	in	your	system,	and	most	of	them	are	disabled	or	off	(the
model	of	least	privilege);	to	get	more	information	about	a	specific	policy	and	its
Boolean	values,	use	the	SELinux	man	pages	that	we	installed	in	a	previous
recipe.	Sometimes,	it	can	be	difficult	to	find	a	specific	man	page	of	interest.	Use
the	following	command	to	search	for	man	page	names	that	are	available:	man	-k
_selinux	|	grep	http.	In	our	example,	httpd_selinux	is	the	correct	man	page
to	get	detailed	information	about	the	httpd	policy.	Finally,	if	we	decide	to
switch	a	specific	SELinux	Boolean	feature,	we	will	use	the	setsebool
command.	You	should	remember	that	setting	Booleans	in	this	way	only	works
until	reboot.	To	make	those	settings	permanent,	use	the	-p	flag,	for	example,
setsebool	-P	httpd_use_nfs	on.

There's	more...
With	all	our	knowledge	from	the	previous	recipes	so	far,	we	are	now	able	to
show	an	example	where	we	put	everything	together.	Here,	we	will	see	SELinux
security	contexts	and	policies	in	action	for	the	httpd	service.	If	the	Apache	web
server	is	running,	we	can	get	the	SELinux	domain	name	of	the	httpd	process
using	the	following	line:

ps	auxZ	|	grep	httpd

This	will	show	us	that	the	httpd	domain	(type)	is	called	httpd_t.	To	get	the
SELinux	label	of	our	web	root	directory,	type	in	the	following	command:

ls	-alZ	varwww/html

This	will	tell	us	that	the	security	context	type	of	our	Apache	web	server's	web
root	directory	is	called	httpd_sys_content_t.	Now,	with	this	information,	we
can	get	the	exact	rules	for	the	Apache	domain	from	our	policy:

sesearch	--allow	|	grep	httpd_t

This	will	print	out	every	httpd	policy	rule	available.	If	we	filter	the	output	for
the	httpd_sys_content_t	context	type,	the	following	line	comes	up	for	files
again:

allow	httpd_t	httpd_sys_content_t	:	file	{	ioctl	read	getattr	lock	

open	}	

This	shows	us	which	source	target	context	is	allowed	to	access,	which
destination	target	context,	and	with	which	access	rights.	In	our	example	for	the
Apache	web	server,	this	specifies	that	the	httpd	process	that	runs	as	domain
httpd_t	can	access,	open,	and	modify	all	the	files	on	the	filesystem	that	match
the	httpd_sys_content_t	context	type	(all	files	in	the	varwww/html	directory
match	this	criterion).	Now,	to	validate	this	rule,	create	a	temporary	file	and	move
it	to	the	Apache	web	root	directory:	echo	"CentOS7	Cookbook"	>
tmptest.txt;mv	tmptest.txt	varwww/html.	Any	file	inherits	the	security
context	of	the	directory	in	which	it	is	created.	If	we	had	created	the	file	directly
in	the	web	root	directory,	or	had	copied	the	file	instead	of	moving	it	(copying
means	creating	a	copy),	it	would	automatically	be	in	the	correct
httpd_sys_content_t	context	and	fully	accessible	by	Apache.	But,	as	we

moved	the	file	from	the	/tmp	directory,	it	will	stay	as	the	user_tmp_t	type	in	the
web	root	directory.	If	you	now	try	to	fetch	the	URL,	for	example,,	curl
http://localhost/test.txt,	you	should	get	a	403	forbidden	message.	This	is
because	the	user_tmp_t	type	is	not	part	of	the	httpd_t	policy	rule	for	file
objects,	because,	as	said	before,	everything	that	is	not	defined	in	a	policy	rule
will	be	blocked	by	default.	To	make	the	file	accessible,	we	will	now	change	its
security	context	label	to	the	correct	type:

semanage	fcontext	-a	-t	httpd_sys_content_t	varwww/html/test.txt

restorecon	-v	varwww/html/test.txt

Now,	again	fetch	curl	http://localhost/test.txt,	which	should	be
accessible,	and	print	out	the	correct	text:	CentOS7	cookbook.

Remember	that,	if	you	copy	a	file,	the	security	context	type	is	inherited	from	the
targeted	parent	directory.	If	you	want	to	preserve	the	original	context	when
copying,	use	cp	-preserve=context	instead.

Troubleshooting	SELinux
In	this	recipe,	you	will	learn	how	to	troubleshoot	SELinux	policies,	which	is
most	often	needed	when	access	to	some	SELinux	objects	has	been	denied	and
you	need	to	find	out	the	reasons	for	it.	In	this	recipe,	we	will	show	you	how	to
work	with	the	sealert	tool,	which	will	create	human-readable	and
understandable	error	messages	to	work	with.

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges.	It	is	assumed	that	you	are	working
through	this	chapter	recipe	by	recipe,	so	by	now	you	should	have	installed	the
SELinux	tools	and	applied	the	Working	with	policies	recipe	in	this	chapter,	as	we
will	produce	some	SELinux	denial	events	in	order	to	show	you	how	to	use	the
log	file	tools.

How	to	do	it...
1.	 To	begin,	login	as	root	and	provoke	a	SELinux	denial	event:

touch	varwww/html/test2.html

semanage	fcontext	-a	-t	user_tmp_t	varwww/html/test2.html

restorecon	-v	varwww/html/test2.html

curl	http://localhost/test2.html

Now,	let's	generate	an	up-to-date	human	readable	log	file:

sealert	-a	varlog/audit/audit.log

In	the	program's	output,	you	will	get	a	detailed	description	of	any	SELinux
problem	and,	at	the	end	of	each	so	called	alert,	you	will	even	find	a	suggested
solution	to	fix	the	problem;	in	our	example,	the	alert	of	interest	should	read	(the
output	is	truncated)	as	shown	next:

SELinux	is	preventing	usrsbin/httpd	from	open	access	on	the	file	

varwww/html/test2.html.

varwww/html/test2.html	default	label	should	be	httpd_sys_content_t

How	it	works...
Here	in	this	recipe,	we	showed	you	how	easily	one	can	troubleshoot	SELinux
problems	using	the	sealert	program.	We	started	by	provoking	a	SELinux	deny
access	problem	by	creating	a	new	file	in	the	web	root	directory	and	assigning	it	a
wrong	context	type	of	value	user_tmp_t,	which	has	no	access	rule	defined	in	the
httpd	policy.	Then,	we	used	the	curl	command	to	try	and	fetch	the	website	and
actually	produce	the	Access	Vector	Cache	(AVC)	denial	message	in	the
SELinux	logs.	Denial	messages	are	logged	when	SELinux	denies	access.	The
primary	source	where	all	SELinux	logging	information	is	stored	is	the	audit	log
file,	which	can	be	found	at	varlog/audit/audit.log,	and	easier-to-read	denial
messages	will	also	be	written	to	varlog/messages.	Here,	instead	of	manually
grepping	for	error	messages	and	combining	both	log	files,	we	use	the	sealert
tool,	which	is	a	convenience	program	that	will	parse	the	audit	and	messages	log
file	and	present	valuable	AVC	content	in	a	human-readable	format.	At	the	end	of
each	alert	message,	you	will	also	find	a	suggested	solution	to	the	problem.
Please	note	that	those	are	auto-generated	messages	and	should	always	be
questioned	before	applying.

Chapter	15.	Monitoring	IT
Infrastructure
In	this	chapter,	we	will	cover	the	following	topics:

Installing	and	configuring	Nagios	Core
Setting	up	NRPE	on	remote	client	hosts
Monitoring	important	remote	system	metrics

Introduction
This	chapter	is	a	collection	of	recipes	that	provide	the	necessary	steps	to	set	up
the	de-facto	industry	standard,	open	source	network	monitoring	framework:
Nagios	Core.

Installing	and	configuring	Nagios
Core
In	this	recipe,	we	will	learn	how	to	install	Nagios	Core	version	4,	an	open-source
network	monitoring	system	that	checks	whether	hosts	and	services	are	working
and	notifies	users	when	problems	occur	or	services	become	unavailable.	Nagios
provides	solutions	to	monitor	your	complete	IT	infrastructure	and	is	designed
with	an	architecture	that	is	highly	extendable	and	customizable	and	goes	far
beyond	simple	bash	scripts	to	monitor	your	services.	(Refer	to	the	Monitoring
important	server	infrastructure	recipe	in	Chapter	3,	Managing	the	System.)

Getting	ready
To	complete	this	recipe,	you	will	require	a	working	installation	of	the	CentOS	7
operating	system	with	root	privileges,	a	console-based	text	editor	of	your	choice,
and	a	connection	to	the	Internet	in	order	to	facilitate	the	download	of	additional
packages.	Nagios	Core	4	is	not	available	in	the	official	sources	but	from	the
EPEL	repository;	make	sure	to	have	installed	it	before	(refer	to	the	Using	a
third-party	repository	recipe	in	Chapter	4,	Managing	Packages	with	YUM).	For
the	Nagios	web	frontend,	you	need	a	running	Apache2	web	server	as	well	as
PHP	(refer	to	the	recipes	from	Chapter	12,	Providing	Web	Services)	installed	on
your	Nagios	server.	In	our	example,	the	Nagios	server	has	the	IP	address
192.168.1.7,	and	it	will	be	able	to	monitor	all	IT	infrastructure	in	the	complete
192.168.1.0/24	subnet.

How	to	do	it...
Nagios	Core	4	is	not	available	by	default,	so	let's	begin	by	installing	all	the
required	packages:

1.	 To	do	so,	log	in	as	root	and	type	the	following	command:

yum	install	nagios	nagios-plugins-all	nagios-plugins-nrpe	nrpe

First,	create	a	new	user	account	called	nagiosadmin,	which	is	needed	for
authentication	to	the	web	frontend	(enter	a	secure	password	when	prompted),
then	reload	the	Apache	configuration:

htpasswd	etcnagios/passwd	nagiosadmin		&&	systemctl	reload	httpd

Now,	add	an	e-mail	address	for	the	nagiosadmin	web	user	to	the	Nagios
configuration,	open	the	following	file,	and	search	and	replace	the	string,
nagios@localhost,	with	an	appropriate	e-mail	address	you	want	to	use	here	(it
can	be	a	domain-wide	or	external	e-mail	address):

vi	etcnagios/objects/contacts.cfg

Now,	we	need	to	adjust	the	main	configuration	file	to	activate
etcnagios/servers	as	our	server's	definition	configuration	directory,	where	we
will	put	all	our	server	config	files	later,	but	first,	make	a	backup:

cp	etcnagios/nagios.cfg		etcnagios/nagios.cfg.BAK

sed	-i	-r	's/^#cfg_dir=(.+)servers$/cfg_dir=\1servers/g'	

etcnagios/nagios.cfg

We	will	have	to	create	the	server's	config	directory	that	we	just	defined	in	the
last	step:

mkdir	etcnagios/servers

chown	nagios:	etcnagios/servers;chmod	750	etcnagios/servers

Afterwards,	to	check	the	correctness	of	the	nagios.cfg	syntax,	run	the
following:

nagios	-v	etcnagios/nagios.cfg

Finally,	enable	the	Nagios	daemon	on	boot	and	start	the	service:

systemctl	enable	nagios	&&	systemctl	start	nagios

How	it	works...
Here	in	this	recipe,	we	have	shown	you	how	to	install	the	Nagios	Core	v4	server
(Core	is	the	open-source	version	of	the	Nagios	project)	on	CentOS	7.	Besides	the
main	Nagios	package,	we	also	required	the	NRPE	package	and	all	the	Nagios
plugins	on	our	Nagios	server.	After	installing,	we	created	a	user	account,	which
is	able	to	log	in	to	the	web	frontend,	and	we	set	the	e-mail	address	for	this	user
in	the	main	Nagios	configuration	file.	Next,	we	activated	the
etcnagios/servers	directory	using	sed,	where	all	our	server	definition	files	will
be	put	in	a	later	recipe	in	this	chapter.	Then,	we	created	the	directory	and
changed	permissions	to	the	Nagios	user.	To	test	the	Nagios	server	installation,
open	a	web	browser	on	a	computer	in	the	same	subnet	192.168.1.0/24	as	your
Nagios	server,	open	the	following	URL	(in	our	example,	the	Nagios	server	has
the	IP	192.168.1.7,	so	change	accordingly),	and	then	log	in	with	your	newly
created	nagiosadmin	user	account	to	http://192.168.1.7/nagios.

Setting	up	NRPE	on	remote	client
hosts
The	Nagios	Remote	Plugin	Executor	(NRPE)	is	a	system	daemon	that	uses	a
special	client-server	protocol	and	should	be	installed	on	all	client	hosts	that	you
want	to	monitor	via	your	Nagios	server	remotely.	It	allows	the	central	Nagios
server	to	trigger	any	Nagios	checks	on	these	client	hosts	securely	and	with	low
overhead.	Here,	we	will	show	you	how	to	set	up	and	configure	any	CentOS	7
client	to	use	NRPE;	if	you've	got	more	than	one	computer	in	your	network	that
you	want	to	monitor,	you	need	to	apply	this	recipe	for	every	instance.

Getting	ready
To	complete	this	recipe,	you	will	require	a	computer	other	than	your	Nagios
server	with	an	installation	of	the	CentOS	7	operating	system	and	root	privileges,
which	you	want	to	monitor,	and	which	needs	a	console-based	text	editor	of	your
choice	installed	on	it,	along	with	a	connection	to	the	Internet	in	order	to	facilitate
the	download	of	additional	packages.	This	computer	needs	to	have	access	to	our
Nagios	server	over	the	network.	In	our	example,	the	Nagios	server	has	the	IP
address	192.168.1.7,	and	our	client	system	will	have	the	IP	address
192.168.1.8.

How	to	do	it...
1.	 Log	in	as	root	on	your	CentOS	7	client	system	and	install	all	Nagios	plugins

as	well	as	NRPE	on	it:

yum	install	epel-release;yum	install	nrpe	nagios-plugins-all	

nagios-plugins-nrpe

2.	 Afterwards,	open	the	main	NRPE	config	file	(after	making	a	backup	first):

cp	etcnagios/nrpe.cfg	etcnagios/nrpe.cfg.BAK	&&	vi	

etcnagios/nrpe.cfg

3.	 Find	the	line	that	starts	with	allowed_hosts,	and	add	the	IP	address	of	your
Nagios	server	separated	by	a	comma	so	that	we	can	communicate	with	it	(in
our	example	,192.168.1.7,	so	change	it	accordingly);	it	should	read	as
follows:

allowed_hosts=127.0.0.1,192.168.1.7

4.	 Save	and	close	the	file,	then	enable	NRPE	at	boot	and	start	it:

systemctl	enable	nrpe	&&	systemctl	start	nrpe

5.	 Then	enable	the	NRPE	port	in	firewalld.	To	do	this,	create	a	new	firewalld
service	file	for	NRPE:

sed	's/80/5666/g'	usrlib/firewalld/services/http.xml	|	sed	

's/WWW	(HTTP)/Nagios	NRPE/g'	|	sed	's/<description>.*

<\/description>//g'	>	etcfirewalld/services/nrpe.xml

firewall-cmd	--reload

firewall-cmd	--permanent	--add-service=nrpe;	firewall-cmd	--

reload

6.	 Finally,	test	the	NRPE	connection.	To	do	this,	log	in	as	root	on	your	Nagios
server	(for	example,	at	192.168.1.7)	and	execute	the	following	command
to	check	NRPE	on	our	client	(192.168.1.8):

usrlib64/nagios/plugins/check_nrpe	-H	192.168.1.8	-c	check_load

7.	 If	the	output	prints	out	an	OK	-	load	average	message	with	some
numbers,	you	have	successfully	configured	NRPE	on	the	client!

How	it	works...
Here	in	this	recipe,	we	have	shown	you	how	to	install	NRPE	on	your	CentOS	7
clients	that	you	want	to	monitor	with	your	Nagios	servers.	If	you	want	to
monitor	other	Linux	systems	running	other	distributions	such	as	Debian	or	BSD,
you	should	be	able	to	find	appropriate	packages	using	their	own	package
managers	or	compile	NRPE	from	source.	Besides	the	NRPE	package,	we	also
installed	all	the	Nagios	plugins	on	this	machine	since	NRPE	is	only	the	daemon
for	running	monitoring	commands	on	client	computers,	but	it	does	not	include
them.	After	installation,	NRPE	is	listening	only	on	localhost	(127.0.0.1)
connections	by	default,	so	we	then	had	to	change	this	to	also	listen	to
connections	from	our	Nagios	server,	which	runs	with	the	IP	192.168.1.7,	using
the	allowed_hosts	directive	in	the	main	NRPE	configuration	file.	The	NRPE
port	5666	is	needed	for	incoming	connections	from	the	Nagios	server,	so	we	also
had	to	open	it	in	the	firewall.	Since	no	firewalld	rule	is	available	for	it	by	default,
we	created	our	own	new	service	file	and	added	it	to	the	current	firewalld
configuration.	Afterwards,	we	could	test	our	NRPE	installation	from	our	Nagios
server	by	running	a	check_nrpe	command	using	the	client's	IP	address	and	a
random	check	command	(check_load	returns	the	system's	load).

Monitoring	important	remote	system
metrics
The	Nagios	plugin	check_multi	is	a	convenient	tool	to	execute	multiple	checks
within	a	single	check	command	that	generates	an	overall	returned	state	and
output	from	it.	Here	in	this	recipe,	we	will	show	you	how	to	set	it	up	and	use	it
to	quickly	monitor	a	list	of	important	system	metrics	on	your	clients.

Getting	ready
It	is	assumed	that	you've	gone	through	this	chapter	recipe	by	recipe,	therefore	by
now,	you	should	have	a	Nagios	server	running	and	another	client	computer	that
you	want	to	monitor,	which	can	already	be	accessed	via	its	NRPE	service
externally	by	our	Nagios	server.	This	client	computer	that	you	want	to	monitor
needs	an	installation	of	the	CentOS	7	operating	system	with	root	privileges	and	a
console-based	text	editor	of	your	choice	installed	on	it,	as	well	as	a	connection	to
the	Internet	in	order	to	facilitate	the	download	of	additional	packages.	The	client
computer	will	have	the	IP	address	192.168.1.8.

How	to	do	it...
The	check_multi	Nagios	plugin	is	available	from	Github,	so	we	will	begin	this
recipe	to	install	the	git	program	by	downloading	it:

1.	 Log	in	as	root	on	your	client	computer	and	install	Git	if	not	done	already:

yum	install	git

Now,	download	and	install	the	check_multi	plugin	by	compiling	it	from	the
source:

cd	tmp;git	clone	git:/github.com/flackem/check_multi;cd	

tmpcheck_multi

./configure	--with-nagios-name=nagios	--with-nagios-user=nagios	--

with-nagios-group=nagios	--with-plugin-path=usrlib64/nagios/plugins	

--libexecdir=usrlib64/nagios/plugins/

make	all;make	install;make	install-config

Next,	we	install	another	very	useful	plugin	called	check_mem,	which	is	not
available	in	the	CentOS	7	Nagios	plugin	rpms:

cd	tmp;git	clone	https:/github.com/justintime/nagios-plugins.git

cp	tmpnagios-plugins/check_mem/check_mem.pl		

usrlib64/nagios/plugins/

Next,	let's	create	a	check_multi	command	file	that	will	contain	all	your
desired	client	checks	that	you	want	to	combine	in	a	single	run;	open	the
following	file:

vi	usrlocal/nagiosetccheck_multi/check_multi.cmd

Put	in	the	following	content:

command[sys_load::check_load]	=	check_load	-w	5,4,3	-c	10,8,6

command[sys_mem::check_mem]	=	check_mem.pl	-w	10	-c	5	-f	-C

command[sys_users::check_users]	=	check_users	-w	5	-c	10

command[sys_disks::check_disk]	=	check_disk	-w	5%	-c	2%	-X	nfs

command[sys_procs::check_procs]	=	check_procs

Next,	test	out	the	command	file	that	we	just	created	in	the	last	step	using	the
following	commandline:

usrlib64/nagios/plugins/check_multi	-f			

usrlocal/nagiosetccheck_multi/check_multi.cmd

If	everything	is	correct,	it	should	print	out	the	results	of	your	five	plugin
checks	and	an	overall	result,	for	example,	OK	-	5	plugins	checked.	Next,	we
will	install	this	new	command	in	the	NRPE	service	on	our	client	so	that	the
Nagios	server	is	able	to	execute	it	remotely	by	calling	its	name.	Open	the	NRPE
configuration	file:

vi	etcnagios/nrpe.cfg

Add	the	following	line	to	the	end	of	the	file	right	below	the	last	#	command
line	to	expose	a	new	command	called	check_multicmd	to	our	Nagios	server:

command[check_multicmd]=usrlib64/nagios/plugins/check_multi	-f			

usrlocal/nagiosetccheck_multi/check_multi.cmd

Finally,	let's	reload	NRPE:

systemctl	restart	nrpe

Now,	let's	check	whether	we	can	execute	our	new	check_multicmd	command
that	we	defined	in	the	last	step	from	our	Nagios	server.	Log	in	as	root	and	type
the	following	command	(change	the	IP	address	of	your	client,	192.168.1.8,
appropriately):

usrlib64/nagios/plugins/check_nrpe		-H	192.168.1.8	-c	

"check_multicmd"

If	the	output	is	the	same	as	running	it	locally	on	the	client	itself	(take	a	look	at
the	former	step),	we	can	successfully	execute	remote	NRPE	commands	on	our
client	through	our	server,	so	let's	define	the	command	on	our	Nagios	server
system	for	real	so	that	we	can	start	using	it	within	the	Nagios	system.	Open	the
following	file:

vi	etcnagios/objects/commands.cfg

Put	in	the	following	content	at	the	end	of	the	file	to	define	a	new	command
called	check_nrpe_multi,	which	we	can	use	in	any	service	definition:

define	command	{

		command_name	check_nrpe_multi

		command_line	$USER1$/check_nrpe	-H	$HOSTADDRESS$	-c	

"check_multicmd"

}

Next,	we	will	define	a	new	server	definition	for	the	client	that	we	want	to
monitor	on	our	Nagios	server	(give	the	config	file	an	appropriate	name,	for

example,	its	domain	name	or	IP	address):

vi	etcnagios/servers/192.168.1.8.cfg

Put	in	the	following	content,	which	will	define	a	new	host	with	its	service,
using	our	new	Nagios	command	that	we	just	created:

define	host	{

							use																			linux-server

							host_name														host1

							address															192.168.1.22

							contact_groups									unix-admins

}

define	service	{

							use	generic-service

							host_name	host1

							check_command	check_nrpe_multi

							normal_check_interval	15

							service_description	check_nrpe_multi	service

}

Finally,	we	need	to	configure	all	persons	who	should	get	notification	e-mails
for	our	new	service	in	case	of	errors.	Open	the	following	file:

vi	etcnagios/objects/contacts.cfg

Put	in	the	following	content	at	the	end	of	the	file:

define	contactgroup{

								contactgroup_name							unix-admins

								alias																			Unix	Administrators

	}

define	contact	{

								contact_name																				pelz

								use																													generic-contact

								alias																											Oliver	Pelz

								contactgroups																			unix-admins

								email																											oliverpelz@mymailhost.com

}

Now,	restart	the	Nagios	service:

systemctl	restart	nagios

How	it	works...
We	started	this	recipe	by	installing	the	check_multi	and	check_mem	plugins
from	their	author's	Github	repositories;	they	are	plain	commandline	tools.
Nagios	performs	checks	by	running	such	external	commands,	and	it	uses	the
return	code	along	with	output	from	the	command	as	information	on	whether	the
check	was	successful	or	not.	Nagios	has	a	very	flexible	architecture	that	can	be
easily	extended	using	plugins,	add-ons,	and	extensions.	A	central	place	to	search
for	all	kinds	of	extensions	is	at	https://exchange.nagios.org/.	Next,	we	added	a
new	command	file	for	check_multi,	where	we	put	five	different	system	check_
commands	in.	These	checks	act	as	a	starting	point	for	customizing	your
monitoring	needs	and	will	check	system	load,	memory	consumption,	system
users,	free	space,	and	processes.	All	available	check_	commands	can	be	found	at
usrlib64/nagios/plugins/check_*.	As	you	can	see	in	our	command	file,	the
parameters	of	those	check_	commands	can	be	very	different,	and	explaining
them	all	is	out	of	the	scope	of	this	recipe.	Most	of	them	are	used	to	set	threshold
values	to	reach	a	certain	state,	for	example,	the	CRITICAL	state.	To	get	more
information	about	a	specific	command,	use	the	--help	parameter	with	the
command.	For	example,	to	find	out	what	all	the	parameters	in	the	check_load	-
w	5,4,3	-c	10,8,6	command	are	doing,	use	run
usrlib64/nagios/plugins/check_load	--help.	You	can	easily	add	any
number	of	new	check	commands	to	our	command	file	from	existing	plugins,	or
you	can	download	and	install	any	new	commands,	if	you	like.	There	are	also	a
number	of	command	file	examples	shipped	with	the	check_multi	plugin,	which
are	very	useful	for	learning,	so	please	have	a	look	at	the	directory:
usrlocal/nagiosetccheck_multi/*.cmd.

Afterwards,	we	checked	the	correctness	of	our	new	command	file	that	we	just
created	by	dry-running	it	as	an	-f	parameter	from	the	check_multi	command
locally	on	the	client.	In	its	output,	you	will	find	all	the	single	outputs	as	if	you
would	have	run	these	five	commands	individually.	If	one	single	check	fails,	the
complete	check_multi	will	do.	Next,	we	defined	a	new	NRPE	command	in	the
NRPE	config	file	called	check_multicmd	that	can	then	be	executed	from	the
Nagios	server,	which	we	tested	in	the	next	step	from	our	Nagios	server.	For	a
test	to	be	successful,	we	expect	the	same	results	as	we	got	when	calling	the
command	from	the	client	itself.	Afterwards,	we	defined	this	command	in	our
commands.cfg	on	the	Nagios	server	so	that	we	can	reuse	it	as	much	as	we	like	in

https://exchange.nagios.org/

any	service	definition	by	referencing	the	command's	name,	check_nrpe_multi.
Next,	we	created	a	new	server	file	named	as	the	IP	address	(you	can	name	it
anything	you	like	as	long	it	has	the	.cfg	extension	in	the	directory)	of	the	client
we	want	to	monitor:	192.168.1.8.cfg.	It	contains	exactly	one	host	definition
and	one	or	multiple	service	definitions,	which	are	linked	by	the	value	of
host_name	of	the	host	with	the	host_name	value	in	your	service	definitions.

In	the	host	definition,	we	defined	a	contact_groups	contact	that	links	to	the
contacts.cfg	file's	contact	group	and	contact	entry.	These	will	be	used	to	send
notification	e-mails	if	the	checked	service	has	any	errors.	The	most	important
value	in	the	service	definition	is	the	check_command	check_nrpe_multi	line,
which	executes	the	command	that	we	created	before	as	our	one	and	only	check.
Also,	the	normal_check_interval	is	important	as	it	defines	how	often	the
service	will	be	checked	under	normal	conditions.	Here,	it	gets	checked	every	15
minutes.	You	can	add	as	many	service	definitions	to	a	host	as	you	like.

Now,	go	to	your	Nagios	web	frontend	to	inspect	your	new	host	and	service.
Here,	go	to	the	Hosts	tab,	where	you	will	see	the	new	host,	host1,	that	you
defined	in	this	recipe,	and	it	should	give	you	information	about	its	status.	If	you
click	on	the	Services	tab,	you	will	see	the	check_nrpe_multi	service.	It	should
show	the	Status	as	Pending,	OK,	or	CRITICAL,	depending	on	the	success	of
the	single	checks.	If	you	click	on	its	check_nrpe_multi	link,	you	will	see	details
about	the	checks.

Here	in	this	chapter,	we	could	only	show	you	the	very	basics	of	Nagios,	and
there	is	always	more	to	learn,	so	please	read	the	official	Nagios	Core
documentation	at	https://www.nagios.org,	or	check	out	the	book	Learning
Nagios	4,	Packt	Publishing,	by	Wojciech	Kocjan.

https://www.nagios.org

Index
A

access	agents	/	Delivering	the	mail	with	Dovecot
Access	Vector	Cache	(AVC)	/	How	it	works...
Apache

installing	/	Installing	Apache	and	serving	web	pages,	How	to	do	it...,
How	it	works...
securing	/	Securing	Apache,	How	to	do	it...

Apache	files
protecting	/	Protecting	your	Apache	files,	How	it	works...

authentication	methods
trust	/	How	it	works...
reject	/	How	it	works...
md5	/	How	it	works...
peer	and	ident	/	How	it	works...

authoritative-only	DNS	server
about	/	Setting	up	an	authoritative-only	DNS	server
setting	up	/	Setting	up	an	authoritative-only	DNS	server,	How	to	do
it...
working	/	How	it	works...,	There's	more...

automatic	installation,	of	CentOS	7
performing,	kickstart	file	used	/	Installing	CentOS	7	using	a	kickstart
file,	How	to	do	it...,	How	it	works...

B
background	services

knowing	/	Knowing	and	managing	your	background	services,	Getting
ready,	How	it	works...
managing	/	Knowing	and	managing	your	background	services,	Getting
ready,	How	it	works...
troubleshooting	/	Troubleshooting	background	services,	Getting	ready,
How	it	works...

Berkeley	Internet	Name	Domain	(BIND)	/	How	it	works...
block	device	/	How	it	works...
Btrfs	/	Formatting	and	mounting	a	filesystem

C
caching-only	nameserver

installing	/	Installing	and	configuring	a	caching-only	nameserver
configuring	/	Installing	and	configuring	a	caching-only	nameserver

caching-only	Unbound	DNS	server
configuring	/	Configuring	a	caching-only	Unbound	DNS	server

cadaver	WebDAV	command-line	client	/	How	it	works…
CentOS

downloading	/	Downloading	CentOS	and	confirming	the	checksum	on
Windows	or	OS	X,	Getting	ready,	How	to	do	it...,	How	it	works…
URL	/	How	to	do	it...
reference	link	/	There's	more...

CentOS	7	installation
language	settings,	changing	/	Speaking	the	right	language,	Getting
ready,	How	it	works...,	There's	more…

CentOS	boot	loader
re-installing	/	Re-install	the	CentOS	boot	loader

CentOS	installation
preparing,	graphical	installer	used	/	Performing	an	installation	of
CentOS	using	the	graphical	installer,	How	to	do	it...,	How	it	works…

Certificate	Signing	Request	(CSR)	/	How	to	do	it...
certification	authority	(CA)	/	How	it	works...
CGI

implementing,	with	Perl	/	Implementing	CGI	with	Perl	and	Ruby,	How
to	do	it...
implementing,	with	Ruby	/	Implementing	CGI	with	Perl	and	Ruby,
How	to	do	it...

checksum
confirming,	on	Windows	/	Downloading	CentOS	and	confirming	the
checksum	on	Windows	or	OS	X,	Getting	ready,	How	to	do	it...,	How	it
works…
confirming,	on	OS	X	/	Downloading	CentOS	and	confirming	the
checksum	on	Windows	or	OS	X,	Getting	ready,	How	to	do	it...,	How	it
works…

chrony	suite
used,	for	synchronizing	system	clock	/	Synchronizing	the	system	clock

with	NTP	and	the	chrony	suite,	How	to	do	it...,	How	it	works...,
There's	more...

container
running	/	Downloading	an	image	and	running	a	container,	How	to	do
it...,	How	it	works...
starting	/	Stopping	and	starting	a	container
stopping	/	Stopping	and	starting	a	container
attaching	/	Attaching	and	interacting	with	your	container
interacting	with	/	Attaching	and	interacting	with	your	container

Coordinated	Universal	Time	(UTC)	/	There's	more...
cron

used,	for	scheduling	tasks	/	Scheduling	tasks	with	cron,	How	to	do	it...,
How	it	works...

CUPS
printing	with	/	Printing	with	CUPS,	Getting	ready,	How	to	do	it...,
How	it	works...,	There's	more...
about	/	Printing	with	CUPS

CUPS	server
network	printer,	adding	to	/	How	to	add	a	network	printer	to	the	CUPS
server
local	printer,	adding	to	/	How	to	share	a	local	printer	to	the	CUPS
server

D
data	backups

maintaining	/	Maintaining	backups	and	taking	snapshots,	How	to	do
it...,	How	it	works...

database
managing	/	Installing	a	PostgreSQL	server	and	managing	a	database,
How	to	do	it...,	How	it	works...,	There's	more...

Database	Management	System	(DBMS)	/	How	to	do	it...
dd

reference	link	/	How	to	do	it...
delivery	agent	/	How	it	works...
DHCP

about	/	Running	a	DHCP	server
DHCP	server

running	/	Running	a	DHCP	server,	How	to	do	it...,	How	it	works...
Disabled	mode	/	There's	more...
Discretionary	Access	Control	(DAC)	/	Installing	and	configuring	important
SELinux	tools
disk	quotas

using	/	Using	disk	quotas
limiting	system,	setting	up	/	Using	disk	quotas
user	quotas,	enabling	/	Enabling	user	and	group	quotas
group	quotas,	enabling	/	Enabling	user	and	group	quotas
project	(directory)	quotas,	enabling	/	Enabling	project	(directory)
quotas,	How	it	works...
working	/	How	it	works...,	There's	more...

DNS	server
caching-only	Unbound	DNS	server,	configuring	/	Configuring	a
caching-only	Unbound	DNS	server
forwarding	only	DNS	server,	configuring	/	Configuring	a	forwarding
only	DNS	server,	How	it	works...,	There's	more...
authoritative-only	DNS	server,	configuring	/	Setting	up	an
authoritative-only	DNS	server,	Getting	ready,	How	to	do	it...,	How	it
works...,	There's	more...
secondary	(slave)	DNS	server,	building	/	Building	a	secondary	(slave)
DNS	server

primary	DNS	server	changes,	making	/	Changes	to	the	primary	DNS
server
secondary	DNS	server	changes,	making	/	Changes	to	the	secondary
DNS	server(s),	How	it	works...

Docker
installing	/	Installing	and	configuring	Docker,	Getting	ready,	How	it
works...
configuring	/	Installing	and	configuring	Docker,	Getting	ready,	How	it
works...
URL	/	How	it	works...

Dockerfiles
images,	creating	from	/	Creating	your	own	images	from	Dockerfiles
and	uploading	to	Docker	Hub,	How	to	do	it...

Docker	Hub
URL	/	How	it	works...,	Getting	ready
images,	uploading	to	/	Creating	your	own	images	from	Dockerfiles
and	uploading	to	Docker	Hub,	Uploading	your	image	to	the	Docker
Hub

Docker	registry	server
setting	up	/	Steps	to	be	done	on	our	Docker	registry	server
(192.168.1.100)

domain
populating	/	Populating	the	domain,	How	to	do	it...,	How	it	works…

domain-wide	mail	service
configuring,	with	Postfix	/	Configuring	a	domain-wide	mail	service
with	Postfix,	Getting	ready,	How	to	do	it...,	How	it	works...,	There's
more...
e-mail’s	appearing	domain	name,	modifying	/	Changing	an	e-mail's
appearing	domain	name
TLS-	(SSL-)	encryption,	used	for	SMTP	communication	/	Using	TLS-
(SSL)	encryption	for	SMTP	communication
BIND,	configuring	for	new	mailserver	/	Configure	BIND	to	use	your
new	mailserver

domain	name	servers	(DNS)	/	How	it	works...
Domain	Name	System	(DNS)	/	Setting	your	hostname	and	resolving	the
network
domains

about	/	Introduction
Dovecot

used,	for	delivering	mail	/	Delivering	the	mail	with	Dovecot,	Getting
ready,	How	to	do	it...,	How	it	works...,	There's	more...
e-mail	software,	setting	up	/	Setting	up	e-mail	software

E
ELRepo

about	/	There's	more...
reference	link	/	There's	more...

Enforcing	mode	/	There's	more...
Enhanced	mode	/	There's	more...
existing	firewalld	service	(ssh)

changing	/	To	change	an	existing	firewalld	service	(ssh)
Ext4	/	Formatting	and	mounting	a	filesystem
extensions

URL	/	How	it	works...

F
fail2ban

installing	/	Installing	and	configuring	fail2ban,	How	it	works...
configuring	/	Installing	and	configuring	fail2ban,	How	it	works...

Fetchmail
about	/	Using	Fetchmail
using	/	Getting	ready,	How	to	do	it...,	How	it	works...
configuring,	with	Gmail	account	/	Configuring	Fetchmail	with
gmail.com	and	outlook.com	e-mail	accounts
configuring,	with	Outlook	account	/	Configuring	Fetchmail	with
gmail.com	and	outlook.com	e-mail	accounts
automating	/	Automating	Fetchmail

file
navigating,	with	less	controls	/	Navigating	text	files	with	less,	How	to
do	it...

file	amount	(inodes)	/	How	it	works...
files

synchronizing	/	Synchronizing	files	and	doing	more	with	rsync,	How	it
works...

file	sharing
WebDAV,	using	for	/	Using	WebDAV	for	file	sharing,	Getting	ready,
How	to	do	it…,	How	it	works…

file	size	(blocks)	/	How	it	works...
filesystem

accessing	/	Accessing	the	filesystem
formatting	/	Formatting	and	mounting	a	filesystem,	How	to	do	it...,
How	it	works…
mounting	/	Formatting	and	mounting	a	filesystem,	How	to	do	it...,
How	it	works…
maintaining	/	Maintaining	a	filesystem,	How	it	works...,	There's
more...
capacity,	extending	/	Extending	the	capacity	of	the	filesystem,	How	to
do	it...,	How	it	works...

filesystems	formatting	/	Formatting	and	mounting	a	filesystem
file	transfers

troubleshooting	/	Troubleshooting	users	and	file	transfers,	How	it

works...
firewall

about	/	Working	with	a	firewall
working	with	/	Getting	ready,	How	to	do	it...,	How	it	works...,	There's
more...

firewalld	service
creating	/	To	create	your	own	new	service,	How	it	works...,	There's
more...

firewalld	service	definitions
creating	/	Forging	the	firewall	rules	by	example

ForceCommand	/	How	it	works...
forwarding	only	DNS	server

configuring	/	Configuring	a	forwarding	only	DNS	server,	How	it
works...,	There's	more...

Frequently	Asked	Questions	(FAQ)	/	Getting	ready
FTP

securing,	with	FTPS	/	Using	secure	alternatives	to	FTP
securing,	with	SFTPS	/	Using	secure	alternatives	to	FTP

FTP	service
installing	/	Installing	and	configuring	the	FTP	service,	Getting	ready,
How	to	do	it...,	How	it	works...,	There's	more...
configuring	/	Installing	and	configuring	the	FTP	service,	Getting
ready,	How	to	do	it...,	How	it	works...,	There's	more...
customizing	/	Customizing	the	FTP	service,	How	to	do	it...,	How	it
works...

Fully	Qualified	Domain	Name	(FQDN)	/	How	to	do	it...,	Getting	ready

G
GIT

used,	for	versioning	of	config	files	/	Taking	control	with	GIT	and
Subversion,	How	to	do	it...,	How	it	works,	There's	more...

Gmail	account
URL	/	How	it	works...,	Configuring	Fetchmail	with	gmail.com	and
outlook.com	e-mail	accounts
used,	for	configuring	Fetchmail	/	Configuring	Fetchmail	with
gmail.com	and	outlook.com	e-mail	accounts

graphical	installer
used,	for	preparing	CentOS	installation	/	Performing	an	installation	of
CentOS	using	the	graphical	installer,	How	to	do	it...,	How	it	works…

Graphical	User	Interfaces	(GUI)	/	How	it	works...
groups

managing	/	Managing	users	and	their	groups,	How	to	do	it...,	How	it
works...

GRUB2
about	/	Getting	started	and	customising	the	boot	loader

GRUB2	boot	loader
customizing	/	Getting	started	and	customising	the	boot	loader,	How	to
do	it...

H
hostname

setting	/	Setting	your	hostname	and	resolving	the	network,	How	to	do
it...,	How	it	works...

HTTP
netinstall,	running	over	/	Running	a	netinstall	over	HTTP,	How	to	do
it...,	How	it	works...

httpd.conf
configuring	/	Configuring	httpd.conf	to	provide	better	security

HTTPS
setting	up,	with	Secure	Sockets	Layer	(SSL)	/	Setting	up	HTTPS	with
Secure	Sockets	Layer	(SSL),	How	to	do	it...,	There's	more...

I
image

downloading	/	Downloading	an	image	and	running	a	container,	How
to	do	it...,	How	it	works...

images
creating,	from	Dockerfiles	/	Creating	your	own	images	from
Dockerfiles	and	uploading	to	Docker	Hub,	How	to	do	it...
uploading,	to	Docker	Hub	/	Creating	your	own	images	from
Dockerfiles	and	uploading	to	Docker	Hub,	Uploading	your	image	to
the	Docker	Hub

installation
fail2ban	/	Installing	and	configuring	fail2ban,	How	to	do	it...,	How	it
works...
caching-only	nameserver	/	Installing	and	configuring	a	caching-only
nameserver
MariaDB	database	server	/	Installing	a	MariaDB	database	server,
Getting	ready,	How	it	works...
PostgreSQL	server	/	Installing	a	PostgreSQL	server	and	managing	a
database,	How	to	do	it...,	How	it	works...,	There's	more...
phpMyAdmin	/	Installing	phpMyAdmin	and	phpPgAdmin,	Installing
and	configuring	phpMyAdmin
phpPgAdmin	/	Installing	phpMyAdmin	and	phpPgAdmin,	Installing
and	configuring	phpPgAdmin,	How	it	works...
Nagios	Core	/	Installing	and	configuring	Nagios	Core

integrated	nameserver	solution
about	/	Creating	an	integrated	nameserver	solution,	How	to	do	it...
creating	/	Creating	an	integrated	nameserver	solution,	How	it	works,
There's	more...

internal	hostname	/	There's	more...
Internet	Protocol	(IP)

about	/	Running	a	DHCP	server

J
journald

used,	for	tracking	system	resources	/	Tracking	system	resources	with
journald,	How	to	do	it...,	How	it	works...
configuring	/	Configuring	journald	to	make	it	persistent,	How	it
works...

K
kickstart	file

used,	for	automatic	installation	of	CentOS	7	/	Installing	CentOS	7
using	a	kickstart	file,	How	to	do	it...,	How	it	works...

L
labels	/	How	it	works...
language	settings,	CentOS	7	installation

changing	/	Speaking	the	right	language,	How	to	do	it...,	How	it
works...,	There's	more…

less	controls
used,	for	navigating	through	file	/	Navigating	text	files	with	less,	How
to	do	it...

Linux	kernel
priming	/	Priming	the	kernel,	How	to	do	it...,	How	it	works...

local	printer
sharing,	to	CUPS	server	/	How	to	share	a	local	printer	to	the	CUPS
server

logical	volume	(lv)	/	How	it	works...
Logical	Volume	Manager	(LVM)	/	Extending	the	capacity	of	the	filesystem
loop	device	/	How	it	works...

M
mail

delivering,	with	Dovecot	/	Delivering	the	mail	with	Dovecot,	How	to
do	it...,	How	it	works...

Mail	eXchanger	(MX)	/	How	it	works...,	Configure	BIND	to	use	your	new
mailserver
Mail	Transport	Agent	(MTA)	/	Configuring	a	domain-wide	mail	service
with	Postfix
Mandatory	Access	Control	(MAC)	/	Installing	and	configuring	important
SELinux	tools
MariaDB	database	server

installing	/	Installing	a	MariaDB	database	server,	Getting	ready,	How
it	works...
managing	/	Managing	a	MariaDB	database,	Getting	ready,	How	to	do
it...,	How	it	works...,	There's	more...
permission,	reviewing	/	Reviewing	and	revoking	permissions	or
dropping	a	user
permission,	revoking	/	Reviewing	and	revoking	permissions	or
dropping	a	user
user,	dropping	/	Reviewing	and	revoking	permissions	or	dropping	a
user
remote	access,	allowing	/	Allowing	remote	access	to	a	MariaDB
server,	How	to	do	it...,	How	it	works...

md5sum.exe
reference	link	/	How	to	do	it...

messages
customizing	/	Customizing	your	system	banners	and	messages,	How	it
works...,	There's	more...

minimal	install
enhancing	/	How	to	do	it...,	How	it	works...

mounting	formatting	/	Formatting	and	mounting	a	filesystem
msdos	/	How	it	works...

N
Nagios	Core

installing	/	Installing	and	configuring	Nagios	Core,	How	to	do	it...,
How	it	works...
configuring	/	Installing	and	configuring	Nagios	Core,	How	to	do	it...,
How	it	works...
URL	/	How	it	works...

Nagios	Remote	Plugin	Executor	(NRPE)
setting	up,	on	remote	client	hosts	/	Setting	up	NRPE	on	remote	client
hosts

name	based	hosting
implementing	/	Implementing	name-based	hosting,	Getting	ready,
How	to	do	it...,	How	it	works...

netfilter	/	Working	with	a	firewall
netinstall

running,	over	HTTP	/	Running	a	netinstall	over	HTTP,	How	to	do	it...,
How	it	works...

network
resolving	/	Setting	your	hostname	and	resolving	the	network,	How	to
do	it...,	How	it	works...,	There's	more...

network	printer
adding,	to	CUPS	server	/	How	to	add	a	network	printer	to	the	CUPS
server

Network	Time	Protocol	(NTP)
about	/	Synchronizing	the	system	clock	with	NTP	and	the	chrony	suite
used,	for	synchronizing	system	clock	/	Synchronizing	the	system	clock
with	NTP	and	the	chrony	suite,	How	to	do	it...,	How	it	works...,
There's	more...
URL	/	How	to	do	it...

NFS
installing	/	Installing	and	configuring	NFS
configuring	/	Installing	and	configuring	NFS
working	with	/	Getting	ready,	How	to	do	it...,	How	it	works...

NFS	server
configuring	/	Installing	and	configuring	the	NFS	server
installing	/	Installing	and	configuring	the	NFS	server

export	share,	creating	/	Creating	an	export	share,	How	it	works...

O
OS	X

checksum,	confirming	on	/	Downloading	CentOS	and	confirming	the
checksum	on	Windows	or	OS	X,	Getting	ready,	How	to	do	it...,	How	it
works…
USB	installation	media,	creating	on	/	Creating	USB	installation	media
on	Windows	or	OS	X,	How	to	do	it...,	How	it	works...

Outlook	account
URL	/	Configuring	Fetchmail	with	gmail.com	and	outlook.com	e-mail
accounts
used,	for	configuring	Fetchmail	/	Configuring	Fetchmail	with
gmail.com	and	outlook.com	e-mail	accounts

P
package	management

about	/	Introduction
packages

searching,	YUM	used	/	Using	YUM	to	search	for	packages,	How	it
works...
installing,	YUM	used	/	Using	YUM	to	install	packages,	How	to	do
it...,	How	it	works...
removing,	YUM	used	/	Using	YUM	to	remove	packages,	How	to	do
it...,	How	it	works...

partition	table	/	How	it	works...
Perl

CGI,	implementing	with	/	Implementing	CGI	with	Perl	and	Ruby,
How	to	do	it...

Perl	CGI	script
creating	/	Creating	your	first	Perl	CGI	script

Permissive	mode	/	There's	more...
PHP

installing	/	Installing,	configuring,	and	testing	PHP,	How	to	do	it...,
How	to	do	it...
configuring	/	Installing,	configuring,	and	testing	PHP,	How	to	do	it...,
How	to	do	it...
testing	/	Installing,	configuring,	and	testing	PHP,	How	to	do	it...,	How
to	do	it...

phpMyAdmin
installing	/	Installing	phpMyAdmin	and	phpPgAdmin

phpPgAdmin
installing	/	Installing	phpMyAdmin	and	phpPgAdmin,	Installing	and
configuring	phpMyAdmin,	Installing	and	configuring	phpPgAdmin,
How	it	works...
configuring	/	Installing	and	configuring	phpMyAdmin,	Installing	and
configuring	phpPgAdmin,	How	it	works...

physical	volume	(pv)	/	How	it	works...
Pluggable	Authentication	Modules	(PAM)	/	How	it	works...
Pointer	Resource	Record	(PTR)	/	How	it	works...
policies	/	How	it	works...

working	with	/	Working	with	policies,	How	it	works...,	There's	more...
Postfix

used,	for	configuring	domain-wide	mail	service	/	Configuring	a
domain-wide	mail	service	with	Postfix,	How	to	do	it...,	How	it
works...,	There's	more...
working	with	/	Working	with	Postfix,	How	it	works...
mailx,	connecting	to	remote	MTA	/	Connecting	mailx	to	a	remote
MTA
local	mails,	reading	from	mailbox	/	Reading	your	local	mails	from	the
mailbox

PostgreSQL	server
installing	/	Installing	a	PostgreSQL	server	and	managing	a	database,
How	to	do	it...,	There's	more...
remote	access,	configuring	/	Configuring	remote	access	to
PostgreSQL,	How	to	do	it...,	How	it	works...

print	server
about	/	Printing	with	CUPS

private	Docker	registry
setting	up	/	Setting	up	and	working	with	a	private	Docker	registry,
How	to	do	it...
working	with	/	Setting	up	and	working	with	a	private	Docker	registry,
How	to	do	it...

public	hostname	/	There's	more...
public	key	cryptography	(PKI)	/	How	it	works...
publishing	directories

building	/	Enabling	system	users	and	building	publishing	directories,
How	to	do	it...,	How	it	works...

R
Red	Hat	Package	Manager	(RPM)

about	/	How	it	works...
remote	access

locking	/	Locking	down	remote	access	and	hardening	SSH,	Getting
ready,	How	to	do	it...,	How	it	works...
to	MariaDB	server,	allowing	/	Allowing	remote	access	to	a	MariaDB
server,	How	to	do	it...,	How	it	works...
to	PostgreSQL,	configuring	/	Configuring	remote	access	to
PostgreSQL,	How	to	do	it...,	How	it	works...

remote	client	hosts
Nagios	Remote	Plugin	Executor	(NRPE),	setting	up	/	Setting	up	NRPE
on	remote	client	hosts,	How	it	works...

remote	system	metrics
monitoring	/	Monitoring	important	remote	system	metrics,	How	to	do
it...,	How	it	works...

rescue	mode
system,	troubleshooting	in	/	Troubleshooting	the	system	in	rescue
mode,	Getting	ready
reaching	/	Reaching	rescue	mode

resources
sharing,	with	Samba	/	Securely	sharing	resources	with	Samba,	How	to
do	it...,	How	it	works...,	There's	more...

root	/	Changing	an	e-mail's	appearing	domain	name
RPM	package	manager

working	with	/	Working	with	the	RPM	package	manager,	How	it
works...

rsync
using	/	Synchronizing	files	and	doing	more	with	rsync,	How	it	works...

Ruby
CGI,	implementing	with	/	Implementing	CGI	with	Perl	and	Ruby,
How	to	do	it...

Ruby	CGI	script
creating	/	Creating	your	first	Ruby	CGI	script,	How	it	works...,	There's
more...

S
Samba

about	/	Securely	sharing	resources	with	Samba
resources,	sharing	with	/	Securely	sharing	resources	with	Samba,	How
to	do	it...,	How	it	works...,	There's	more...

second-level	domain	(SLD)	/	How	it	works...
secondary	(slave)	DNS	server

building	/	How	to	do	it...
primary	DNS	server	changes,	making	/	Changes	to	the	primary	DNS
server
working	/	How	it	works...

Secure	Shell	(SSH)	/	Locking	down	remote	access	and	hardening	SSH
Secure	Sockets	Layer	(SSL)	/	Generating	self-signed	certificates

HTTPS,	setting	up	with	/	Setting	up	HTTPS	with	Secure	Sockets
Layer	(SSL),	How	to	do	it...,	How	it	works...,	There's	more...

self-signed	certificates
generating	/	Generating	self-signed	certificates,	How	to	do	it...,	How	it
works...,	There's	more...

SELinux
about	/	Introduction
troubleshooting	/	Troubleshooting	SELinux,	How	it	works...

SELinux	security	contexts
working	with	/	Working	with	SELinux	security	contexts,	How	to	do
it...,	How	it	works...

SELinux	tools
installing	/	Installing	and	configuring	important	SELinux	tools,
Getting	ready,	How	it	works...,	There's	more...
configuring	/	Installing	and	configuring	important	SELinux	tools,
Getting	ready,	How	it	works...,	There's	more...

server	infrastructure
monitoring	/	Monitoring	important	server	infrastructure,	How	to	do
it...,	How	it	works...

snapshots
capturing	/	Maintaining	backups	and	taking	snapshots,	How	to	do	it...,
How	it	works...

SSH

hardening	/	Locking	down	remote	access	and	hardening	SSH,	Getting
ready,	How	it	works...,	There's	more...
server	port	number,	changing	/	Changing	the	SSH	port	number	of	your
server
user	access,	limiting	/	Limiting	SSH	access	by	user	or	group
group	access,	limiting	/	Limiting	SSH	access	by	user	or	group

SSH	-	SFTP
used,	for	securing	FTP	/	Using	secure	alternatives	to	FTP
used,	for	securing	vsftpd	server	/	Securing	your	vsftpd	server	using
SSH	–	SFTP,	How	it	works...

SSL-FTPS
used,	for	securing	FTP	/	Using	secure	alternatives	to	FTP
used,	for	securing	vsftpd	server	/	Securing	your	vsftpd	server	with
SSL–FTPS

Standard	Input	(STDIN)	/	How	it	works...
Start	of	Authority	(SOA)	/	How	to	do	it...,	How	it	works...
static	network	connection

building	/	Building	a	static	network	connection,	How	to	do	it...,	How	it
works...

su	(substitute	user)	command	/	How	it	works...
subversion

used,	for	versioning	of	config	files	/	Taking	control	with	GIT	and
Subversion,	How	it	works,	There's	more...

sudo	(superuser	do)	command
about	/	Becoming	a	superuser
testing	/	How	to	do	it...,	How	it	works...

Swiss	Army	Knife	SMTP	(swaks)	/	How	to	do	it...
system

troubleshooting,	in	rescue	mode	/	Troubleshooting	the	system	in
rescue	mode,	Getting	ready
updating	/	How	to	do	it...,	How	it	works...
updating,	YUM	used	/	Using	YUM	to	update	the	system,	How	to	do
it...,	How	it	works...

system	banners
customizing	/	Customizing	your	system	banners	and	messages,	How	it
works...,	There's	more...

system	clock

synchronizing,	with	chrony	suite	/	Synchronizing	the	system	clock
with	NTP	and	the	chrony	suite,	How	to	do	it...,	How	it	works...,
There's	more...
synchronizing,	with	NTP	/	Synchronizing	the	system	clock	with	NTP
and	the	chrony	suite,	How	to	do	it...,	How	it	works...,	There's	more...

system	resources
tracking,	with	journald	/	Tracking	system	resources	with	journald,
How	to	do	it...,	How	it	works...

system	users
enabling	/	Enabling	system	users	and	building	publishing	directories,
How	to	do	it...,	How	it	works...

T
tasks

scheduling,	with	cron	/	Scheduling	tasks	with	cron,	How	to	do	it...,
How	it	works...

third-party	repository
using	/	Using	a	third-party	repository,	How	it	works...

top-level	domain	name	(TLD)	/	How	it	works...
type	enforcement	(TE)	/	How	it	works...

U
unbound	/	How	it	works...
Unbound	DNS	Security	Extensions	(DNSSEC)	/	How	it	works...
unneeded	httpd	modules

removing	/	Removing	unneeded	httpd	modules
USB	installation	media

creating,	on	Windows	/	Creating	USB	installation	media	on	Windows
or	OS	X,	How	to	do	it...,	How	it	works...
creating,	on	OS	X	/	Creating	USB	installation	media	on	Windows	or
OS	X,	How	to	do	it...,	How	it	works...

users
managing	/	Managing	users	and	their	groups,	How	to	do	it...,	How	it
works...
troubleshooting	/	Troubleshooting	users	and	file	transfers,	How	it
works...

V
very	secure	FTP	daemon	(vsftpd)	/	Installing	and	configuring	the	FTP
service
Vim

about	/	Introduction	to	Vim
working	with	/	How	to	do	it...

virtual	block	device
creating	/	Creating	a	virtual	block	device,	Getting	ready,	How	it
works...

virtual	FTP	users
about	/	Working	with	virtual	FTP	users
working	with	/	How	to	do	it...,	How	it	works...

virtual	machine	(VM)	/	Installing	and	configuring	Docker
volume	group	(vg)	/	How	it	works...
vsftpd	server

securing,	with	SSL-FTPS	/	Securing	your	vsftpd	server	with	SSL–
FTPS
securing,	with	SSH	-	SFTP	/	Securing	your	vsftpd	server	using	SSH	–
SFTP

W
WebDAV

using,	for	file	sharing	/	Using	WebDAV	for	file	sharing,	Getting	ready,
How	to	do	it…,	How	it	works…

web	pages
serving	/	Installing	Apache	and	serving	web	pages,	How	to	do	it...,
How	it	works...

Windows
checksum,	confirming	on	/	Downloading	CentOS	and	confirming	the
checksum	on	Windows	or	OS	X,	Getting	ready,	How	to	do	it...,	How	it
works…
USB	installation	media,	creating	on	/	Creating	USB	installation	media
on	Windows	or	OS	X,	How	to	do	it...,	How	it	works...

Windows	Internetworking	Name	Server	(WINS)	/	How	it	works...
World	Wide	Web	(WWW)

about	/	How	it	works...
/	Installing	a	MariaDB	database	server

X
XFS	/	Formatting	and	mounting	a	filesystem

Y
Yellowdog	Updater	Modified	(YUM)	/	How	it	works...
YUM

used,	for	updating	system	/	Using	YUM	to	update	the	system,	How	to
do	it...,	How	it	works...
used,	for	searching	packages	/	Using	YUM	to	search	for	packages,
How	it	works...
used,	for	installing	packages	/	Using	YUM	to	install	packages,	How	to
do	it...,	How	it	works...
used,	for	removing	packages	/	Using	YUM	to	remove	packages,	How
to	do	it...,	How	it	works...
optimizing	/	Keeping	YUM	clean	and	tidy,	How	it	works...,	There's
more...

YUM	priorities
knowing	/	Knowing	your	priorities,	How	it	works...

YUM	repository
creating	/	Creating	a	YUM	repository,	How	to	do	it...,	How	it	works...

	CentOS 7 Linux Server Cookbook Second Edition
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why Subscribe?
	Free Access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Sections
	Getting ready
	How to do it…
	How it works…
	There's more…
	Conventions
	Reader feedback
	Customer support
	Errata
	Piracy
	Questions
	1. Installing CentOS
	Introduction
	Downloading CentOS and confirming the checksum on Windows or OS X
	Getting ready
	How to do it...
	How it works…
	Creating USB installation media on Windows or OS X
	Getting ready
	How to do it...
	How it works...
	Performing an installation of CentOS using the graphical installer
	Getting ready
	How to do it...
	How it works…
	Running a netinstall over HTTP
	Getting ready
	How to do it...
	How it works...
	Installing CentOS 7 using a kickstart file
	Getting ready
	How to do it...
	How it works...
	Getting started and customising the boot loader
	Getting ready
	How to do it...
	How it works...
	Troubleshooting the system in rescue mode
	Getting ready
	How to do it...
	Reaching rescue mode
	Accessing the filesystem
	Accessing the filesystem
	Re-install the CentOS boot loader
	How it works...
	Updating the installation and enhancing the minimal install with additional administration and development tools
	Getting ready
	How to do it...
	How it works...
	2. Configuring the System
	Introduction
	Navigating text files with less
	Getting ready
	How to do it...
	How it works...
	Introduction to Vim
	Getting ready
	How to do it...
	How it works...
	Speaking the right language
	Getting ready
	How to do it...
	How it works...
	There's more…
	Synchronizing the system clock with NTP and the chrony suite
	Getting ready
	How to do it...
	How it works...
	There's more...
	Setting your hostname and resolving the network
	Getting ready
	How to do it...
	How it works...
	There's more...
	Building a static network connection
	Getting ready
	How to do it...
	How it works...
	Becoming a superuser
	Getting ready
	How to do it...
	How it works...
	Customizing your system banners and messages
	Getting ready
	How to do it...
	How it works...
	There's more...
	Priming the kernel
	Getting ready
	How to do it...
	How it works...
	There's more...
	3. Managing the System
	Introduction
	Knowing and managing your background services
	Getting ready
	How to do it...
	How it works...
	There's more...
	Troubleshooting background services
	Getting ready
	How to do it...
	How it works...
	Tracking system resources with journald
	Getting ready
	How to do it...
	How it works...
	Configuring journald to make it persistent
	Getting ready
	How to do it...
	How it works...
	Managing users and their groups
	Getting ready
	How to do it...
	How it works...
	Scheduling tasks with cron
	Getting ready
	How to do it...
	How it works...
	There's more...
	Synchronizing files and doing more with rsync
	Getting ready
	How to do it...
	How it works...
	Maintaining backups and taking snapshots
	Getting ready
	How to do it...
	How it works...
	Monitoring important server infrastructure
	Getting ready
	How to do it...
	How it works...
	Taking control with GIT and Subversion
	Getting ready
	How to do it...
	How it works
	There's more...
	4. Managing Packages with YUM
	Introduction
	Using YUM to update the system
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using YUM to search for packages
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using YUM to install packages
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using YUM to remove packages
	Getting ready
	How to do it...
	How it works...
	Keeping YUM clean and tidy
	Getting ready
	How to do it...
	How it works...
	There's more...
	Knowing your priorities
	Getting ready
	How to do it...
	How it works...
	Using a third-party repository
	Getting ready
	How to do it...
	How it works...
	There's more...
	Creating a YUM repository
	Getting ready
	How to do it...
	How it works...
	There's more...
	Working with the RPM package manager
	Getting ready
	How to do it...
	How it works...
	There's more...
	5. Administering the Filesystem
	Introduction
	Creating a virtual block device
	Getting ready
	How to do it...
	How it works...
	There's more...
	Formatting and mounting a filesystem
	Getting ready
	How to do it...
	How it works…
	There's more...
	Using disk quotas
	Getting ready
	How to do it...
	Enabling user and group quotas
	Enabling project (directory) quotas
	How it works...
	There's more...
	Maintaining a filesystem
	Getting ready
	How to do it...
	How it works...
	There's more...
	Extending the capacity of the filesystem
	Getting ready
	How to do it...
	How it works...
	6. Providing Security
	Introduction
	Locking down remote access and hardening SSH
	Getting ready
	How to do it...
	How it works...
	There's more...
	Changing the SSH port number of your server
	Limiting SSH access by user or group
	Installing and configuring fail2ban
	Getting ready
	How to do it...
	How it works...
	Working with a firewall
	Getting ready
	How to do it...
	How it works...
	There's more...
	Forging the firewall rules by example
	Getting ready
	How to do it...
	To change an existing firewalld service (ssh)
	To create your own new service
	How it works...
	There's more...
	Generating self-signed certificates
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using secure alternatives to FTP
	Getting ready
	How to do it...
	Securing your vsftpd server with SSL–FTPS
	Securing your vsftpd server using SSH – SFTP
	How it works...
	There's more...
	7. Building a Network
	Introduction
	Printing with CUPS
	Getting ready
	How to do it...
	How it works...
	There's more...
	How to add a network printer to the CUPS server
	How to share a local printer to the CUPS server
	Running a DHCP server
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using WebDAV for file sharing
	Getting ready
	How to do it…
	How it works…
	Installing and configuring NFS
	Getting ready
	How to do it...
	Installing and configuring the NFS server
	Creating an export share
	How it works...
	Working with NFS
	Getting ready
	How to do it...
	How it works...
	Securely sharing resources with Samba
	Getting ready
	How to do it...
	How it works...
	There's more...
	8. Working with FTP
	Introduction
	Installing and configuring the FTP service
	Getting ready
	How to do it...
	How it works...
	There's more...
	Working with virtual FTP users
	Getting ready
	How to do it...
	How it works...
	Customizing the FTP service
	Getting ready
	How to do it...
	How it works...
	Troubleshooting users and file transfers
	Getting ready
	How to do it...
	How it works...
	9. Working with Domains
	Introduction
	Installing and configuring a caching-only nameserver
	Getting ready
	How to do it...
	Configuring a caching-only Unbound DNS server
	Configuring a forwarding only DNS server
	How it works...
	There's more...
	Setting up an authoritative-only DNS server
	Getting ready
	How to do it...
	How it works...
	There's more...
	Creating an integrated nameserver solution
	Getting ready
	How to do it...
	How it works
	There's more...
	Populating the domain
	Getting ready
	How to do it...
	How it works…
	Building a secondary (slave) DNS server
	Getting ready
	How to do it...
	Changes to the primary DNS server
	Changes to the secondary DNS server(s)
	How it works...
	10. Working with Databases
	Introduction
	Installing a MariaDB database server
	Getting ready
	How to do it...
	How it works...
	Managing a MariaDB database
	Getting ready
	How to do it...
	How it works...
	There's more...
	Reviewing and revoking permissions or dropping a user
	Allowing remote access to a MariaDB server
	Getting ready
	How to do it...
	How it works...
	Installing a PostgreSQL server and managing a database
	Getting ready
	How to do it...
	How it works...
	There's more...
	Configuring remote access to PostgreSQL
	Getting ready
	How to do it...
	How it works...
	Installing phpMyAdmin and phpPgAdmin
	Getting ready
	How to do it...
	Installing and configuring phpMyAdmin
	Installing and configuring phpPgAdmin
	How it works...
	11. Providing Mail Services
	Introduction
	Configuring a domain-wide mail service with Postfix
	Getting ready
	How to do it...
	How it works...
	There's more...
	Changing an e-mail's appearing domain name
	Using TLS- (SSL) encryption for SMTP communication
	Configure BIND to use your new mailserver
	Working with Postfix
	How to do it...
	Connecting mailx to a remote MTA
	Reading your local mails from the mailbox
	How it works...
	Delivering the mail with Dovecot
	Getting ready
	How to do it...
	How it works...
	There's more...
	Setting up e-mail software
	Using Fetchmail
	Getting ready
	How to do it...
	How it works...
	There's more...
	Configuring Fetchmail with gmail.com and outlook.com e-mail accounts
	Automating Fetchmail
	12. Providing Web Services
	Introduction
	Installing Apache and serving web pages
	Getting ready
	How to do it...
	How it works...
	Enabling system users and building publishing directories
	Getting ready
	How to do it...
	How it works...
	Implementing name-based hosting
	Getting ready
	How to do it...
	How it works...
	Implementing CGI with Perl and Ruby
	Getting ready
	How to do it...
	Creating your first Perl CGI script
	Creating your first Ruby CGI script
	How it works...
	There's more...
	Installing, configuring, and testing PHP
	Getting ready
	How to do it...
	How to do it...
	Securing Apache
	Getting ready
	How to do it...
	Configuring httpd.conf to provide better security
	Removing unneeded httpd modules
	Protecting your Apache files
	How it works...
	Setting up HTTPS with Secure Sockets Layer (SSL)
	Getting ready
	How to do it...
	How it works...
	There's more...
	13. Operating System-Level Virtualization
	Introduction
	Installing and configuring Docker
	Getting ready
	How to do it...
	How it works...
	Downloading an image and running a container
	Getting ready
	How to do it...
	How it works...
	There's more...
	Stopping and starting a container
	Attaching and interacting with your container
	Creating your own images from Dockerfiles and uploading to Docker Hub
	Getting ready
	How to do it...
	Uploading your image to the Docker Hub
	How it works...
	Setting up and working with a private Docker registry
	Getting ready
	How to do it...
	Steps to be done on our Docker registry server (192.168.1.100)
	Steps to be done on every client needing access to our registry
	How it works...
	14. Working with SELinux
	Introduction
	Installing and configuring important SELinux tools
	Getting ready
	How to do it...
	How it works...
	There's more...
	Working with SELinux security contexts
	Getting ready
	How to do it...
	How it works...
	Working with policies
	Getting ready
	How to do it...
	How it works...
	There's more...
	Troubleshooting SELinux
	Getting ready
	How to do it...
	How it works...
	15. Monitoring IT Infrastructure
	Introduction
	Installing and configuring Nagios Core
	Getting ready
	How to do it...
	How it works...
	Setting up NRPE on remote client hosts
	Getting ready
	How to do it...
	How it works...
	Monitoring important remote system metrics
	Getting ready
	How to do it...
	How it works...
	Index

